
Science of Computer Programming 76 (2011) 992–1014

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Delegation by object composition✩

Lorenzo Bettini a,∗, Viviana Bono a, Betti Venneri b
a Dipartimento di Informatica, Università di Torino, Italy
b Dipartimento di Sistemi e Informatica, Università di Firenze, Italy

a r t i c l e i n f o

Article history:
Received 20 July 2009
Received in revised form 19 October 2009
Accepted 2 December 2009
Available online 29 April 2010

Keywords:
Language extensions
Featherweight Java
Object composition
Delegation
Consultation

a b s t r a c t

Class inheritance and method overriding, as provided by standard class-based languages,
are often not flexible enough to represent objects with some dynamic behavior. In this
respect, object composition equipped with different forms of method body lookup is
often advocated as a more flexible alternative to class inheritance since it takes place at
run time, thus permitting the behavior of objects to be specialized dynamically. In this
paper, we illustrate Incomplete Featherweight Java (IFJ), an extension of Featherweight
Java with a novel linguistic construct, the incomplete object. Incomplete objects require
some missing methods which can be provided at run time by composition with another
(complete) object. Furthermore, we present two mechanisms for the method body lookup
on (composed) objects, one based on delegation and the other based on consultation.
Thanks to the design of the language, the consultation-based lookup is a simple extension
of the delegation-based one. Both mechanisms are disciplined by static typing, therefore
the language enjoys type safety (which implies no ‘‘message-not-understood’’ run-time
errors) and avoids possible accidental overrides due to method name clashes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Design patterns were introduced as ‘‘programming recipes’’ to overcome some of the limitations of class-based object-
oriented languages. Indeed, standard mechanisms provided by class-based object-oriented languages, such as inheritance
and dynamic binding, usually do not suffice for representing dynamic behavior of objects (we refer to [35,18] and to the
references therein for an insightful review of the limitations of inheritance). Most of the design patterns in [22] rely on object
composition as an alternative to class inheritance, since it is defined at run time and it enables dynamic object code reuse by
assembling existing components. Patterns exploit the programming style consisting in writing small software components
(units of reuse), that can be composed at run time in several ways to achieve software reuse. However, design patterns
require manual programming, which is prone to errors.

Differently from class-based languages, object-based languages do use object composition, and delegation as the
mechanism for method call, to reuse code (see, e.g., the languages [36,23,16], and the calculi [21,2]). Every object has a
list of parent objects: when an object cannot answer a message it forwards it to its parents until there is an object that can
process the message. However, a drawback of delegation is that run-time type errors (‘‘message-not-understood’’) can arise
when no delegates are able to process the forwarded message [37]. We refer to Kniesel [26] for an overview of problems
when combining delegation with a static type discipline.

Our goal is the design of a class-based language that offers a form of object compositionwith the following goals inmind:

• maintaining the class-based type discipline;

✩ This work has been partially supported by the MIUR project EOS DUE.
∗ Corresponding author.

E-mail addresses: bettini@di.unito.it (L. Bettini), bono@di.unito.it (V. Bono), venneri@dsi.unifi.it (B. Venneri).

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.04.006

http://dx.doi.org/10.1016/j.scico.2010.04.006
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:bettini@di.unito.it
mailto:bono@di.unito.it
mailto:venneri@dsi.unifi.it
http://dx.doi.org/10.1016/j.scico.2010.04.006

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 993

Fig. 1. Binding of this in delegation and consultation.

• gaining some of the flexibility of the object-based paradigm;
• preventing the message-not-understood error statically;
• preventing possible name clashes for methods with the same name but different signatures
• preserving the nominal type system of Java-like languages.

In [10,6] we introduced a novel linguistic construct, the incomplete object. The programmer, besides standard classes, can
define incomplete classes whose instances are incomplete objects that can be composed in an object-based fashion. Hence, in
our calculi it is possible: (i) to instantiate standard classes, obtaining fully fledged objects ready to be used; (ii) to instantiate
incomplete classes, obtaining incomplete objects that can be composed (by object composition) with complete objects, thus
yielding new complete objects at run time; (iii) in turn, to use a complete object obtained by composition to be composed
with other incomplete objects. Therefore, objects are not only instances of classes (possibly incomplete), but they are also
prototypes that can be used, via the object composition, to create new objects at run time, while ensuring statically that the
composition is type safe. Then, we can use incomplete and complete objects as our re-usable building blocks to assemble at
run time, on the fly, brand new objects.

Our two proposals are for Java-like languages and differ from each other with respect to the method body lookup: the
first one [10] combines incomplete objects with consultation, and the second one [6] with delegation [29].1 In both cases an
object A has a reference to an object B. However, when A forwards to B the execution of a messagem, two different bindings
of the implicit parameter this can be adopted for the execution of the body of m: with delegation, this is bound to the
sender (A), thus, if in the body of themethodm (defined in B) there is a call to amethod n, then also this call will be executed
binding this to A; while with consultation, during the execution of the body, the implicit parameter is always bound to
the receiver B. This is depicted in Fig. 1. Delegation is more powerful as it endows dynamic method redefinition. Both our
proposals result type safe, therefore they capture statically message-not-understood errors. In particular, our proposals are
two versions of Incomplete Featherweight Java (IFJ), as extensions of Featherweight Java [25,31].

One of our key design choices is to integrate object composition within the nominal subtyping mechanism that is typical
for mainstream languages like Java (and C++). This feature makes the extension conservative with respect to the core Java,
since it does not affect those parts of the programs that do not use incomplete objects. Furthermore, incomplete classes
can rely on standard class inheritance to reuse code of parent classes (although this kind of inheritance does not imply
subtyping in our setting). Thus, incomplete objects provide two forms of code reuse: vertical (i.e., the code reuse achieved
via standard class inheritance) and horizontal (i.e., the one achieved via object composition). Finally, in order to enhance run-
time flexibility in composing objects, we implicitly use structural subtyping during composition: an incomplete object can
be composedwith any (complete) object providing all the requestedmethods (that is, the signaturesmustmatch), nomatter
what its class is. Therefore, the language extension we propose is not a manual implementation of the object composition.
In the case of a manual implementation, the object should be stored in a class field, thus forcing it to belong to a specific
class hierarchy. Alternatively, one could use type Object, and then call methods using Java Reflection APIs or down-casts;
however, this solution is not type safe, since exceptions can be thrown at run time due to missing methods (we will show
further details concerning possible manual implementations in Section 3).

