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a b s t r a c t

A random distribution function on the positive real line which belongs to the class of

neutral to the right priors is defined. It corresponds to the superposition of independent

beta processes at the cumulative hazard level. The definition is constructive and starts

with a discrete time process with random probability masses obtained from suitably

defined products of independent beta random variables. The continuous time version is

derived as the corresponding infinitesimal weak limit and is described in terms of

completely random measures. It takes the interpretation of the survival distribution

resulting from independent competing failure times. We discuss prior specification and

illustrate posterior inference on a real data example.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Let FRþ be the space of all cumulative distribution functions on the positive real line. In this paper we introduce a
stochastic process fFt ; tZ0g with trajectories in FRþ which belongs to the class of neutral to the right (NTR) priors. A
random distribution function F on Rþ is NTR if, for any 0rt1ot2o � � �otko1 and for any kZ1, the random variables
(r.v.s)

Ft1
;

Ft2
�Ft1

1�Ft1

; . . . ;
Ftk
�Ftk�1

1�Ftk�1

ð1Þ

are independent, see Doksum (1974). NTR priors share some remarkable theoretical properties, among which the most
celebrated one is the conjugacy with respect to right-censored survival data. The form of the posterior distribution and its
large sample properties are now well known (see, e.g., Ferguson and Phadia, 1979; Kim and Lee, 2001, 2004). An interesting
extension of NTR priors has been recently introduced by James (2006) with the family of spatial NTR processes.
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NTR priors can be represented as suitable transformations of completely random measures (CRMs), i.e. random
measures that give rise to mutually independent random variables when evaluated on pairwise disjoint sets. Appendix A.1
provides a brief account of CRMs, as well as justification of the following statements. It is important to recall that F is NTR if
and only if Ft ¼ 1�e� ~mðð0;t�Þ for some CRM ~m on BðRþ Þ (Borel s�algebra of Rþ ) such that P½limt-1 ~mðð0; t�Þ ¼1� ¼ 1. The
nonatomic part of ~m (that is the part without fixed jumps) is characterized by its Lévy intensity n, which is a nonatomic
measure on Rþ �Rþ , so that the law of F is uniquely determined by n and the density of the fixed jumps. The conjugacy
property of NTR priors can be then expressed as follows: the posterior distribution of F, given (possibly) right-censored
data, is described by a NTR process for a CRM ~m� with fixed jump points at uncensored observations. This result is of great
importance for statistical inference; indeed, the posterior distribution, conditional on right-censored data, is still NTR and
one can fully describe the associated CRM in terms of the updated Lévy intensity and the densities of the jumps at fixed
points of discontinuity. Therefore, one can resort to the simulation algorithm suggested in Ferguson and Klass (1972) to
sample the trajectories of the underlying CRM, thus obtaining approximate evaluations of posterior inferences.

The beta-Stacy process of Walker and Muliere (1997) is an important example of NTR prior. Its main properties are (i) a
parametrization with a straightforward interpretation in terms of survival analysis that facilitates prior specification; (ii) a
simple description of the posterior process in terms of the parametrization used in the prior. For later reference, we recall
these two properties. As for (i), we adopt the parametrization in Walker and Muliere (1997, Definition 3) and we suppose,
as is usual in applications, that the underlying CRM ~m does not have fixed jump points in the prior. To this end, let a be a
diffuse measure on BðRþ Þ and b : Rþ-Rþ a piecewise continuous and positive function such that

R t
0 bðxÞ

�1aðdxÞ-þ1 as
t-þ1. A beta-Stacy process fFt ; t40g with parameter ða;bÞ is NTR for a CRM ~m whose Lévy intensity is defined by

nðds;dxÞ ¼
ds

1�e�s
e�sbðxÞaðdxÞ: ð2Þ

In particular, EðFtÞ ¼ 1�expf�
R t

0 bðxÞ
�1aðdxÞg, see Eq. (32) in Appendix A.1, suggesting that H0ðtÞ ¼

R t
0 bðxÞ

�1aðdxÞ takes on
the interpretation of the prior guess at the cumulative hazard rate of F. The role played by a and b is better explained when
one considers the nonparametric distribution induced by the beta-Stacy process on the space of cumulative hazard
functions, i.e. the stochastic process fHt ; t40g defined as

Ht ¼HtðFÞ ¼

Z t

0

dFx

1�Fx�
: ð3Þ

It can be shown that fHt ; t40g is distributed as a beta process of Hjort (1990) (see Remark 2), so that EðHtÞ ¼H0ðtÞ and
VarðHtÞ ¼

R t
0½bðxÞþ1��1dH0ðxÞ. Then, b plays the role of concentration parameter: a large b makes for tighter concentration

around H0. As for (ii), consider data ðT1;D1Þ; . . . ; ðTn;DnÞ arising from n lifetimes subject to right censoring, where T stands
for the time observed and D is the censoring indicator (D¼ 1 indicates an exact observation, D¼ 0 a censored one). We
adopt a point process formulation, which is standard in survival analysis, by defining NðtÞ ¼

P
irn1ðTi r t;Di ¼ 1Þ and

YðtÞ ¼
P

irn1ðTi Z tÞ. Based on this notation, one can describe the posterior distribution of F as a beta-Stacy process, that is
Ftjdata¼ 1�e� ~m�ðð0;t�Þ where ~m� is a CRM with fixed jumps defined by (2) with updated parameter ða;bþYÞ and fixed jumps
fVk; kZ1g at locations ftk; kZ1g such that 1�e�Vk � betaðNftkg;bðtkÞþYðtkÞ�NftkgÞ. Here, betaða; bÞ denotes the beta
distribution and Nftkg ¼NðtkÞ�Nðt�k Þ is the number of uncensored observations occurring at time tk.

Our aim is to introduce a new class of NTR priors and to investigate its properties with respect to (i) and (ii). The
definition is constructive and starts with a discrete time process which satisfies the independence condition in (1).
Following the idea of Walker and Muliere (1997), we adopt a stick breaking construction: let 0ot1ot2o � � � be a
countable sequence of time points indexed by k¼ 1;2; . . . and define

Ftk
¼
Xk

j ¼ 1

Vj

Yj�1

l ¼ 1

ð1�VlÞ ð4Þ

for V1;V2; . . . a sequence of independent r.v.s with values in the unit interval. Each Vj is recovered from the product of
independent beta distributed r.v.s so that the conditional probability of an event at time tk given survival at time tk�1 is the
result of a series of m independent Bernoulli experiments. In Section 2, we discuss properties and possible simplifications
of the proposed parametrization, then we provide formulas for the finite dimensional distributions. The continuous time
version of the process is derived through a passage to the limit which leads to the specification of the underlying CRM in
terms of a Lévy intensity of the form (see Theorem 1)

nðds;dxÞ ¼
ds

1�e�s

Xm

i ¼ 1

e�sbiðxÞaiðdxÞ:

The beta-Stacy process can be recovered as a particular case either by setting m¼ 1 or by taking bi ¼ b for any i. In
Section 3, we provide discussion on the proposed NTR prior by studying the induced distribution on the space of
cumulative hazard functions. One obtains that the corresponding random cumulative hazard is given by the superposition
of m independent beta processes (see Proposition 2), which motivates the name m-fold beta NTR process we will give
to the new prior. It also suggests that the prior beliefs can be specified reasoning in terms of survival times generated by
independent competing failure times. In Section 4, we give a complete description of the posterior distribution given
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right-censored data and we detail a Ferguson–Klass type simulation algorithm for obtaining approximate evaluation of
posterior quantities for a real data example. In Section 5 some concluding remarks and future research lines are presented.

