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Background and Objective: Laser therapy is a new
approach applicable in different medical fields when bone
loss occurs, including orthopedics and dentistry. It has also
been used to induce soft-tissue healing, for pain relief, bone,
and nerve regeneration. With regard to bone synthesis,
laser exposure has been shown to increase osteoblast
activity and decrease osteoclast number, by inducing
alkaline phosphatase (ALP), osteopontin, and bone sialo-
protein expression. Studies have investigated the effects of
continuous or pulsed laser irradiation, but no data are yet
available on the properties of superpulsed laser irradiation.
This study thus aimed to investigate the effect of super-
pulsed laser irradiation on osteogenic activity of human
osteoblast-like cells, paying particular attention to inves-
tigating the molecular mechanisms underlying the effects
of this type of laser radiation.
Study Design/Materials and Methods: Human osteo-
blast-like MG-63 cells were exposed to 3, 7, or 10 super-
pulsed laser irradiation (pulse width 200 nanoseconds,
minimum peak power 45 W, frequency 30 kHz, total energy
60 J, exposure time 5 minutes). The following parameters
were evaluated: cell growth and viability (light microscopy,
lactate dehydrogenase release), calcium deposits (Alizarin
Red S staining), expression of bone morphogenetic factors
(real-time PCR).
Results: Superpulsed laser irradiation decreases cell
growth, induces expression of TGF-b2, BMP-4, and
BMP-7, type I collagen, ALP, and osteocalcin, and increases
the size and the number of calcium deposits. The stim-
ulatory effect is maximum on day 10, that is, after seven
applications.
Conclusions: Reported results show that superpulsed
laser irradiation, like the continuous and pulsed counter-
parts, possesses osteogenic properties, inducing the expres-
sion of molecules known to be important mediators of
bone formation and, as a consequence, increasing calcium
deposits in human MG-63 cells. Moreover, the data suggest
a new potential role for PPARg as a regulator of osteoblast
proliferation. Lasers Surg. Med. 41:298–304, 2009.
� 2009 Wiley-Liss, Inc.
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INTRODUCTION

Laser therapy is a new approach in different medical
fields, including orthopedics and dentistry, when bone loss
occurs, that is, in cases of bone fracture and tooth extraction
[1]. Recent studies have reported the benefits of low level
laser therapy (LLLT), which has been used to induce soft-
tissue healing, for pain relief, bone, and nerve regeneration
[2], although the molecular mechanisms triggered are not
yet fully clear.

With regard to bone synthesis, in vivo experiments on rat
femur have shown that pulsed laser irradiation with high
peak power stimulates bone formation by increasing
osteoblast activity and decreasing osteoclast numbers [3].
Beneficial properties have been ascribed to LLLT’s anti-
inflammatory effect, postulating that the treatment mod-
ulates transcription factors and regulates the expression of
pro-inflammatory cytokines [4]. A recent study on the
subplantar tissue of rat’s paw evidenced that LLLT
decreased mRNA content of TNF-a, IL-1b, and IL-6 [5]; it
was suggested that an early target of radiation was TNF-a
which, in turn, activates other cytokines. These authors
also reported a decreased expression of kinin receptors in
the same experimental model [6].

It has also been reported that LLLT induces the
formation of small amounts of reactive oxygen species
(ROS), which can trigger cell stimulation via increased
mitochondrial respiration and ATP formation [7].

The stimulatory effect of LLLT has also been confirmed
in vitro in different cell lines. In osteoblast-like cells
isolated from fetal rat calvariae, LLLT stimulated prolif-
eration and differentiation, inducing alkaline phosphatase
(ALP), osteopontin (OP), and bone sialoprotein expression
[8]. Similar results have been obtained in cultured human
SaOS-2 cells, where early induction of ALP, type I collagen,
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and OP was observed in cells irradiated with 670 nm diode
laser [9,10]. Moreover, treatment with LLLT of human
osteoblast-like cells, cultured on titanium, induced cellular
activity in a dose-dependent manner, through increased
osteocalcin and TGF-b1 production [11]. TGF-b is one of
the most abundant regulatory factors stored in the bone
matrix [12]; it drives the cascade of events leading to
new bone formation. In case of bone resorption, TGF-b is
released early, and favors bone growth; however, once
the process of bone formation is started, it acts as an
inhibitor of mineralization and suppresses markers of
osteoblast activity; this suggests that TGF-b affects
osteoblast precursors but not differentiated osteoblasts
[13,14].