Incomplete classes, besides standard method definitions, can declare some methods as ‘‘incomplete’’, either abstract or
redefining. Abstract methods are similar to abstract methods in class-based inheritance: the body of these methods must be
provided during object composition. Redefining methods are similar to method overriding in class-based inheritance: they
expect to redefine a method of another object. Then, we call these methods ‘‘redefining’’ because they will be the active
part in the redefinition when an incomplete object will be composed with a complete object. We call the corresponding
overridden methods of the complete object redefined. Moreover, just like in class-based inheritance, there is a way in an
overridden method to access the previous implementation (e.g., super in Java): in a redefining method we can access the
redefined version with the special variable next. We can think of next as an ‘‘horizontal’’ version of super, that is, a
reference to the method body that is present in the complete object of an object composition: the method version in the
incomplete object redefines the one present in the complete one. This is a form of incompleteness other than the one based
on the abstraction of amethod, because it assumes for an incomplete object that in a ‘‘future’’ composition a complete object
will provide the method to be redefined.

All these incomplete methods, abstract and redefined, must be provided during object composition by complete objects.
Thus, object composition is the run-time version of class inheritance and delegation in composed objects correspond to
dynamic binding for method invocation in standard derived classes. We see this as a sort of dynamic inheritance since

1 We note that in the literature (e.g., [22]), the term delegation, originally introduced by Lieberman [29], is given different interpretations and it is often
confused with the term consultation.

994 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

L ::= class C extends C {C f; K; M} classes
A ::= class C abstracts C {C f; K; M N R} incomplete classes
K ::= C(C f){super(f); this.f=f;} constructors
M ::= C m (C x){return e; } methods
N ::= C m (C x); abstract methods
R ::= redef C m (C x){return e; } redefining methods
e ::= x

 e.f
 e.m(e)

 new C(e)
 e←+ e expressions

v ::= ⟨l, l⟩ values

l ::= new C(v) :: ϵ
 new C(v) :: l run-time object list

Fig. 2. IFJ syntax; run-time syntax appears shaded.

it implies both substitutivity (that is, a composed object can be used where a standard object is expected) and dynamic
code reuse (since composition permits supplying at run time the missing methods with those of other objects). Namely,
substitutivity for composed objects is achieved by extending Java subtyping, while dynamic code reuse corresponds
to the extension of standard subclassing. Therefore, we can model some features related to dynamic object evolution:
while incomplete classes separate the object invariant behavior from the variant one at compile time, at run-time object
composition customizes the unpredictable behavior based on dynamic conditions (for instance, the object state) in a type-
safe way. In particular, some behavior that was not foreseen when the class hierarchy was implemented may be supplied
dynamically by making use of already existing objects, thus generating an unanticipated reuse of code and a sharing of
components.

In this paper, firstly we extend the delegation-based proposal [6] by revising and improving the formal part and by
including the full proof of type soundness. Providing delegation, instead of consultation, enhances the flexibility of object
composition in IFJ and makes dynamic method redefinition effective (in fact, in [10] we were not able to provide method
redefinition). Moreover, it requires an interesting technical treatment to achieve a type-safe implementation. For instance,
we need to avoid possible name clashes for methods with the same name but with different signatures (possibly due to the
subtyping, [21]) and possible accidentalmethod overrides (when amethod in the incomplete object, which is not redefining,
has the same name and signature of a method of the complete object). In order to deal with such problems, we employ a
static annotation procedure (based on static types) which is used in the operational semantics to bind the self-object this
correctly in the method bodies.

Then, we show how consultation can be added to the calculus. Consultation was not only useful as a preliminary study
for appreciating how the compositionmechanism can be integrated in a Java-like, class-based setting (themain goal of [10]),
but it is interesting in its own, since it provides the programmer with more control on method invocation (see Section 7).

The main contributions of this paper, with respect to [6], are inter alia: (i) putting together the consultation-based and
the delegation-based proposals, by using an unique model of object composition; (ii) a full formalization of the delegation-
based proposal, including a complete proof of the type safety property. The type safety property for the version with both
delegation and consultation follows in a straightforward way, as discussed at the end of Section 7.

The paper is organized as follows. Section 2 defines the calculus for object composition with delegation. Section 3
illustrates the application of our proposal to recurrent programming scenarios. Sections 4 and 5 develop the typing system
and the operational semantics, respectively. Section 6 presents the full proof of the type safety. Section 7 shows how
consultation can be implemented in the calculus, in addition to delegation. Section 8 discusses some related works and
Section 9 concludes.

2. Incomplete Featherweight Java

In this sectionwe present the core language IFJ (Incomplete Featherweight Java), which is an extension of FJ (Featherweight
Java) [25,31] with incomplete objects, dynamic object composition and delegation. FJ is a lightweight version of Java, which
focuses on a fewbasic features:mutually recursive class definitions, inheritance, object creation,method invocation,method
recursion through this, subtyping and field access.2 Thus, the minimal syntax, typing and semantics make the type safety
proof simple and compact, in such a way that FJ is a handy tool for studying the consequences of extensions and variations
with respect to Java (‘‘FJ’s main application is modeling extensions of Java’’, [31], page 248). In particular, the Java features
that are omitted in FJ, e.g., visibility of methods, method overloading, abstract classes/interfaces, are orthogonal to our
extension, too, while retaining the core features of Java typing. We observe that the interaction with Java generics can be an
interesting ongoing research subject when generic class instances take part to object composition.

Although we assume the reader is familiar with FJ, we will briefly comment on the FJ part and then we will focus on the
novel aspects introduced by IFJ.