2. The m� fold beta NTR process

2.1. Discrete time construction

For mZ1, let us consider m sequences of positive real numbers ða1;�;b1;�Þ :¼ fða1;k;b1;kÞ; kZ1g; . . . ; ðam;�;bm;�Þ :¼

fðam;k;bm;kÞ; kZ1g and m independent sequences of r.v.s Y1;� :¼ fY1;k; kZ1g; . . . ;Ym;� :¼ fYm;k; kZ1g such that Yi;� is a
sequence of independent r.v.s with Yi;k � betaðai;k;bi;kÞ. Define the sequence of r.v.s fXk; kZ1g via the following
construction:

X1 ¼
d

1�
Ym
i ¼ 1

ð1�Yi;1Þ

X2jX1 ¼
d
ð1�X1Þ 1�

Ym
i ¼ 1

ð1�Yi;2Þ

 !

^

XkjX1; . . . ;Xk�1 ¼
d
ð1�Fk�1Þ 1�

Ym
i ¼ 1

ð1�Yi;kÞ

 !
;

ð5Þ

where

Fk :¼
Xk

j ¼ 1

Xj;

with the proviso X1 :¼ X1jX0. By using Theorem 7 in Springer and Thompson (1970) it can be checked that the conditional
distribution of XkjX1; . . . ;Xk�1 is absolutely continuous with respect to the Lebesgue measure with density given by

fXkjX1 ;...;Xk�1
ðxkjx1; . . . ; xk�1Þ ¼

1

1�
Pk�1

j ¼ 1 xj

Ym
i ¼ 1

Gðai;kþbi;kÞ

Gðbi;kÞ
Gn;0

n;0

1�xk

1�
Pk�1

j ¼ 1 xj

a1;kþb1;k�1; . . . ;am;kþbm;k�1

b1;k�1; . . . ;bm;k�1

�����
 !

1ð0oxk o1Þ:

Here Gl;m
p;q stands for the Meijer G-function. Refer to Erdélyi et al. (1953, Section 5) for a thorough discussion of the Meijer

G-functions which are very general functions whose special cases cover most of the mathematical functions such as the
trigonometric functions, Bessel functions and generalized hypergeometric functions. Under the construction (5),
Xko1�Fk�1 almost surely (a.s.), so that Fkr1 a.s. Moreover, we have

E½Fk� ¼
Ym
i ¼ 1

ai;k

ai;kþbi;k

( )
þ

Ym
i ¼ 1

ai;k

bi;kþbi;k

( )
E½Fk�1�:

Based on this recursive relation, one can prove that a sufficient condition for Fk-1 a.s. is that
Q

kZ1

Qm
i ¼ 1 bi;k=

ðai;kþbi;kÞ ¼ 0. Hence, we can state the following result.

Lemma 1. Let ftk; kZ0g be a sequence of time points in Rþ with t0 :¼ 0 and let fFt ; tZ0g be defined by Ft :¼
P

tk r tXk for any

tZ0 according to construction (5). If F0 ¼ 0 and

Y
kZ1

Ym
i ¼ 1

1�
ai;k

ai;kþbi;k

 !
¼ 0;

then the sample paths of fFt ; tZ0g belong to FRþ a.s.

Note that the random process fFt ; tZ0g in Lemma 1 is a discrete time NTR random probability measure, see (1). We term
fFt ; tZ0g a discrete time m-fold beta NTR, according to the following definition.

Definition 1. Let fXk; kZ1g be a sequence of r.v.s defined via construction (5) and let ftk; kZ0g be a sequence of time
points in Rþ with t0 :¼ 0. The random process fFt ; tZ0g defined by Ft :¼

P
tk r tXk and satisfying conditions of Lemma 1 is a

discrete time m-fold beta NTR process with parameter ða1;�;b1;�Þ; . . . ; ðam;�;bm;�Þ and jumps at ftk; kZ0g.

Definition 1 includes as particular case the discrete time version of the beta-Stacy process. In fact, construction (5) is
similar to the construction proposed in Walker and Muliere (1997, Section 3) which has, for any kZ1, XkjX1; . . . ;

Xk�1 ¼
d
ð1�Fk�1ÞYk for Yk � betaðak;bkÞ. Hence, (5) generalizes the construction in Walker and Muliere (1997) by nesting for

any kZ1 the product of independent beta distributed r.v.s.: the latter can be recovered by setting m¼ 1. Moreover, using
some known properties for the product of independent beta distributed r.v.s, further relations between the two
constructions can be established. We focus on a result that will be useful in the sequel and that can be proved by using a
well known property of the product of beta r.v.s, see Theorem 2 in Jambunathan (1954).
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Proposition 1. A discrete time m-fold beta NTR process with parameter ða1;�;b�Þ; ða2;�;b�þa1;�Þ; . . . ; ðam;�;b�þ
Pm�1

i ¼ 1 ai;�Þ is a

discrete time beta-Stacy process with parameter ð
Pm

i ¼ 1 ai;�;b�Þ.

The interpretation is as follows. The random quantity Xk=ð1�Fk�1Þ represents the conditional probability of observing the
event at time tk given survival up to tk. By construction (5), Xk=ð1�Fk�1Þ is the result of m independent Bernoulli
experiments: we observe the event if at least one of the m experiment has given a positive result, where the probability of
success in the i-th experiment is Yi;k � betaðai;k;bi;kÞ. The particular parameter configuration bi;k ¼ bkþ

Pi�1
j ¼ 1 aj;k, 2r irm,

yields that the probability of at least one success is beta distributed, hence we recover the construction in Walker and
Muliere (1997).

Let DðsÞ denote the s-dimensional simplex, DðsÞ ¼ fðx1; . . . ; xsÞ 2 R
s
þ :
Ps

j ¼ 1 xjr1g. By the construction (5) and by using
the solution of integral equation of type B in Wilks (1932), it can be checked that, for any integer s, the r.v.s X1; . . . ;Xs have
joint distribution on DðsÞ which is absolutely continuous with respect to the Lebesgue measure on Rs with density given by

fX1 ;...;Xs
ðx1; . . . ; xsÞp

Ys

j ¼ 1

x
a1;j�1

j 1�
Pj

l ¼ 1 xl

� �bm;j�1

1�
Pj�1

l ¼ 1 xl

� �a1;jþbm;j�1

8><
>:

Z
ð0;1Þm�1

Ym�1

i ¼ 1

v
ai;j

i ð1�viÞ
a iþ 1;j�1 1�

xj½1�
Qi

l ¼ 1ð1�vlÞ�

1�
Pj�1

l ¼ 1 xl

 !ci;j

dvi

)
1
ðx1 ;...;xsÞ2DðsÞ ; ð6Þ

where

a i;j :¼
Xm
l ¼ i

al;j; ci;j :¼ bi;j�ðbiþ1;jþaiþ1;jÞ:

In particular, from (6) it can be checked that, for any kZ1, the r.v.s X1;X2=ð1�F1Þ; . . . ;Xk=ð1�Fk�1Þ are independent and
Xk=ð1�Fk�1Þ ¼

d
1�
Qm

i ¼ 1ð1�Yi;kÞ. Due to the more elaborated definition of the discrete time m-fold beta NTR process, the
joint density (6) appears less manageable than in the case of the discrete time beta-Stacy process, i.e. the generalized
Dirichlet distribution introduced in Connor and Mosimann (1969). However, in (6) one can recognize the generalized
Dirichlet distribution multiplied by the product of integrals which disappears when m¼ 1 or under the condition of
Proposition 1.