Bone morphogenetic proteins (BMPs) are members of the
TGF-b superfamily, known to play an important role in
bone formation [15]. Of the BMPs, BMP-2, 6, and 9 have
been shown to be the most potent agents in inducing
osteoblast differentiation of mesenchymal stem cells. On
the contrary, BMP-3 exhibits no osteogenic activity and
antagonizes the osteogenic activity of BMP-2, 4, 6, 7, and
9 [16].

Recent clinical trials have shown that BMP-7 is effective
in stimulating ALP production in relatively mature
osteoblasts [17]. Taken together, these findings suggest
that interactions among BMPs are fundamental in regulat-
ing and driving the bone regeneration process.

Based on the fact that osteoblasts and adipocytes share a
common progenitor (multipotential mesenchymal stem
cells in bone marrow), and since peroxisome proliferated-
activated receptor (PPAR) g is a key regulator of adipocyte
differentiation, the possible role of this nuclear receptor
in bone metabolism has been investigated. It has been
reported that low PPARg expression enhances formation
of bone mass by stimulating osteoblastogenesis [18]. In
cultured primary osteoblasts, PPARg ligands have been
shown to decrease mineralized bone nodules and ALP
activity, suggesting that activation of PPARg inhibits the
expression of mediators involved in bone formation, such
as BMP-2 and osteocalcin [19], and that the appropriate
antagonists of PPARg could provide a new approach to
treating some bone disorders [20].

Laser irradiation can also be used in the superpulsed
modality, although no reports on its use have yet been
published. The present study thus investigated the effects
of superpulsed laser irradiation on osteogenic activity of
human osteoblast-like cells, paying particular attention to
investigating the molecular mechanisms underlying those
effects.

MATERIALS AND METHODS

Materials

MG-63 human osteoblast-like cells were from ATCC
(Rockville, MD); L-glutamine was from (Gibco Life Tech-
nologies, Paisley, UK); Trypan Blue (TB) was from Carlo
Erba Reagenti (Milano, Italy); all the other reagents were
from Sigma (St. Louis, MO).

Cell Culture

Cells were seeded 5�104/cm2 in modified eagle medium
(MEM) supplemented with 2 mM L-glutamine, 1% (v/v)
antibiotic/antimycotic solution, 1 mM sodium pyruvate,
and 10% (v/v) fetal bovine serum (FBS. Cells were
maintained at 378C in a 5% CO2 atmosphere.

Laser Treatment

Twenty-four hours after seeding, cells were exposed to
superpulsed laser irradiation, with the following protocol:
every 24 hours for the first 5 days, then every 48 hours
until day 20. A Lumix 2 HFPL Dental device IR (904–
910 nm) Gallium Arsenide laser (Fisioline s.n.c., Verduno,
Cuneo, Italy) was used, with the following experimental
parameters: pulse width 200 nanoseconds, minimum peak
power 33 W, average out power 200 mW, frequency 30 kHz,
exposure time 5 minutes, total energy 60 J for each well
(illuminated surface size: 9 cm2). The administered dose
was 6.7 J/cm2. Control cells were not exposed to laser
irradiation. Both control and laser-treated cells were
harvested by trypsinization at days 4 (3 exposures to laser
irradiation), 10 (7 exposures to laser irradiation), and
20 (12 exposures to laser irradiation), and used for the
determinations reported below.

Cell Growth and Viability

Cells present in monolayer and culture medium were
counted using a Burker chamber. Cell viability was
determined by the TB exclusion test and through lactate
dehydrogenase (LDH) activity in the culture medium, as
marker of necrotic death. TB exclusion was evaluated
on cells suspended in the presence of the dye (0.8 mg/ml);
400 cells were counted for each sample and results
expressed as percentages of TB-positive cells. LDH activity
was assessed spectrophotometrically on clear culture
supernatants after centrifugation at 600g for 10 minutes
and expressed as nmoles NADH oxidized//minute/ml of
culture medium [21].