The abstract syntax of the IFJ constructs is given in Fig. 2 and it is just the same as FJ extended with incomplete classes,
abstract methods, redefining methods and object composition (and some run-time expressions that are not written by the

2 FJ also includes up- and down-casts; however, since these features are completely orthogonal to our extension with incomplete objects, they are
omitted in IFJ.

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 995

programmer, but are produced by the semantics, that we will discuss later in Section 5). As in FJ, we will use the overline
notation for possibly empty sequences (e.g., ‘‘e’’ is a shorthand for a possibly empty sequence ‘‘e1, . . . , en’’). The empty
sequence is denoted by •.

Following FJ, we assume that the set of variables includes the special variable this (implicitly bound in any method
declaration), which cannot be used as the name of a method’s formal parameter (this restriction is imposed by the typing
rules). In IFJ we also introduce the special variable, next: in a redefining method body, with next, one can access the
‘‘redefined’’ object. For instance, in a redefining method m we can access the redefined version with next.m().3 Thus, next
is the dynamic (and horizontal) version of super (intended as in the full Java language, not only as the call to the superclass
constructor).4 Just like this, next is a variable that will be implicitly bound in redef methods. Note that since we treat
this and next in method bodies as ordinary variables, no special syntax for them is required.

A class declaration class C extends D {C f; K; M} consists of its name C, its superclass D (which must always be
specified, even if it is Object), a list of field names C f with their types, the constructor K, and a list of method definitions
M. The fields of C are added to the ones declared by D and its superclasses and are assumed to have distinct names. The
constructor declaration shows how to initialize all these fields with the received values. A method definition M specifies the
name, the signature and the body of a method; a body is a single return statement since FJ is a functional core of Java.

An incomplete class declaration class C abstracts D {C f; K; M N R} inherits from a standard (or incomplete)
class and, apart from adding new fields and adding/overridingmethods, it can declare somemethods as ‘‘incomplete’’. There
are two kinds of incomplete methods:

• ‘‘abstract’’ methods: the incomplete class declares only the signature of these ‘‘expected’’ methods; the body of these
methods must be provided during object composition;
• ‘‘redefining’’ methods: although the body of these methods is provided by the incomplete class, they are still incomplete

since the special variable next will be bound during object composition. We call these methods ‘‘redefining’’ because
they will be the active part in the redefinition when an incomplete object (of an incomplete class) will be composed with
a complete object. We then call the corresponding overridden methods of the complete object ‘‘redefined’’.

Standard classes cannot inherit from incomplete classes (this is checked by the type system, see Section 4). The main
idea of our language is that an incomplete class can be instantiated, leading to incomplete objects. Method invocation and
field selection cannot be performed on incomplete objects.5

In the following, we will write m ∉ M to mean that the method definition of the name m is not included in M. The same
convention will be used for abstract method signatures N and for redefining methods R.

An incomplete object expression e1 can be composed at run time with a complete object expression e2; this operation,
denoted by e1 ←+ e2, is called object composition. The key idea is that e1 can be composed with a complete object e2 that
provides all the requestedmethods, independently from the class ofe2 (of course, themethod signaturesmustmatch). Then,
in e1 ←+ e2, e1 must be an incomplete object and e2 must be a complete object expression (these requirements are checked
by the type system); indeed, e2 can be, in turn, the result of another object composition. The object expression e1 ←+ e2
represents a brand new (complete) object that consists of the sub-object expressions e1 and e2; in particular, the objects
of these subexpressions are not modified during the composition. This also highlights the roles of incomplete and complete
objects as re-usable building blocks for new objects at run time, while retaining their identity and state.

We do not allow object composition operations leading to incomplete objects, i.e., incomplete objects can only be fully
completed. However, for instance, object compositions of the shape (e1 ←+ e2) ←+ e3, where e2 is incomplete in the
methods provided by e3, can be obtained as e1 ←+ (e2 ←+ e3) in IFJ. Furthermore, we prohibit the object composition
between two complete objects; the semantics and the type system can be extended in order to deal with such an operation
in a type-safe way, but we prefer to keep the core calculus and its formal theory simple in this presentation.

Finally, values, denoted by v and u, are fully evaluated object creation terms. The object representation of IFJ is different
from FJ in that fully evaluated objects can be also compositions of many objects. Thus, objects are represented as lists of
terms new C(v) (i.e., expressions that are passed to the constructor are values, too). For instance, new C(v) :: new D(u) :: ϵ
represents the composition of the incomplete object of class C with a standard complete object of class D (ϵ denotes the
empty list). During method invocation, this list is scanned starting from the leftmost object in search for the called method
(of course, in a well-typed program this search will terminate successfully). However, in order to implement delegation in a
type-safe way, we need to keep the position in the list where we found the called method. Technically, this is implemented
by using a pair of object lists: the first one will be the part of the object list scanned during method invocation, and the
second one will be the entire composed object, i.e., the complete list. The basic idea is to use the complete list when binding
this for redefined methods, and use the current position of the scanned list when binding this for methods that are not
redefined (this solves the problem of accidental name clashes) and for binding next in redefining methods. This run-time
representation of objects will be further explained when presenting the operational semantics of the calculus in Section 5.

3 An alternative choice could have been to allow a redefining method to access only the redefined version of the method, and not the whole ‘‘next’’
object; however, our choice is in line with the mainstream programming languages, although it is considered poor style [33].
4 If super would be added with its full meaning to FJ, it could coexist with next.
5 Actually, field selection might be safely performed on incomplete objects but would make little sense.

996 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

T <: T
T1 <: T2 T2 <: T3

T1 <: T3

class C extends D {. . .}
C <: D

class C abstracts D {. . .} class D extends E {. . .}
⟨C⟩ <: D

class C abstracts D {. . .} class D abstracts E {. . .}
⟨C⟩ <: ⟨D⟩

Fig. 3. Subtyping rules.