2.2. Infinitesimal weak limit

The next theorem proves the existence of the continuous version of the process as infinitesimal weak limit of a
sequence of discrete time m-fold beta NTR processes. We start by considering the case of no fixed points of discontinuity.

Theorem 1. Let a1; . . . ;am, mZ1, be a collection of diffuse measures on BðRþ Þ and let b1; . . . ;bm be piecewise continuous and

positive functions defined on Rþ such that
R t

0

Pm
i ¼ 1 biðxÞ

�1aiðdxÞ-þ1 as t-þ1 for any i. Then, there exists a CRM ~m without

fixed jump points and Lévy intensity

nðds;dxÞ ¼
ds

1�e�s

Xm

i ¼ 1

e�sbiðxÞaiðdxÞ: ð7Þ

In particular, there exists a NTR process fFt ; t40g defined by Ft ¼ 1�e� ~mðð0;t�Þ such that, at the infinitesimal level,
dFt jFt ¼

d
ð1�FtÞ½1�

Qm
i ¼ 1ð1�Yi;tÞ� where Y1;t ; . . . ;Ym;t are independent r.v.s with Yi;t � betaðaiðdtÞ;biðtÞÞ.

A detailed proof of Theorem 1 is deferred to Appendix A.2. The strategy of the proof consists in defining, for any
integer n, the process FðnÞt ¼

P
k=nr tX

ðnÞ
k where fXðnÞk ; kZ1g is a sequence of r.v.s as in (5) upon the definition of m

sequences ðaðnÞ1;�;b
ðnÞ
1;�Þ; . . . ; ða

ðnÞ
m;�;b

ðnÞ
m;�Þ that suitably discretize a1; . . . ;am and b1; . . . ;bm over the time grid 0;1=n;

2=n; . . . ; k=n; . . .. By writing FðnÞt as FðnÞt ¼ 1�exp�ZðnÞt for fZðnÞt ; tZ0g the independent increments process defined by
ZðnÞt ¼�

P
k=nr tlog½1�XðnÞk =ð1�FðnÞ

ðk�1Þ=tÞ�, the following limit as n-þ1 can be derived:

E½e�jZðnÞt �-exp �

Z þ1
0
ð1�e�jsÞ

Xm

i ¼ 1

Z t

0
e�sbiðxÞaiðdxÞ

ds

1�e�s

( )
; ð8Þ

which ensures the convergence of the finite dimensional distributions of fZðnÞt ; tZ0g to those of f ~mðð0; t�Þ; tZ0g for a CRM
with Lévy intensity in (7).

When the measures ai have point masses, the limiting process is described in terms of a CRM ~m with fixed jump points.
Let ftk; kZ1g be now the sequence obtained by collecting all tk such that aiftkg40 for some i¼ 1; . . . ;m and let ai;c be the
non-atomic part of ai. Then the limit in (8) becomes

E½e�jZðnÞt �-exp �

Z þ1
0
ð1�e�jsÞ

Xm

i ¼ 1

Z t

0
e�sbiðxÞai;cðdxÞ

ds

1�e�s

(
þ
X
tk r t

Xm

i ¼ 1

Z þ1
0
ðe�js�1Þ

e�biðtkÞsð1�e�aiftkgsÞ

sð1�e�sÞ
dsg;

where the second integral in the right hand side corresponds to logðE½ejlogð1�Yi;tk
Þ
�Þ with Yi;tk

� betaðaiftkg;biðtkÞÞ, see Lemma
1 in Ferguson (1974). This motivates the following definition of a continuous time NTR process.
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Definition 2. Let a1; . . . ;am, mZ1, be a collection of measures on BðRþ Þ and let b1; . . . ;bm be positive and piecewise
continuous functions defined on Rþ such that,

lim
t-þ1

Z t

0

aiðdxÞ

biðxÞþaifxg
¼ þ1; i¼ 1; . . . ;m: ð9Þ

The random process fFt ; t40g is a m-fold beta NTR process on Rþ with parameters ða1;b1Þ; . . . ; ðam;bmÞ if, for all t40,
Ft ¼ 1�e� ~mðð0;t�Þ for ~m a CRM characterized by the Lévy intensity

nðds;dxÞ ¼
ds

1�e�s

Xm
i ¼ 1

e�sbiðxÞai;cðdxÞ ð10Þ

and fixed jump Vk at any tk with aiftkg40 for some i¼ 1; . . . ;m so that Vk distributed according to

1�e�Vk ¼
d

1�
Ym
i ¼ 1

ð1�Yi;tk
Þ; Yi;tk

� betaðaiftkg;biðtkÞÞ: ð11Þ

Using Eq. (32) in Appendix A.1, the prior mean of the survival function is recovered as

E½1�Ft� ¼ exp �

Z t

0

Xm

i ¼ 1

ai;cðdxÞ

biðxÞ

( )Y
tk r t

Ym
i ¼ 1

1�
aiftkg

biðtkÞþaiftkg

� �
¼
Ym
i ¼ 1

Y
½0;t�

1�
aiðdxÞ

biðxÞþaifxg

� �
: ð12Þ

Note that, in the second equality,
Q
½0;t� stands for the product integral operator. Condition (9) implies that (12) goes to zero

when t grows to infinity, see Lemma 1 for a comparison with the discrete time case. Actually (9) implies more, namely
that each of the m factors in (12) vanishes for t-þ1. In particular, (9) is consistent with the interpretation
of
R t

0½biðxÞþaifxg�
�1aiðdxÞ as a proper cumulative hazard function for each i. We will come back to this point later in

Section 3.

Remark 1. The beta-Stacy process is a special case of Definition 2. It is clearly recovered by setting m¼ 1, cf. Walker and
Muliere (1997, Definition 3). Moreover, a second possibility is if we set, for mZ2, biðxÞ ¼ bðxÞþ

Pi�1
j ¼ 1 ajfxg for some fixed

function bð�Þ, then

nðds;dxÞ ¼
ds

1�e�s

Xm
i ¼ 1

e�sbðxÞai;cðdxÞ ¼
ds

1�e�s
e�sbðxÞ

Xm

i ¼ 1

ai;c

 !
ðdxÞ;

and, for any tk such that aiftkg40 for some i¼ 1; . . . ;m, we have that the jump at tk is distributed according to

1�e�Vk ¼
d

1�
Ym
i ¼ 1

ð1�Yi;tk
Þ � beta

Xm

i ¼ 1

aiftkg;bðtkÞ

 !
;

see Proposition 1. Hence, fFt ; tZ0g is a beta-Stacy process with parameters ð
Pm

i ¼ 1 ai;bÞ.

3. Superposition of beta processes

3.1. Prior on the space of cumulative hazards

In order to investigate further the properties of the m-fold beta NTR process, it is convenient to reason in terms of the
induced prior distribution on the space of cumulative hazard functions. In the sequel we rely on the key result that the
random cumulative hazard generated by a NTR process can be described in terms of a CRM with Lévy intensity whose jump
part is concentrated on [0,1], see Appendix A.1.