Calcium Deposition

Alizarin Red S staining was used to evaluate the
formation of calcium deposits and mineral matrix: detached
cells were fixed in 70% ethanol, stained with 1% Alizarin
Red solution for 2 minutes, washed with Tris-buffered
saline solution and observed under a light microscope to
evaluate Alizarin positivity.

Real-Time Polymerase Chain Reaction
(Real-Time PCR)

Total RNA was isolated from MG-63 cells with a
RNEasy1 Mini Kit (Qiagen, GmbH, Germany) following
the manufacturer’s protocol.

One microgram of RNA was reverse transcripted using
the High Capacity cDNA Archive kit (Applied Biosystems,
Foster City, CA). PCR was performed using IQTM SYBR-
Green Supermix (Bio-Rad, Hercules, CA) in a iCycler
system (Bio-Rad).

Each sample was tested three times, and the threshold
cycle (Ct) values from each reaction were averaged.
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The change was quantified as the relative expression
compared to that at time 0 (before the first exposure to
laser irradiation), calculated as 2�DDDCt , where DCt¼
Ctsample�CtGAPDH and DDCt¼DCtsample�DCtT0.
Human primer sequences used for real-time PCR are
reported in Table 1.

Statistical Analysis

Data are expressed in all cases as means�SD. The
significance of differences between group means was
assessed by variance analysis, followed by the Newman–
Keuls test (P<0.05).

RESULTS

The effect of super-pulsed laser irradiation on cell
proliferation and viability, and on the expression of some
parameters involved in bone synthesis was studied in
human osteoblast-like cells MG-63.

Figure 1 reports proliferation, showing a decrease of
cell numbers in laser-treated cells versus controls. The

decrease started from the fourth day and reached a
maximum on day 10 after seven applications, at which
point the number of laser-treated cells was 75% of the
control value. No induction of cell death was shown by
the TB exclusion test, nor by counting cells floating in the
medium or determining LDH release in the medium, at
any time studied (data not reported).

Figures 2–6 show the stimulatory effect of super-pulsed
laser irradiation on osteoblast activity. Figure 2 reports the

TABLE 1. Human Primer Sequences for Real-Time PCR

Gene Forward primer 50-30 Reverse primer 50-30 bp

GAPDH GTCGGAGTCAACGGATTTGG GGGTGGAATCATATTGGAACATG 142

ALP CTCCCAGTCTCATCTCCT AAGACCTCAACTCCCCTGAA 120

BMP-4 CTCGCTCTATGTGGACTT ATGGTTGGTTGAGTTGAGG 130

BMP-7 GTGGAACATGACAAGGAAT GAAAGATCAAACCGGAAC 65

OCN GTGACGAGTTGGCTGACC CAAGGGGAAGAGGAAAGAAGG 129

PPARa GGATGTCACACAACGCGATT GCCAGAGATTTGAGATCTGCAGTT 127

PPARg GCCGAGAAGGAGAAGC TGGTCAGCGGGAAGG 150

TGF-b2 GAG TAC TAC GCC AAG GAG GTT TAC A CGA ACA ATT CTG AAG TAG GGT CTG T 104

COLL I GAG GAA ACT GTA AGA AAG G GTT CCC ACC GAG ACC 150

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; ALP, alkaline phosphatase; BMP-4, bone morphogenetic protein 4; BMP-

7, bone morphogenetic protein 7; OCN, osteocalcin; PPARa, peroxisome proliferators-activated receptor a; PPARg, peroxisome

proliferators-activated receptor g; TGF-b2, transforming growth factor b2; COLL I, type I collagene; bp, product length.

Fig. 1. Growth of cells exposed or not to superpulsed laser

irradiation. Data refer to cells present in the monolayer and

are means�SD of five experiments. Means with different

letters are significantly different from one another (P<0.05) as

determined by analysis of variance followed by post hoc

Newman–Keuls test. C, control cells; L, laser-treated cells.