As in FJ, a class table CT is a mapping from class names to class declarations. Then a program is a pair (CT, e) of a
class table (containing all the class definitions of the program) and an expression e (the program’s main entry point). The
class Object has no members and its declaration does not appear in CT. We assume that CT satisfies some usual sanity
conditions: (i) CT(C) = class C . . . for every C ∈ dom(CT); (ii) for every class name C (except Object) appearing
anywhere in CT, we have C ∈ dom(CT); (iii) there are no cycles in the transitive closure of the extends relation. Thus, in
the following, instead of writing CT(C) = class . . . we will simply write class C

In the type systemwewill need to distinguish between the type of an incomplete object and the type of a composed object
(i.e., an incomplete object that has been composed with a complete object). If C is the class name of an incomplete object,
then ⟨C⟩ denotes the type of an incomplete object of class C that has been composed. To treat complete and incomplete
objects uniformly, we will use T to refer both to C and ⟨C⟩. However, types of the shape ⟨C⟩ are only used by the type system
for keeping track of objects that are created via object composition. Indeed, the programmer cannotwrite ⟨C⟩ explicitly, i.e.,T
cannot be used inmethod types nor for declaringmethod parameters; this is consistentwith Java-like languages’ philosophy
where the class names are the only types that can be mentioned in the program (apart from basic types and generics).

The subtype relation <: (defined for any class table CT) on classes (types) is induced by the standard subclass relation
extended in order to relate incomplete objects (Fig. 3). First of all, we consider an incomplete class class C abstracts
D {. . . }; if D is a standard class, since C can make somemethods of D incomplete, then it is obvious that an incomplete object
of class C cannot be used in place of an object of class D. Thus, abstracts implements subclassing without subtyping.
In spite of this, since inheritance and subtyping need not to be connected, we will still refer to D as the superclass of C.
Instead, when the incomplete object is composed with a complete object (providing all the methods requested by C), then
its type is ⟨C⟩, and it can be used in place of an object of class D (see the fourth rule). Since, as said above, we do not permit
object composition on a complete object, then a complete object can never be used in place of an incomplete one. Instead,
subtyping holds on their completed versions (last rule). We could introduce subtyping between incomplete objects: this
would require checking that the subtype does not have more incomplete methods than the supertype (contra-variance on
requirements); this is the subject of future work.

3. Programming examples

In this section, we show how incomplete objects and object composition can be used to implement some recurrent
programming scenarios. For simplicity, we will use here the full Java syntax (and consider all methods as public) and we
will denote object composition operation with <-.

3.1. Graphical widgets

We consider a scenario where it is useful to add some functionality to existing objects. Let us consider the development
of an application that uses widgets such as graphical buttons, menus, and keyboard shortcuts. These widgets are usually
associated with an event listener (e.g., a callback function), that is invoked when the user sends an event to that specific
widget (e.g., one clicks the button with the mouse or chooses a menu item).

The design pattern command [22] is useful for implementing these scenarios, since it permits the parametrization of
widgets over the event handlers, and the same event handler can be re-used for similar widgets (e.g., the handler for the
event ‘‘save file’’ can be associated with a button, a menu item, or a keyboard shortcut). Thus, they delegate to this object
the actual implementation of the action semantics, while the action widget itself abstracts from it. This decouples the action
visual representation from the action controller implementation.

We can implement directly this scenario within incomplete objects, as shown in Listing 1: the class Action and Save-
ActionDelegate are standard Java classes (note that they are not related). The former is a generic implementation of
an action, and the latter implements the code for saving a file. We then have three incomplete classes implementing a
button, a menu item, and a keyboard accelerator; note that these classes inherit from Action, make the method run
incomplete, override the method display and redefine the method enable. Note that display is overridden in the
classical inheritance sense, while enable is intended to be redefined at run time, during object composition, i.e., it is a
redefining method.

We also assume a class Frame representing an application frame where we can set keyboard accelerators, menu items,
and toolbar buttons. An instance of class Button is an incomplete object (it requires the method run and enable) and, as
such, we cannot pass it to addToToolbar, since Button ≮: Action (subclassing without subtyping).

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 997

class Action {
void run() { }
void display() { }
void enable(boolean b) { }

}

class Button abstracts Action {
void run(); // incomplete method
void display() {

// redefined to draw the button
}
redef void enable(boolean b) {
next.enable(b);
// enable/disable button

}
}

class SaveActionDelegate {
void run() {

// implementation
enable(false);

}
void enable(boolean b) {

// implementation
}

}

classMenuItem abstracts Action {
void run(); // incomplete method
void display() {

// redefined to show the item
}
redef void enable(boolean b) {
next.enable(b);
// enable/disable item

}
}

class KeyboardAccel abstracts Action {
void run(); // incomplete method
void display() {

// redefined to hook key combination
}

}

class Frame {
void addToMenu(Action a) {...}
void addToToolbar(Action a) {...}
void setKeybAcc(Action a) {...}

}

SaveActionDelegate deleg =
new SaveActionDelegate();

myFrame.addToMenu
(new MenuItem("save") <- deleg);

myFrame.addToToolbar
(new Button("save") <- deleg);

myFrame.setKeybAcc
(new KeyboardAccel("Ctrl+S") <- deleg);

Listing 1: The implementation of action and action delegates with incomplete objects and object composition.

class Button extends Action {
Runnable deleg;
void run() { deleg.run(); }
void display() {

// redefined to draw the button
}

}

class Button extends Action {
Object deleg;
void run() {
// reflection or casts!

}
void enable(boolean b) { ... }

}

Listing 2: Possible manual implementations in Java.

However, once we composed such an instance (through the object composition operation, <-) with an instance of
SaveActionDelegate, then we have a completed object (of type ⟨Button⟩) that can be passed to addToToolbar (since
⟨Button⟩ <: Action). Note that we compose Button with an instance of SaveActionDelegate which provides the
requested methods run and enable, although SaveActionDelegate is not related to Action. Furthermore, we can use
the same instance of SaveActionDelegate for the other incomplete objects.