The most relevant example of nonparametric prior on the space of cumulative hazard functions is the beta process.
According to Hjort (1990), a beta process fHt ; t40g is defined by two parameters, a piecewise continuous function c :
Rþ-Rþ and a baseline cumulative hazard H0 such that, if H0 is continuous, Ht ¼ ~Zðð0; t�Þ for a CMR ~Z without fixed jump
points and Lévy intensity

nðdv;dxÞ ¼ 1ð0ovo1ÞcðxÞv
�1ð1�vÞcðxÞ�1dv dH0ðxÞ: ð13Þ

The case of fixed points of discontinuity is accounted for by taking H0 with jumps at ftk; kZ1g and Ht ¼ ~Zðð0; t�Þ for
~Z ¼ ~Zcþ

P
kZ1Jkdtk

where (a) the Lévy intensity of ~Zc is given by (13) after substituting H0 for H0ðtÞ�
P

tk r tH0ftg; (b) the
distribution of the jump Jk at tk is defined according to Jk � betaðcðtkÞH0ftkg; cðtkÞð1�H0ftkgÞÞ. The formulas for the mean and
the variance of Ht are as follows, see Hjort (1990, Section 3.3),

EðHtÞ ¼H0ðtÞ and VarðHtÞ ¼

Z t

0

dH0ðxÞ½1�dH0ðxÞ�

cðxÞþ1
: ð14Þ
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Remark 2. If fFt ; t40g is a beta-Stacy process of parameter ða;bÞ and Lévy intensity given in (2), then

nHðdv;dxÞ ¼ 1ð0ovo1Þv
�1ð1�vÞbðxÞ�1d vaðdxÞ

see (33) in Appendix A.1. It turns out that nH corresponds to the Lévy intensity of the beta process of parameter ðc;H0Þ

where cðxÞ ¼ bðxÞ and H0ðtÞ ¼
R t

0 bðxÞ
�1aðdxÞ. By inspection of Definition 3 in Walker and Muliere (1997) one sees that the

conversion formulas, when the parameter measure a has point masses, become

cðxÞ ¼ bðxÞþafxg and H0ðtÞ ¼

Z t

0

aðdxÞ

bðxÞþafxg :

Let now fFt ; tZ0g be a m-fold beta NTR process with parameter ða1;b1Þ; . . ., ðam;bmÞ and ai’s diffuse measures. Then, by
using (33) in Appendix A.1,

nHðdv;dxÞ ¼ 1ð0ovo1Þ
dv

vð1�vÞ

Xm

i ¼ 1

ð1�vÞbiðxÞaiðdxÞ ¼
Xm
i ¼ 1

1ð0ovo1ÞbiðxÞv
�1ð1�vÞbiðxÞ�1 dv

aiðdxÞ

biðxÞ
ð15Þ

that is the sum of m Lévy intensities of the type (13). It follows that HðFÞ is the superposition of m beta processes, according
to

Ft ¼
d

1�
Y
½0;t�

1�
Xm

i ¼ 1

dHi;x

( )
; ð16Þ

where fHi;t ; t40g is a beta processes of parameter ðci;H0;iÞwhere ciðxÞ ¼ biðxÞ and H0;iðtÞ ¼
R t

0 biðxÞ
�1aiðdxÞ. Note that F can be

seen as the distribution function of the minimum of m independent failure times,

Ft ¼PfminðX1; . . . ;XmÞrtg; PðXirtÞ ¼ 1�
Y
½0;t�

ð1�dHi;xÞ ð17Þ

and Hi;x takes the interpretation of the random cumulative hazard associated to the i-th failure type (i-th failure-specific

cumulative hazard).
It is also interesting to see the similarity of (16) to the waiting time distribution in state 0 of a continuous time Markov

chain fXt ; t40g in the state space f0;1; . . . ;mg where 0 is the initial state and Hi;x is the cumulative intensity of the
transition from 0 to i, i¼ 1; . . . ;m, cf. Andersen et al. (1993, Section II.7). Then PðXt ¼ 0Þ ¼

Q
½0;t�f1�

Pm
i ¼ 1 dHi;xg. The

cumulative transition intensities are constrained to
Pm

i ¼ 1 dHi;xr1 since, conditionally on the past, the transition out of
state 0 in an infinitesimal time interval is the result of a multinomial experiment. However, in (16) the transition is rather
the result of a series of independent Bernoulli experiments, which is equivalent to considering a competing risks model
generated by independent latent lifetimes, see Andersen et al. (1993, Section III. 1.2). The difference between the two
representations is clarified when one consider the case of fixed points of discontinuity. By inspection of Definition 2, one
has that (15) holds for ai;c substituted for ai and, for any tk such that aiftkg40, i¼ 1; . . . ;m,

Jk :¼ Htk
ðFÞ�Ht�

k
ðFÞ ¼ 1�e�Vk ¼

d
1�

Ym
i ¼ 1

ð1�Yi;tk
Þ; ð18Þ

where Yi;tk
� betaðaiftkg;biðtkÞÞ takes on the interpretation of the conditional probability Yi;tk

:¼ PðXi ¼ tkjXiZtkÞ according to
(17). Hence Jk corresponds to the (random) probability that at least one success occurs in m independent Bernoulli trials
with beta distributed probabilities of success. If the ai’s have point masses in common, (18) cannot be recovered from (16).
In fact, instead of (18) we would have that Jk ¼

d Pm
i ¼ 1 Yi;tk

which is not in [0,1] unless exactly m�1 of the beta jumps Yi;tk
are

identically zero. This suggests that, in general, (16) is not the correct way of extending the notion of superposition of
independent beta processes at the cumulative hazard level since there is no guarantee that infinitesimally

Pm
i ¼ 1 dHi;t takes

values on the unit interval.

Remark 3. The condition that the beta processes fHi;t ; t40g and fHj;t ; t40g have disjoint sets of discontinuity points when
iaj implies that the jump Jk is beta distributed. Such an assumption is the device used in Hjort (1990, Section 5) for the
definition of the waiting time distribution of a continuous time Markov chain with independent beta process priors for the
cumulative transition intensities.

In order to derive the counterpart of (16) in the case of fixed points of discontinuity, we rewrite fHi;t ; tZ0g as
Hi;t ¼ ~Z iðð0; t�Þ for a beta CRM ~Z i defined as

~Z i ¼ ~Z i;cþ
X
kZ1

Yi;tk
dtk
; ð19Þ

where ~Z i;c has Lévy intensity

niðdv;dxÞ ¼ 1ð0ovo1ÞbiðxÞv
�1ð1�vÞbiðxÞ�1 dv

ai;cðdxÞ

biðxÞ
: ð20Þ



ARTICLE IN PRESS

P. De Blasi et al. / Journal of Statistical Planning and Inference 140 (2010) 1563–1575 1569
Then

Ft ¼
d

1�
Y
½0;t�

1�
Xm
i ¼ 1

~Z i;cðdxÞ

( )Y
tk r t

Ym
i ¼ 1

ð1�Yi;tk
Þ ¼ 1�

Ym
i ¼ 1

Y
½0;t�

f1�dHi;xg ð21Þ

by writing the sum inside the product integral as a product (the CRMs ~Z i;c cannot jump simultaneously). This is consistent with
Eq. (12), hence with the interpretation of the m-fold beta NTR process fFt ; t40g as the random distribution function of the
minimum of m independent failure times, see (17). The following proposition clarifies how the m-fold beta NTR process
corresponds to the superposition of beta processes at the cumulative hazard level in the presence of fixed points of discontinuity.