Fig. 2. mRNA content of alkaline phosphates (ALP) and

osteocalcin in cells exposed or not to superpulsed laser

irradiation. Data are means�SD of five experiments. Means

with different letters are significantly different from one

another (P<0.05) as determined by analysis of variance

followed by post hoc Newman–Keuls test. C, control cells;

L, laser-treated cells.
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mRNA content of ALP and osteocalcin. In laser-treated
cells, the ALP values were higher than those in control cells
at days 10 and 20, being the increase versus control 23%
and 98%, respectively, whereas no significant difference
was present at day 4 between treated and control cells. As
regards osteocalcin, in laser-treated cells, mRNA content
was higher than in control cells only at day 10 (þ60%), and
was similar to the other experimental times.

Figure 3 shows the mRNA content of TGFb2 and type I
collagen. In laser-treated cells, the TGFb2 mRNA content
was higher on days 10 and 20 (þ30%, þ40% vs. controls),
whereas it was similar on day 4. Type I collagen showed
significant changes on days 10 and 20 (þ109%, þ58% vs.
controls).

As regards BMPs, a significant increase in laser-treated
cells was evident in BMP-4 mRNA only on day 20 (þ44% vs.
control); whereas BMP-7 was induced on both day 10 and
day 20, the larger increase being on day 10 (þ50% vs.
control; Fig. 4).

Figure 5 shows PPARa and g mRNA contents; both
isotypes increased in laser-treated cells at day 10 in
comparison with control cells, although the increase
in PPARg was larger (90% vs. 25% of PPARa); at the
other times, no significant difference was observed between
laser-exposed cells and controls.

Fig. 3. mRNA content of TGF-b2 and type I collagen in cells

exposed or not to superpulsed laser irradiation. Data are

means�SD of five experiments. Means with different letters

are significantly different from one another (P<0.05) as

determined by analysis of variance followed by post hoc

Newman–Keuls test. C, control cells; L, laser-treated cells.

Fig. 4. mRNA content of BMP-4 and BMP-7 in cells exposed or

not to superpulsed laser irradiation. Data are means�SD of

five experiments. Means with different letters are significantly

different from one another (P<0.05) as determined by analysis

of variance followed by post hoc Newman–Keuls test. C,

control cells; L, laser-treated cells.

Fig. 5. mRNA content of PPARa and g in cells exposed or not

to superpulsed laser irradiation. Data are means�SD of five

experiments. Means with different letters are significantly

different from one another (P<0.05) as determined by analysis

of variance followed by post hoc Newman–Keuls test. C,

control cells; L, laser-treated cells.
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Calcium deposits were investigated by staining cells with
Alizarin red S (Fig. 6). Especially at 20 days (panel D vs.
panel C), larger and more numerous calcium deposits
were present in laser-treated cells compared to controls.
Panels E and F are magnification of nodules present in
laser-treated cells at 20 days.

DISCUSSION

The study constitutes the first report investigating
the effect of superpulsed laser irradiation on human
osteoblastic-like cells. To date, evidence of the osteogenic
properties of continuous or pulsed laser irradiation has
been reported, both in vitro and in vivo [22–26]. The
present results show that repeated super-pulsed laser
irradiation inhibits cell proliferation in human osteoblast-
like cells and, especially, that it increases the expression of
proteins essential for bone formation, that is, TGF-b2,
BMP-4, and BMP-7, ALP, type I collagen, and osteocalcin.
The stimulatory effect becomes evident on day 10, after
seven laser irradiation exposures.

The inverse correlation between cell growth and osteo-
genic activity in MG-63 cells is not surprising since it is well
known that cell differentiation process is characterized by a
reduction of proliferation coupled with an increased tissue-
specific gene expression, as also recently confirmed [27].