We now concentrate on the dynamic redefinition of enable. This method is used to enable/disable the graphical widget
(e.g., buttons and menu items can be shaded when disabled) and also actions (when a document is saved, the action can
be disabled until the document is modified). When run is executed in SaveActionDelegate, the method also invokes
enable. In a composed object, since we implement delegation, it is guaranteed that the redefining version of the method
will be called (note, however, that the redefining versions will also call enable on next). We refer to Section 5.2.1 for an
example of reduction involving this example.

We now investigate some possiblemanual implementations in Java of this scenario (Listing 2), showing that our proposal
is not simply syntactic sugar.With standard Java features, one couldwrite theButton classwith a field, saydeleg, onwhich
we call the method run. This approach requires deleg to be declared with a class or interface that provides such a method,
say Runnable. However, this solution would not be as flexible as our incomplete objects, since one can then assign to
deleg only objects belonging to the Runnable hierarchy. This might not be optimal in case of reuse of existing code (that
cannot be modified); in particular, this scenario is not ideal for unanticipated code reuse. The solution can be refined to deal
with these problems by introducing some Adapters [22], but this requires additional programming. On the other hand, if
one wanted to keep the flexibility, one should declare deleg of type Object, and then call the method run by using Java
Reflection APIs, (e.g., getMethod), or down-casts; however, this solution is not type safe, since exceptions can be thrown
at run time due to missing methods. Finally, implementing delegation manually would even be harder: it would require to
modify all the methods in order to pass explicitly ‘‘another’’ this, i.e., the one bound to the original sender (we refer to
Section 1 and Fig. 1).

998 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

class Stream {
void write(byte[] b) { ... }
byte[] read() { ... }

}

class FileStream extends Stream {
public FileStream(String filename) { ... }
void write(byte[] b) { ... }
byte[] read() { ... }

}

class CompressStream abstracts Stream {
redef void write(byte[] b) {

next.write(compress(b));
}
redef byte[] read() {

return uncompress(next.read());
}
byte[] compress(byte[] b) {...}
byte[] uncompress(byte[] b) {

...
readBuffer(size, b);
...

}
void readBuffer(int len, byte[] b) {...}

}

class BufferedStream abstracts Stream {
Buffer buff;
redef void write(byte[] b) {

if (buff.isFull())
next.write(b);

else
buff.append(b);

}
redef byte[] read() {

if (buff.size() > 0)
return readBuffer();

...
}
byte[] readBuffer() {...}

}

Listing 3: The implementation of streams using redefined methods.

3.2. Streams

There are situations when one needs to add functionalities to an object dynamically. The design pattern decorator [22]
is typically used to deal with these scenarios: at run time an object (called component) is embedded in another object
(decorator) that associates to the component additional features (by relying also on the implementation of the component).
Since a decorator is a component itself, this can be used to create a chain of decorators.

Typically, stream libraries are implemented using this pattern. A stream class provides the basic functionalities for
reading and writing bytes; then there are several specializations of streams (e.g., streams for compression, for buffering,
etc.) that are composed in a chain of streams. The actual composition is done at run time.

Although this pattern is useful in practice, it still requires manual programming. With method redefinition we could
easily implement a stream library, as sketched in Listing 3: the specific stream specializations rely on the methods provided
during object composition (usingnext) and redefine them. In order to showhowdelegation is implemented in our language,
we introduced also the method readBuffer both in CompressStream and in BufferedStream. These two methods,
in spite of having the same name, are completely unrelated (we also used different signatures). The operational semantics
(Section 5) guarantees that the right implementation will be invoked, depending on the context in which this method is
invoked; for instance, the method read in BufferedStream invokes readBuffer, and at run time the version defined in
BufferedStream will be selected (thus run-time type errors are avoided). The same holds when readBuffer is invoked
in the method uncompress in CompressStream: the version of readBuffer in CompressStream will be selected at
run time (we refer to Section 5.2.2 for an example of reduction involving this example).

This example also shows the twodifferent designs inmodeling our stream framework:FileStream is notmodeled as an
incomplete class since it can be implemented with all the functionalities; on the contrary, CompressStream and Buffe-
redStream rely on another stream and thus they are incomplete classes (and their methods are redefining). It is then clear
that CompressStream and BufferedStream can be re-used independently from the actual stream implementation; on
the contrary, a FileStream can be ‘‘decorated’’ with further functionalities, but it could also be used as it is.

Here it is a possible object composition using the classes in Listing 3:
Stream myStream = new CompressStream() <- (new BufferedStream() <- new FileStream("foo.txt"));

We build a compressed–buffered stream starting from a file stream. Implementing this scenario with the decorator pattern
would require more programming, and the relations among the classes and objects would not be clear as instead with
incomplete objects.

4. Typing

In order to define the typing rules and the lookup functions, we extend the sequence notation also tomethod definitions:

M = C m (C x){return e; }

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 999

fields(Object) = • fields(⟨C⟩) = fields(C)

class C extends D {C f; K; M} fields(D) = D g

fields(C) = D g, C f

class C abstracts D {C f; K; M N R} fields(D) = D g

fields(C) = D g, C f

class C extends D {C f; K; M} sign(D) = ⟨S,∅⟩

sign(C) = ⟨sign(M) ∪ S,∅⟩

class C abstracts D {C f; K; M N R} sign(D) = ⟨S1, S2⟩

sign(C) = ⟨sign(M) ∪ (S1 − (sign(N) ∪ sign(R))), sign(N) ∪ sign(R) ∪ (S2 − sign(M))⟩

sign(C) = ⟨S1, S2⟩

sign(⟨C⟩) = ⟨S1 ∪ S2,∅⟩

m : B→ B ∈ S

mtype(m, S) = B→ B

sign(T) = ⟨S1, S2⟩

mtype(m, T) = mtype(m, S1 ∪ S2)

class C extends D {C f; K; M} B m (B x){return e; } ∈ M
mbody(m, C) = (x, e)

class C extends D {C f; K; M} m ∉ M
mbody(m, C) = mbody(m, D)

class C abstracts D {C f; K; M N R} B m (B x){return e; } ∈ M or redef B m (B x){return e; } ∈ R
mbody(m, C) = (x, e)

class C abstracts D {C f; K; M N R} m ∉ M ∪ N ∪ R
mbody(m, C) = mbody(m, D)

class C abstracts D {C f; K; M N R} B m (B x); ∈ N
mbody(m, C) = •

Fig. 4. Lookup functions.

represents a sequence of method definitions:

C1 m1 (C1 x){return e1; } . . . Cn mn (Cn x){return en; }

The signatures of the above method definitions will be denoted, in a compact form, by m : C→ C or simply by sign(M).
The same convention will be used for redefining methods and for abstract method definitions (and their corresponding
signatures). To lighten the notation, in the followingwewill assume a fixed class table CT and then<: is the subtype relation
induced by CT. We will write C <: D as a shorthand for C1 <: D1 ∧ · · · ∧ Cn <: Dn.