Proposition 2. Let fFt ; t40g be a m-fold beta NTR process with parameter ða1;b1Þ, . . . ; ðam;bmÞ and let ftk; kZ1g be the

collection of time points such that aiftkg40 for some i¼ 1; . . . ;m. Also, let ~Z1; . . . ; ~Zm be independent beta CRMs defined as in

(19)–(20). Then

HtðFÞ ¼
d
Xm

i ¼ 1

~Z i;cðð0; t�Þþ
X

k:tk r t

1�
Ym
i ¼ 1

ð1�Yi;tk
Þ

 !
:

Remark 4. Even the beta-Stacy process can be interpreted as a random distribution function of the minimum of m

independent failure times. Actually, as a counterpart of Remark 1, the cumulative hazard of a beta-Stacy process of
parameter ða;bÞ can be expressed as in Proposition 2 by decomposing the measure a as aðdxÞ ¼

Pm
i ¼ 1 aiðdxÞ (both the

absolutely continuous part and point masses) and by defining biðxÞ ¼ bðxÞþaifxg. However, the m independent beta CRMs
~Z i are constrained to have similar concentration around the corresponding prior means, cf. Eq. (14), whereas the m-fold
beta NTR does not suffer from such a restriction.

3.2. Prior specification

We exploit the description of F as the random distribution in the presence of m independent competing risks, see (21),
aiming at expressing different prior beliefs for the m different failure-specific lifetime distributions. We start by
considering the case of no fixed points of discontinuity and we assume all ai’s to be absolutely continuous on BðRþ Þ.
Suppose we model the random failure-specific cumulative hazards fHi;t ; t40g, i¼ 1; . . . ;m, by specifying the prior guess of
the i-th failure-specific cumulative hazard to be H0;iðtÞ ¼

R t
0 h0;iðxÞdx. For ki a positive integer, the parameter choice

aiðdtÞ ¼ kih0;iðtÞe
�H0;iðtÞ dt; biðtÞ ¼ kie

�H0;iðtÞ ð22Þ

gives to ki a prior sample size interpretation: with independent and identically distributed (iid) survival times from H0;i,
biðtÞ may be interpreted as the number at risk at t in an imagined prior sample of uncensored survival times, with ki the
sample size, see Hjort (1990, Remark 2B). Different ki’s allow to specify different degrees of prior beliefs on each of the m

components H0;i, see Remark 4, while keeping the prior mean of the cumulative hazard equal to the sum
E½HtðFÞ� ¼

Pm
i ¼ 1 H0;iðxÞ.

A different prior specification of the ai’s and bi’s parameters is possible by resorting to the methods set forth in Walker
and Muliere (1997, Section 2.1), which consist in specifying the uncertainty of the random distribution function Ft about its
center by assigning arbitrarily the second moment. Let mðtÞ ¼ �logfEð1�FtÞg and lðtÞ ¼ �logfE½ð1�FtÞ

2
�g, both assumed to be

derivable. Since the ai’s are absolutely continuous, mðtÞ coincides with the prior guess of the cumulative hazard and
m0ðtÞ ¼

Pm
i ¼ 1 h0;iðtÞ where h0;iðtÞdt¼ biðtÞ

�1aiðdtÞ. The quantity lðtÞ can be also decomposed into a sum: by using
the Lévy–Khinchine representation (31) in Appendix A.1, one finds that lðtÞ ¼

Pm
i ¼ 1 liðtÞ for liðtÞ ¼R t

0

R1
0 ð1�e�2sÞðe�sbiðxÞÞ=ð1�e�sÞdsaiðdxÞ. Note that li corresponds to the second moment of the random distribution

function of the i-th failure-specific lifetime. Then, for each i, ai and bi are defined in terms of h0;i and li as follows:

biðtÞ ¼
li
0 ðtÞ�h0;iðtÞ

2h0;iðtÞ�li
0 ðtÞ

; aiðdtÞ ¼ biðtÞh0;iðtÞdt:

It is interesting to consider the application in a meta analysis experiment where one specifies the prior on the random
distribution function on the basis of former posterior inferences. In this context, a m-fold beta NTR process with fixed
points of discontinuity will be needed. Consider a system of two components, where each of them is subject to
independent failure. The system fails when the first component experiences a failure, so that, denoting by X1 and X2 the
failure times specific to components 1 and 2, respectively, the system lifetime is given by T ¼minðX1;X2Þ. Suppose that
estimation on the distribution of X1 and X2 have been performed on two initial samples by using a beta process prior in
each case. For i¼ 1;2, let the posterior distribution of the cumulative hazard of Xi be described by the updated parameters
ðciþYi;H

�
i Þ, where

H�i ðtÞ ¼

Z t

0

ciðxÞdH0;iðxÞþdNiðdxÞ

ciðxÞþYiðxÞ
:

In the equation above, Ni and Yi refer to the point process formulation of the i-th initial sample, possibly including right-
censored observations, while H0;i is the prior guess for the cumulative hazard of Xi. Suppose we are now given a new
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sample of failure times of the system where the type of component which has caused the failure is not specified. We can
draw inference on the distribution F of T by specifying the prior according to a m-fold beta NTR process with parameters

aiðdxÞ ¼ ciðxÞdH0;iðxÞþdNiðdxÞ; biðxÞ ¼ ciðxÞþYiðxÞ�Nifxg

for i¼ 1;2. This corresponds to specify Ft ¼ 1�e� ~mðð0;t�Þ for a CRM ~m with fixed jump points characterized by the Lévy
intensity

nðds;dxÞ ¼
ds

1�e�s

Xm

i ¼ 1

e�s½ciðxÞþYiðxÞ�ciðxÞdH0;iðxÞ

and jump Vk at time tk distributed according to

1�e�Vk ¼
d

1�
Ym
i ¼ 1

ð1�Yi;tk
Þ; Yi;tk

� betaðNiftkg; ciðtkÞþYiðtkÞ�NiftkgÞ:

4. Illustration

4.1. Posterior distribution

We start with the derivation of the posterior distribution given a set of possibly right censored observations. Let
fFt ; tZ0g be a m-fold beta NTR process with parameters ða1;b1Þ; . . . ; ðam;bmÞ and ai diffuse measure for any i. Consider
right-censored data ðT1;D1Þ . . . ; ðTn;DnÞ summarized by the point processes NðtÞ ¼

P
irn1ðTi r t;Di ¼ 1Þ and YðtÞ ¼

P
irn1ðTi Z tÞ.

In view of Theorem 2 in Appendix A.1, the posterior distribution of F is given by a NTR process for a CRM with fixed jump
points at exact observations, ~m� ¼d ~m�cþ