At present, few studies have addressed the molecular
mechanisms underlying the osteogenic effect of continuous
or pulsed laser irradiation. It has been suggested that this
type of electromagnetic radiation influences biochemical
activities, inducing a transient heating of some chromo-
phores [28] and/or changing the redox status, with
consequent production of ROS. It is well know that, when
produced in large amounts, ROS are cell destructive,
but that in small amounts they can act as ‘‘secondary
messengers’’ via different pathways [29]. An effect of ROS is
to induce lipid peroxidation and, as consequence, to
increase production of aldehydes such as 4-hydroxynone-
nal, which induce cell differentiation at low concentrations
[30,31]. Aldehydes derived from lipid peroxidation may also
affect the activity of important membrane enzymes, such as
ATPase, 50-nucleotidase, phospholipase C [31].

The possibility that the effects of laser irradiation are in
part mediated by changes in plasmamembranes may be
supported by observations that shock waves, another kind
of mechanical biostimulation, increase substance uptake
and delivery via membrane modulation [29,32].

It is likely that, in our experimental conditions, a
transient but stimulating heating occurs, since the diode
laser equipment used is within the infrared wavelength
band (904–910 nm). In turn, the laser-induced transient

Fig. 6. Calcium deposits evidenced with Alizarin S staining in

cells exposed or not to superpulsed laser irradiation. MG-63

harvested from the monolayer were stained with Alizarin red S

and observed under the light microscope. Cells were analyzed

on days 10 and 20. The black arrow shows the presence of

calcium deposits. Panel A: DAY 10-C, control cells after

10 days of experimental time. Panel B: DAY 10-L, laser-

treated cells after 10 days of experimental time. Panel C: DAY

20-C, control cells after 20 days of experimental time.

Panel D: DAY 20-L, laser-treated cells after 20 days of

experimental time (magnification of panel. Panels E and

F: DAY 20-L, laser-treated cells after 20 days of experi-

mental time (magnification of panel D).
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heating could increase ROS production and lipid perox-
idation [33].

It has been reported very recently that ‘‘in vitro’’ low-
power far-infrared laser irradiation activated latent TGF-
b1 immediately, and subsequently TGF-b3, possibly via
induction of a conformational change in the latent com-
plexes. These changes render TGF-b more amenable to the
usual activation by altered pH or proteases [34]. These
results suggest that the TGF-b pathway might be a key
molecular mechanism triggered by laser irradiation. In our
research, superpulsed laser-treated cells showed a signifi-
cant increase of TGF-b2 mRNA versus controls, on both day
10 and day 20, suggesting the possibility that this signal
transduction pathway may also be activated by super-
pulsed laser irradiation.

Other important changes observed in the superpulsed
laser-treated cells concern proteins and transcription
factors involved in regulating bone formation. An early
increase of BMP-7 was observed, followed by the increase of
BMP-4. This temporal sequence could be in agreement with
the observation that BMP-7 is an early factor involved in
committing mesenchymal stem cells to osteoblast differ-
entiation and, especially, with reports that both BMP-7 and
BMP-4 increase expression of ALP and osteocalcin [35].

For the first time, our research showed that laser
irradiation affects the expression of PPARs. PPARa and g
were examined because they are closely connected with
the reduction of cell viability and proliferation and with
the increase in differentiation [36,37]. In laser-exposed
cells, the strongest increase occurred in the isotype g. The
observation regarding the PPARg increase is in disagree-
ment with some reports indicating an anti-osteoblastogenic
role for this nuclear receptor [38–41]; these studies
principally analyzed the role of PPARg in determining the
destiny of multipotent mesenchymal stem cells in bone
marrow.

In the light of these observations we hypothesize that, in
differentiated MG-63 cells, the increased PPARg is mainly
involved in decreasing cell proliferation, as has been
reported for other types of both normal and tumor cells
[42–44]. The true role of PPARg in modulating laser effect
is now under investigation in experiments using specific
antagonists.

The bulk of the results obtained shows that superpulsed
laser irradiation, like the continuous and pulsed counter-
parts, possesses osteogenic properties, inducing the expres-
sion of molecules known to be important mediators of bone
formation and, as a consequence, increasing the size and
the number of calcium deposits in human MG-63 cells.
Moreover, a new potential role may be suggested for
the nuclear receptor PPARg as a regulator of osteoblast
proliferation.
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