We define auxiliary functions (see Fig. 4) to lookup fields and methods from CT ; these functions are used in the typing
rules and in the operational semantics.

A signature set, denoted by S, is a set of method signatures of the shape m : C→ C. The signature of a class C, denoted by
sign(C), is a pair of signature sets ⟨S1, S2⟩, where the first set is the signature set of the complete methods and the second
set is the signature set of the incomplete methods (both abstract and redefining). Of course, for standard classes, the second
set will be empty.

The lookup function fields(C) returns the sequence of the field names, together with the corresponding types, for all the
fields declared in C and in its superclasses. The mtype(m, C) lookup function (where m is the method name we are looking
for, and C is the class where we are performing the lookup) differs from the one of FJ in that it relies on the new lookup
function sign; the lookup function sign(C) returns the signature of the class C by inspecting the signatures of its methods. In
particular, since the superclass D of an incomplete class C can be, in turn, an incomplete class, themethods that are complete
are those defined in C and those defined in D that are not made incomplete by C (i.e., sign(M) ∪ (S1 − (sign(N) ∪ sign(R))));
conversely, the incomplete methods are the incomplete methods of C and those of D that are not defined in C (i.e.,
sign(N) ∪ sign(R) ∪ (S2 − sign(M))). Moreover, for a composed object of type ⟨C⟩, sign returns a signature where the first
element is the union of the signature sets of its class and the second element is made empty; this reflects the fact that
all the methods of the object are considered concrete. Since we introduced this lookup function, the definition of mtype is

1000 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

concrete predicate
sign(T) = ⟨S,∅⟩

concrete(T)
concrete(S)

Expression typing
Γ ⊢ x : Γ (x) (T-Var)

Γ ⊢ e : T fields(T) = C f concrete(T)
Γ ⊢ e.fi : Ci

(T-Field)

Γ ⊢ e : T Γ ⊢ e : T
mtype(m, T) = B→ B T <: B concrete(T)

Γ ⊢ e.m(e) : B
(T-Invk)

fields(C) = D f Γ ⊢ e : T T <: D
Γ ⊢ new C(e) : C

(T-New)

Γ ⊢ e1 : C sign(C) = ⟨S1, S2⟩ S2 ≠ ∅

Γ ⊢ e2 : T sign(T) = ⟨S′1,∅⟩ S2 ⊆ S′1
Γ ⊢ e1 ←+ e2 : ⟨C⟩

(T-Comp)

override predicate
mtype(m, D) = C→ C implies C = B and C = B

override(m, D, B→ B)

Method and Class typing

x : B, this : C ⊢ e : T T <: B
class C extends D {C f; K; M} override(m, D, B→ B)

B m (B x){return e; } OK IN C
(T-Method)

x : B, this : ⟨C⟩ ⊢ e : T T <: B
class C abstracts D {C f; K; M N R} override(m, D, B→ B)

B m (B x){return e; } OK IN C
(T-MethodA)

class C abstracts D {C f; K; M N R} override(m, D, B→ B)

B m (B x); OK IN C
(T-AMethod)

sign(C) = ⟨S1, S2⟩ x : B, this : ⟨C⟩, next : S2 ⊢ e : E E <: B
class C abstracts D {C f; K; M N R} override(m, D, B→ B)

redef B m (B x){return e; } OK IN C
(T-RMethod)

K = C(D g, C f){super(g); this.f = f; }
fields(D) = D g M OK IN C concrete(D)

class C extends D {C f; K; M} OK
(T-Class)

K = C(D g, C f){super(g); this.f = f; }
fields(D) = D g M OK IN C N OK IN C R OK IN C

class C abstracts D {C f; K; M N R} OK
(T-AClass)

Fig. 5. Typing rules.

straightforward (with respect to the one of FJ [25]). Moreover, note that mtype is defined for both C and ⟨C⟩ and also for a
method signature S; the last case is for handling the next variable, whose type is a signature set (see later in this section).
Sincemtype is the only lookup function defined on a signature set, it is not possible to perform field selection on next. The
lookup function for method bodies,mbody, is basically the same of FJ extended to deal with incomplete classes (note that it
returns an empty element • for abstract methods).

A type judgment of the form Γ ⊢ e : T states that ‘‘e has type T in the type environment Γ ’’. A type environment is a
finite mapping from variables (including this and next) to types, written x : T. Again, we use the sequence notation for
abbreviating Γ ⊢ e1 : T1, . . . , Γ ⊢ en : Tn to Γ ⊢ e : T. In order to treat the next special variable uniformly, we extend
the set of types with signature sets (i.e., T ranges over class names, completed types and signature sets).

Typing rules (Fig. 5) are adapted from those of FJ in order to handle incomplete objects and object composition. In
particular, field selection andmethod selection are allowed only on objects of concrete types, where a concrete type is either
a standard class C, ⟨C⟩ or a signature set S (used for the case of next as explained below). The key rule (T-Comp) for dealing

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 1001

with object composition is introduced. It checks that the left expression is actually an incomplete object (S2 ≠ ∅), and that
the right one is a complete object that provides all the methods needed by the incomplete object. Note that the final type is
the concrete type based on the original class of the incomplete object (we could have chosen the final type to be a structural
combination of the types of the objects taking part in the composition, but our design choice is more suited to a nominal
setting). This rule also shows that the typing of←+ is structural, which is a key feature of the system, since it enhances the
flexibility of object composition.