P
k:Nftkg40V�kdtk

where ~m�c has Lévy intensity

n�ðds;dxÞ ¼
ds

1�e�s

Xm

i ¼ 1

e�s½biðxÞþYðxÞ�aiðdxÞ; ð23Þ

(cf. (34) in Appendix A.1) while the density ftk
of the jump V�k at time point tk such that Nftkg40 is given by

ftk
ðsÞ ¼ kð1�e�sÞ

Nftkg�1
Xm

i ¼ 1

e�s½biðtkÞþYðtkÞ�Nftkg�; ð24Þ

where k is the appropriate normalizing constant (cf. (35) in Appendix A.1). Note that ~m�c can be described as a m-fold beta
NTR process with updated parameters ða1;b1þYÞ; . . . ; ðam;bmþYÞ. However, the densities ftk

have not the form in (11).
Upon definition of

a�i ðdxÞ ¼ aiðdxÞþdNfxgðdxÞ; b�i ðxÞ ¼ biðxÞþYðxÞ�Nfxg; i¼ 1; . . . ;m;

the distribution of V�k can be expressed as a mixture of beta r.v.s,

1�e�V�
k jI¼ i� betaða�i ftkg;bi�ðtkÞÞ ð25Þ

PðI¼ iÞ ¼
Bða�i ftkg;b

�

i ðtkÞÞPm
j ¼ 1 Bða�j ftkg;b

�

j ðtkÞÞ
; i¼ 1; . . . ;m; ð26Þ

where Bða; bÞ is the beta function Bða; bÞ ¼
R 1

0 va�1ð1�vÞb�1 dv. It can be checked that the posterior mean of F is given by

EðFtjdataÞ ¼ 1�exp �

Z t

0

Xm

i ¼ 1

aiðdxÞ

biðxÞþYðxÞ

( )Y
tk r t

1�

Pm
i ¼ 1 Bða�i ftkgþ1;b�i ðtkÞÞPm

i ¼ 1 Bða�i ftkg;b
�

i ðtkÞÞ

( )
; ð27Þ

which provides a Bayes estimator for F. The Kaplan–Meier estimator F̂ ðtÞ :¼ 1�
Q

tk r tf1�Nftkg=YðtkÞg is obtained when the
concentration of the prior becomes arbitrarily small. To see this, it is convenient to reason in terms of the variance of the
failure-specific cumulative hazards Hi;t going to zero for each i. This in turn requires that both bi and ai go to zero, cf.
formula (14), so that (27) reduces to F̂ ðtÞ.

4.2. Simulation from the posterior

In this section we detail how to simulate a trajectory from the posterior NTR process f1�e� ~m
�
ðð0;t�Þ; t40g for ~m� the CRM

defined in (23) and (24). In the literature, there are a few algorithms that can be used to generate sample paths of a NTR
process via the corresponding CRM, see, e.g., Wolpert and Ickstadt (1998), Lee and Kim (2004) and Lee (2007). Here we use
the Ferguson and Klass algorithm, see Walker and Damien (2000) for a discussion.

Let T be the largest value of t for which we are interested in simulating the process and ~m�;T the CRM ~m� restricted on the
interval ½0; T�. The jump V�k at a fixed points of discontinuity tk can be generated according to the mixture of beta density
defined in (25)–(26). As for the part of ~m�;T without fixed points of discontinuity, say ~m�;Tc , following Ferguson and
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Klass (1972) it can be expressed as

~m�;Tc ¼
X
kZ1

Jkdtk
;

where the random jumps Jk can be simulated in a decreasing order according to their size. Specifically, let
dn�t ðsÞ ¼ n�ðds; ð0; t�Þ, then the Jk’s are obtained as solution of the equation yk ¼MðJkÞ, where MðsÞ ¼ n�T ð½s; þ1ÞÞ and
y1; y2; . . . are jump times of a standard Poisson process at unit rate. The random locations tk’s are obtained according to the
distribution function

PðtkrtjJkÞ ¼ ntðJkÞ where ntðsÞ ¼
dn�t
dn�T
ðsÞ: ð28Þ

Hence, one can set tk as the solution of uk ¼ ntk
ðJkÞ where u1;u2; . . . are iid from the uniform distribution on the interval

(0,1), independent of the Jk’s.
The implementation of the algorithm requires both the calculation of integrals (single in dn�t ðsÞ and double in MðsÞ) and

the solution of equations such as yk ¼MðJkÞ and uk ¼ ntk
ðJkÞ. Some devices can be used to avoid, in part, the recourse to

numerical subroutines. The measure dn�t ðsÞ involves a sum of integrals of the type
R t

0 e�s½biðxÞþYðxÞ�aiðdxÞ which have closed
form for a prior specification such as in (22) (note that YðxÞ is a step function). Then, we can avoid to solve numerically the
equation uk ¼ ntk

ðJkÞ if we write ntðJkÞ (the cumulative distribution of tkjJk when seen as a function of t, see (28) in a mixture
form as follows:

ntðsÞ ¼
Xm
i ¼ 1

oiðsÞni;tðsÞ

for weights oiðsÞ ¼ niðds; ð0; T�Þ=
Pm

j ¼ 1 njðds; ð0; T�Þ, ni the Lévy intensity of a beta-Stacy process of parameter ðbiþY ;aiÞ, see
(2), and ni;tðsÞ ¼ niðds; ð0; t�Þ=niðds; ð0; T�Þ. Then, conditionally on I¼ i, where PðI¼ iÞ ¼oiðJkÞ, tk can be generated by solving
the equation uk ¼ ni;tk

ðJkÞ, which can be done analytically under the prior specifications (22). As for the computation of MðsÞ,
note that it can be written as

MðsÞ ¼
Xm
i ¼ 1

Z T

0
Be�s ðbiðxÞþYðxÞ;0ÞaiðdxÞ;

where Bzða; bÞ ¼
R z

0 sa�1ð1�sÞb�1 ds denotes the incomplete beta function. Bzða;0Þ can be computed as the limit of the
rescaled tail probabilities of a beta r.v.,

Bzða;0Þ 	 Bða; eÞ �PðYrzÞ; Y � betaða; eÞ ð29Þ

for e small. The second integration in MðsÞ and the solution of the equation yk ¼MðJkÞ needs to be done numerically.

4.3. Real data example

As an illustrative example, we consider the Kaplan and Meier (1958) data set, already extensively used by many authors
in the Bayesian nonparametric literature. The data consists of the lifetimes 0.8, 1:0�, 2:7�, 3.1, 5.4, 7:0�, 9.2, 12:1�, where �

denotes a right censored observation. The prior on the random distribution function F is specified by a m-fold beta NTR
process with m¼ 2 and parameters as in (22) with k1 ¼ k2 ¼ 1 and h0;iðtÞ ¼ ki=liðt=liÞ

ki�1e�ðt=liÞ
ki , i¼ 1;2, that is two hazard

rates of the Weibull type. We choose l1 ¼ l2 ¼ 20, k1 ¼ 1:5 and k2 ¼ 0:5, so that the prior process is centered on a survival
distribution with nonmonotonic hazard rate, see Fig. 1.
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Fig. 1. (a) Hazard rate (—) and failure-specific hazard rates h0;1 (- - -) and h0;2 ð� � � � �Þ in the prior. (b) The same for the cumulative hazard.



ARTICLE IN PRESS

Ft

de
ns

ity

0 10 20 30 400.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Time

de
ns

ity
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mean and sample s.d. of IT ð ~m�Þ.
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We sample 5000 trajectories from the posterior process on the time interval ½0; T� for T ¼ 50. In the implementation of
the Ferguson and Klass algorithm we set e¼ 10�15 in the approximation of Be�s ðbiðxÞþYðxÞ;0Þ, see (29), and we truncate the
number of jumps in ~m�;Tc by keeping only the jumps which induce a relative error in the computation of M smaller than
0.001. It results in a smallest jump of order 2e�15. We evaluate the posterior distribution of the probability Ft for t¼ 5 and
the exponential-type functional of ~m�,

IT ð ~m�Þ ¼
1

1�e� ~m
�
ðð0;T�Þ

Z T

0
e� ~m

�
ðð0;t�Þ dt�Te� ~m

�
ðð0;T�Þ

� �
;

which corresponds to the random mean of the distribution obtained via normalization of Ft over ½0; T�. IT ð ~m�Þ can be used to
approximate, for T large, the random mean of the posterior NTR process which takes the interpretation of expected
lifetimes. T ¼ 50 can be considered sufficiently large since direct computation using formula (27) leads to
EðFT jdataÞ ¼ 0:996. The reader is referred to Epifani et al. (2003) for a study on the distribution of the mean of a NTR
distribution function where the same data set is used with a beta-Stacy process prior. Note that the Ferguson and Klass
algorithm is not implementable for generating a trajectory of Ft on the entire positive real axis. In fact, n�T ð½s; þ1ÞÞ-þ1 as
T-þ1 for any s unless the bi functions explode at infinity, which is unlikely to be adopted in applications where one
typically takes decreasing bi’s in order to induce a decreasing concentration of the prior distribution for large time
horizons.