Also typing rules for methods and classes of FJ are adapted to deal with incomplete classes (we use the override predicate
of [31] to check that the signature of a method is preserved by method overriding). When typing a method and a redefining
method in an incomplete class C (with rules (T-MethodA) and (T-RMethod), respectively), we cannot simply assume C for
the type of this, since we would not be able to type any method invocation on this in the methods of C (in fact, the rule
(T-Invk) would fail since concrete(C) does not hold). Although we prohibit to invoke methods on incomplete objects, it is
still safe to accept method invocations on this inside an incomplete class, since, at run time, this will be replaced by a
complete object; thus, we will assume ⟨C⟩ for the type of this. This type assumption is also useful to consistently type
this when it is passed to a method as an argument, used in an object composition, etc. For instance, consider the following
incomplete class C (where D is a standard class):

class C abstracts D {
void m(C x); void n(D x); void p() { this.m(this); } void q() { this.n(this); }

}

The method p is not well typed since we are attempting to pass this : ⟨C⟩ to a method expecting the incomplete type C;
on the contrary, q is well typed since ⟨C⟩ <: D.

Note that, in order to type a redef method, we also need to assume a type for next when typing its body; it is safe to
assume it has the signature set S2, i.e., the signature set of incomplete methods. This is consistent with the way next is
bound in the operational semantic rule for redefined method invocation (see Section 5). As noted before, thanks to the way
lookup functions are defined (Fig. 4), the only operation that is possible on next is method invocation. Furthermore, the
type of next, being a signature set, is always considered a concrete type, when typing method invocations.

Rule (T-Class) checks that a concrete class extends another concrete class and (T-AClass) checks that also the signatures
of incomplete methods satisfy the override predicate.

Finally, althoughwe extended the syntax of types to include also signature sets, wewill use such types only to type next
inside method bodies, and, in a well-typed expression, next can appear only as the receiver of a message: thus, expressions
of the form next.f or e.m(next) cannot be type checked. This is due to the fact that the subtyping is not defined between
a signature set and a class name or a complete type, and signature sets cannot be used by the programmer to write types.
On the contrary,mtype, which is used in (T-Invk), is defined also for signature sets. Thus, by a straightforward inspection of
the typing rules we have the following property.

Property 4.1 (Occurrences of next). In a well-typed expression, next can only appear as the receiver of a message.

5. Operational semantics

The operational semantics, shown in Fig. 6, is defined by the reduction relation e −→ e′, read ‘‘e reduces to e′ in one
step’’. The standard reflexive and transitive closure of−→, denoted by−→⋆, defines the reduction relation in many steps.
We adopt a deterministic call-by-value semantics, analogous to the call-by-value strategy of FJ [31]. The congruence rules
formalize how operators (method invocation, object creation, object composition and field selection) are reduced onlywhen
all their subexpressions are reduced to values (call-by-value).

As already discussed, we need to annotate method invocation expressions with the type of the method used during the
static type checking. This annotation will help the semantics in selecting the right method definition according to the type
of the method used during the static type checking; thus, in case of methods with the same name but different signatures
within a composed object, we will not risk invoking the wrong version (generating a run-time type error).

Therefore, the operational semantics is defined on annotated programs, i.e., IFJ programswhere all expressions (including
class method bodies) are annotated using the annotation function A. Since this function relies on the static types, it is
parametrized over a type environment Γ .

Definition 5.1 (Annotation Function). The annotation of e with respect to Γ , denoted by A[[e]]Γ , is defined on the syntax
of e, by case analysis:

• A[[x]]Γ = x;
• A[[e.f]]Γ = A[[e]]Γ .f;
• A[[e.m(e)]]Γ = A[[e]]Γ .m(A[[e]]Γ)B→B if Γ ⊢ e : T and mtype(m, T) = B→ B;
• A[[new C(e)]]Γ = new C(A[[e]]Γ).

Given a method definition B m (B x){return e; }, in a class C, the annotation of the method body eis defined as
A[[e]]x:B,this:C.

1002 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

Redefining set

redef(C) = R if class C abstracts D {C f; K; M N R}

Reduction

new C(v) −→ ⟨new C(v) :: ϵ, new C(v) :: ϵ⟩ (R-New)

⟨new C(v) :: ϵ, new C(v) :: ϵ⟩ ←+ ⟨l, l⟩ −→
⟨new C(v) :: l, new C(v) :: l⟩ (R-Comp)

fields(C) = C f
⟨new C(v) :: l, new C(v) :: l⟩.fi −→ vi

(R-Field)

mbody(m, C) = (x, e0) m ∉ redef(C)

⟨new C(v) :: l, l′⟩.m(u)B→B
−→ [x← u, this⇐ ⟨new C(v) :: l, l′⟩]e0

(R-Invk)

mbody(m, C) = (x, e0) m ∈ redef(C)

⟨new C(v) :: l, l′⟩.m(u)B→B
−→ [x← u, this⇐ ⟨new C(v) :: l, l′⟩, next← ⟨l, l′⟩]e0

(R-RInvk)

mbody(m, C) = •

⟨new C(v) :: l, l′⟩.m(u)B→B
−→ ⟨l, l′⟩.m(u)B→B

(R-DInvk)

Congruence rules

e −→ e′

e.f −→ e′.f
e −→ e′

e.m(e)B→B
−→ e′.m(e)B→B

ei −→ e′i

v0.m(v, ei, e)B→B
−→ v0.m(v, e′i, e)

B→B

ei −→ e′i
new C(v, ei, e) −→ new C(v, e′i, e)

e2 −→ e′2
e1 ←+ e2 −→ e1 ←+ e′2

e1 −→ e′1
e1 ←+ v −→ e′1 ←+ v

Fig. 6. Semantics of IFJ.