Fig. 2(a) displays the histogram and the kernel density estimate of the posterior distribution of Ft for t¼ 5 (sample mean
0.3041, sample standard deviation 0.1587), while in Fig. 2(b) we compare the density of the distribution of IT ð ~m�Þ with the
density of IT ð ~mÞ, the latter calculated over 5000 trajectories of the prior process. Sample mean and standard deviation for
IT ð ~m�Þ are 10.7619 and 4.1692, respectively, while IT ð ~mÞ has mean 8.9093 and standard deviation 6.2368.

5. Concluding remarks

In the present paper we have introduced and investigated the properties of a new NTR prior, named m-fold beta NTR
process, for the lifetime distribution which corresponds to the superposition of independent beta processes at the
cumulative hazard level. The use of the proposed prior is justified in the presence of independent competing risks,
therefore, it finds a natural area of application in reliability problems, where such an assumption is often appropriate. The
typical situation is a system consisting of m components that fail independently from each other. The lifetime of the system
is determined by the first component failure, so that the cumulative hazard results into the sum of the m failure-specific
cumulative hazard. The m-fold beta NTR process allows to specify different prior beliefs for the components’ failure time
distribution and represents a suitable extension of the beta-Stacy process to this setting.

An interesting development consists in studying the case of a system failing when at least k out of the m components
experience a failure (k41). The lifetime T of the system would correspond to the k-th smallest value among the m

component failure times X1; . . . ;Xm. It is no more appropriate to model the distribution of T with a NTR process since the
conditional probability of a failure time at t does depend on the past, namely on how many components have experience a
failure up to time t. One can still put independent NTR priors on the distributions of the Xi’s and study the induced
nonparametric prior for the distribution of T. In the simple case of X1; . . . ;Xm iid with common random distribution F, the
random distribution of T is described by the process FðkÞt :¼

Pm
j ¼ k

m
j

� �
½Ft �

j½1�Ft�
m�j. Further work is needed to establish the

existence of the corresponding nonparametric prior.
Future work will also focus on adapting the idea of superposition of stochastic processes at the cumulative hazard

level into a regression framework. The goal is to provide a Bayesian nonparametric treatment of the additive regression
model of Aalen (1989), which specifies the hazard rate of an individual with covariate vector z¼ ðz1; . . . ; zpÞ as the sum
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hðt; zÞ ¼ h0ðtÞþg1ðtÞz1þ � � � þgpðtÞzp, for h0 a baseline hazard and gi’s the regression functions. There are two main issues to
address this task. First, the shapes of the regression functions gi’s are left completely unspecified, therefore they are not
constrained to define proper hazards. Second, the nonparametric prior on h0 and gi cannot be taken as independent
because of the restriction imposed by hðt; zÞZ0. Work on this is ongoing.
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Appendix A

A.1. NTR priors and CRMs

Here we review some basic facts on the connections between NTR priors and CRMs. The reader is referred to Lijoi and
Prünster (2010) for an exhaustive account. Denote byM the space of boundedly finite measures on BðRþ Þ (that is m inM
has mðð0; t�Þo1 for any finite t) endowed with the Borel s� algebraM. A CRM ~m on BðRþ Þ is a measurable mapping from
some probability space ðO;F ;PÞ into ðM;MÞ and such that, for any collection of disjoint sets A1; . . . ;An in BðRþ Þ, the r.v.s
~mðA1Þ; . . . ; ~mðAnÞ are mutually independent. This entails that the random distribution function induced by ~m, namely
f ~mðð0; t�Þ; tZ0g, is an independent increment process. CRMs are discrete measures with probability 1 as they can always be
represented as the sum of two components:

~m ¼ ~mcþ
XM
k ¼ 1

Vkdxk
; ð30Þ

where ~mc ¼
P

iZ1JidXi
is a CRM where both the positive jumps Ji’s and the locations Xi’s are random, and

PM
k ¼ 1 Vkdxk

is a
measure with random masses V1; . . . ;VM , independent from ~mc , at fixed locations x1; . . . ; xM . Finally, ~mc is characterized by
the Lévy–Khintchine representation which states that

E e
�
R
Rþ

f ðxÞ ~mc ðdxÞ
� �

¼ exp �

Z
Rþ �Rþ

½1�e�sf ðxÞ�nðds;dxÞ

	 

; ð31Þ

where f is a real-valued function ~mc� integrable almost surely and n, referred to as the Lévy intensity of ~mc , is a nonatomic
measure on Rþ �Rþ such that

R
B

R
Rþ

minfs;1gnðds;dxÞo1 for any bounded B in BðRþ Þ.
As pointed out by Doksum (1974), a random distribution function F is NTR (see definition in (1) if and only if

Ft ¼ 1�e� ~mðð0;t�Þ; tZ0

for some CRM ~m on BðRþ Þ such that P½limt-1 ~mðð0; t�Þ ¼1�¼ 1. We will use the notation F �NTRð ~mÞ. A consequence of this
characterization is that, by using (31), the expected value of Ft is expressed in terms of the Lévy intensity n of ~m (no fixed
jumps case) as

E½Ft � ¼ 1�E½e� ~mðð0;t�Þ� ¼ 1�exp �

Z t

0

Z 1
0
ð1�e�sÞnðds;dxÞ

	 

: ð32Þ

A second characterization of NTR prior in terms of CRMs arise while assessing the prior distribution induced by F on the
space of cumulative hazards, see Hjort (1990). Let F �NTRð ~mÞ for a CRM ~m without fixed jumps and let
nðds;dxÞ ¼ nðs; xÞds dx (with a little abuse of notation) be the corresponding Lévy intensity. The random cumulative
hazard HðFÞ, see (3), is given by

HtðFÞ ¼

Z t

0

dFx

1�Fx�
¼ ~Zðð0; t�Þ; tZ0;

where ~Z is a CRM with Lévy intensity nHðdv;dxÞ ¼ nHðv; xÞdv dx such that nHðv; xÞ ¼ 0 for any v41. The conversion formula
for deriving the Lévy intensity of ~Z from that of ~m is as follows:

nHðv; xÞ ¼
1

1�v
nð�logð1�vÞ; xÞ; ðv; xÞ 2 ½0;1� �Rþ ð33Þ

that is nHðdv;dxÞ is the distribution of ðs; xÞ/ð1�e�s; xÞ under n, see Dey et al. (2003).
Consider now an exchangeable sequence of lifetimes ðXiÞiZ1 such that the law of the sequence is directed by a NTR

process F for some CRM ~m,

XijF �
iid

F; iZ1; F �NTRð ~mÞ:

We derive the posterior distribution of F given X1; . . . ;Xn subject to censoring times c1; . . . ; cn, which can be either random
or non–random. The actual data consist in the observed lifetimes Ti ¼minðXi; ciÞ and the censoring indicators Di ¼ 1ðXi r ciÞ

.
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Define NðtÞ ¼
P

irn1ðTi r t;Di ¼ 1Þ and YðtÞ ¼
P

irn1ðTi Z tÞ, where NðtÞ counts the number of events occurred before time t and
YðtÞ is equal to the number of individuals at risk at time t.

Theorem 2 (Ferguson and Phadia (1979)). Suppose F �NTRð ~mÞ where ~m has no fixed jump points. Then the posterior

distribution of F, given ðT1;D1Þ; . . . ; ðTn;DnÞ is NTRð ~m�Þ with

~m� ¼ ~m�cþ
X

k:Nftkg40

V�kdtk
;

where ~m�c is a CRM without fixed jump points and it is independent of the jumps V�k ’ s, which occur at the exact observations.

Let nðds;dxÞ ¼ rxðsÞdsaðdxÞ be the Lévy intensity of ~m. Then the Lv�ey measure n� of m�c is given by

n�ðds;dxÞ ¼ e�sYðxÞrxðsÞdsaðdxÞ; ð34Þ

whereas the density of the jump V�k at time point tk is given by

ftk
ðsÞ ¼

ð1�e�sÞ
Nftkge�s½YðtkÞ�Nftkg�rtk

ðsÞR1
0 ð1�e�uÞ

Nftkge�u½YðtkÞ�Nftkg�rtk
ðuÞdu

: ð35Þ

A.2. Proof of Theorem 1

Following the lines of the proof of Theorem 2 in Walker and Muliere (1997) we define, for any integer n, m sequences of
positive real numbers ðaðnÞ1;�;b

ðnÞ
1;�Þ; . . ., ða

ðnÞ
m;�;b

ðnÞ
m;�Þ such that

aðnÞi;k :¼ ai
k�1

n
;
k

n

� �
; bðnÞi;k :¼ bi

k

n
�

1

2n

� �

for i¼ 1; . . . ;m and for any kZ1. Moreover, let us consider m independent sequences Y ðnÞ1;�; . . . ;Y
ðnÞ
m;� such that Y ðnÞi;� is a

sequence of independent r.v.s with Y ðnÞi;k � betaðaðnÞi;k ;b
ðnÞ
i;k Þ. Based on this setup of r.v.s, for any n we define the random process

ZðnÞ :¼ fZðnÞt ; tZ0g as

ZðnÞt :¼ �
X

k=nr t

log 1�
XðnÞk

1�FðnÞk�1

 !
;

with ZðnÞ0 :¼ 0 and fXðnÞk ; kZ1g a sequence of r.v.s defined according to (5).
The first step consists in showing that the sequence of random processes fZðnÞt ; tZ0gnZ1 converges weakly

to the process f ~mðð0; t�Þ; tZ0g for ~m the CRM having Lévy intensity in (7). Let GðxÞ ¼
R1

0 yx�1e�y dy be the gamma
function. By using the recursive relation GðxÞ ¼ ðx�1ÞGðx�1Þ and the Stirling formula GðxÞffið2pxÞ1=2

ðx=eÞx when x is large,
we have

logðE½e�jZðnÞt �Þ ¼ log E e
�j
P

k=n r t

Pm

i ¼ 1
�logð1�Y ðnÞ

i;k
Þ

� �� �
¼
X

k=nr t

Xm
i ¼ 1

log
GðaðnÞi;k þb

ðnÞ
i;k ÞGðb

ðnÞ
i;k þjÞ

GðbðnÞi;k ÞGða
ðnÞ
i;k þb

ðnÞ
i;k þjÞ

¼
X

k=nr t

Xm
i ¼ 1

log
Yr�1

j ¼ 0

ðbðnÞi;k þ jÞðaðnÞi;k þb
ðnÞ
i;k þjþ jÞ

ðaðnÞi;k þb
ðnÞ
i;k þ jÞðbðnÞi;k þjþ jÞ

GðaðnÞi;k þb
ðnÞ
i;k þrÞGðbðnÞi;k þjþrÞ

GðbðnÞi;k þrÞGðaðnÞi;k þb
ðnÞ
i;k þjþrÞ

¼
X

k=nr t

Xm
i ¼ 1

log
Y
jZ0

ðbðnÞi;k þ jÞðaðnÞi;k þb
ðnÞ
i;k þjþ jÞ

ðaðnÞi;k þb
ðnÞ
i;k þ jÞðbðnÞi;k þjþ jÞ

¼
X

k=nr t

Xm
i ¼ 1

Z þ1
0
ðe�js�1Þ

e�b
ðnÞ

i;k
s
ð1�e�a

ðnÞ

i;k
s
Þ

sð1�e�vÞ
ds

¼

Z þ1
0

e�js�1

sð1�e�sÞ

X
k=nr t

Xm
i ¼ 1

e�b
ðnÞ

i;k
s
ð1�e�a

ðnÞ

i;k
s
Þds:

Since for i¼ 1; . . . ;m, as n-þ1,

X
k=nr t

e�b
ðnÞ

i;k
s
ð1�e�a

ðnÞ

i;k
s
Þ-s

Z t

0
e�sbiðxÞaiðdxÞ;

one has that, as n-þ1,

logðE½e�jZðnÞt �Þ-

Z þ1
0

e�js�1

1�e�s

Xm
i ¼ 1

Z t

0
e�sbiðxÞaiðdxÞds:

This result ensures the convergence of the finite dimensional distributions of fZðnÞt ; tZ0g to those of f ~mðð0; t�Þ; tZ0g, cf.
Lévy–Khintchine representation (31). The tightness of the sequence ðZðnÞÞnZ1 follows by the same arguments used in
Walker and Muliere (1997).
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For any n 2 N, let us define the discrete time m-fold beta NTR process fFðnÞt ; tZ0g such that FðnÞt :¼
P

k=nr tX
ðnÞ
k with

FðnÞ0 ¼ 0. Since

�logð1�FðnÞt Þ ¼�
X

k=nr t

log
Ym
i ¼ 1

ð1�Yi;kÞ

 !
¼�

X
k=nr t

log 1�
XðnÞk

1�FðnÞk�1

 !
¼ ZðnÞt

then FðnÞt ¼ 1�eZðnÞt . Note that, for t¼ k=n, FðnÞt� ¼ FðnÞ
ðk�1Þ=n and dFðnÞt :¼ FðnÞtþdt�FðnÞt� is given by FðnÞk=n�FðnÞ

ðk�1Þ=n for dt small, where

FðnÞk=n�FðnÞ
ðk�1Þ=njF

ðnÞ
ðk�1Þ=n ¼

d
ð1�FðnÞ

ðk�1Þ=nÞ 1�
Ym
i ¼ 1

ð1�Y ðnÞi;k Þ

 !
:

The same arguments used when taking the limit above yields, at the infinitesimal level, dFt jFt ¼
d
ð1�Ft� Þ 1�

Qm
i ¼ 1ð1�Yi;tÞ

� �
where Ft ¼ 1�e� ~mðð0;t�Þ and Y1;t ; . . . ;Ym;t are independent r.v.s such that Yi;t � betaðaiðdtÞ;biðtÞÞ. The fact that fFt ; tZ0g defines
a random distribution function is assured by E½Ft�-0 as t-þ1, which can be checked by using (32) under the hypothesis
on
R t

0

Pm
i ¼ 1 biðxÞ

�1aiðdxÞ since E½1�Ft� ¼ expf�
R t

0

Pm
i ¼ 1 biðxÞ

�1aiðdxÞg. It follows that fFt ; tZ0g is a NTR process according to
definition (1), which completes the proof.
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