Given a method redefinition redef B m (B x){return e; }, in a class C, the annotation of the method body eis defined
as

A[[e]]x:B,this:C,next:S2 where sign(C) = ⟨S1, S2⟩.

In a real implementation, such an annotation would be performed directly during the compilation, i.e., during the type
checking. However, in the formal presentation, separating the two phases (type checking and annotation) makes the theory
simpler.

In the following we will use e (and e) also for annotated expressions where not ambiguous.
In order to represent run-time objects, we use lists of standard FJ objects, of the shape new C(v); moreover, in order

to treat composed objects and standard objects uniformly, we represent a standard object with a list of only one element,
new C(v) :: ϵ. The main idea of the semantics of method invocation is to search for the method definition in the (class
of the) head of the list using the mbody lookup function. If this is found, by rule (R-Invk), then the method body is
executed; otherwise, by rule (R-DInvk), the search continues on the following element of the list (of course, in a well-
typed program, this search will succeed eventually). However, in order to implement delegation, we need also to keep
the original complete composed object so that we can bind this correctly; this is the reason why we represent a run-
time object as a pair of two object lists: the first one is used for searching for the method, while the second one is the
entire composed object. In the following we show how to perform the binding of this in the method body correctly. The
expression [x← u, this⇐ ⟨new C(v) :: l, l′⟩]e denotes the expression obtained from e by replacing x1 with u1, . . . , xn
with un and this with ⟨new C(v) :: l, l′⟩ using the substitution of Definition 5.3. For redefining methods we also replace
next, using the standard replacement (rule (R-RInvk)).

Definition 5.2 (findredef). Given a method name, an object list and a method type we define:

1. findredef(m, ϵ, B→ B) = ∅;

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 1003

class A abstracts ... {
voidm();
void n(int i) {... m(); ...}

}

class B extends ... {
void m() { if (n("foo")) ... }
boolean n(String s) {...}

}

Listing 4: An incomplete class and a complete one (with similar homonymous methods).

2. findredef(m, new C(v) :: l, B→ B) =
new C(v) :: l if m ∈ redef(C) ∧ B→ B = mtype(m, C)
findredef(m, l, B→ B) otherwise.

Definition 5.3 (this⇐ ⟨l, l′⟩). We define the substitution this⇐ ⟨l, l′⟩ on IFJ expressions as follows:
1. [this⇐ ⟨l, l′⟩]this = ⟨l, l⟩;
2. [this⇐ ⟨l, l′⟩]x = x where x ≠ this;
3. [this⇐ ⟨l, l′⟩](this.m(e)B→B) =

let l1 = findredef(m, l′, B→ B) in
⟨l1, l′⟩.m([this⇐ ⟨l, l′⟩]e)B→B if l1 ≠ ∅

⟨l, l′⟩.m([this⇐ ⟨l, l′⟩]e)B→B otherwise;
4. [this⇐ ⟨l, l′⟩](e.m(e)B→B) =

([this⇐ ⟨l, l′⟩]e).m([this⇐ ⟨l, l′⟩]e)B→B where e ≠ this;
5. [this⇐ ⟨l, l′⟩](this.f) = ⟨l, l⟩.f;
6. [this⇐ ⟨l, l′⟩](e.f) = ([this⇐ ⟨l, l′⟩]e).fwhere e ≠ this;
7. [this⇐ ⟨l, l′⟩](new C(e)) = new C([this⇐ ⟨l, l′⟩]e);
8. [this⇐ ⟨l, l′⟩](e1 ←+ e2) =

([this⇐ ⟨l, l′⟩]e1)←+ ([this⇐ ⟨l, l′⟩]e2).

In order to understand how the binding of this works let us consider the following question: What object do we
substitute for this in themethod body? This is a crucial issue in order to perform field selection andmethod invocations on
this correctly (and avoid the programgetting stuck). Furthermore,wemust apply delegation tomethods that are redefined,
butwe also need to take care of possible name clashes amongmethodswith different signatures (for thesemethodswemust
not apply delegation, otherwise the method invocation would not be sound).

First of all, field selections in a method body expect to deal with an object of the class where the field is defined (or of a
subclass). Thus, it is sensible to substitute this with the sublist whose head new C(v) is such that mbody(m, C) is defined.
Thus, the first list implements the scope of this inside a method body: the scope is restricted to the visibility provided by
the class where the method is defined. Another crucial case is when this occurs as a right-hand side expression, e.g., when
passing this as a method argument; in this case the natural meaning is to refer to the current object ‘‘up to now’’ in the list,
and the second list is useless in this context, thus we perform the substitution [this⇐ ⟨l, l′⟩]this = ⟨l, l⟩. This is also
consistent with reduction rule (R-Comp), where we require that the complete object consists of two identical lists (thus the
substitution guarantees the type preservation and the progress property): in fact, we can use this in an object composition
e←+ this.

Concerning method invocation, we must take into consideration possible ambiguities due to method name clashes.
Suppose we have the classes in Listing 4: an incomplete class A that requires a method m and defines a method n. An
instance of A can be composed with an object that provides m, say an object of class B that also defines a method n, but
with a different signature (recall the stream example in Section 3). When we invokem on the composed object, we actually
execute the definition of m in B; if this method then invokes n, the definition of n in B must be executed (executing the
version in A would not be sound). This is consistent with the typing that has checked the invocation of n in B.m using the
signature of B.n. On the contrary, if the definition of n has the same signature as in B, as in

class A abstracts ... {
void m();
redef boolean n(String s) {...}

}
then we must execute the version of A (according to the semantics of delegation) only if in A n is redefining. This method
selection strategy is implemented by point 3 of Definition 5.3 by relying on the function findredef (Definition 5.2): given a
method name, an object list and a method signature, findredef(m, new C(v) :: l, B → B) searches for the object in the list
that redefines m (in particular, it checks whether in the class of the head of the list m is redefining, i.e., m ∈ redef(C)∧ B→
B = mtype(m, C), otherwise it performs a recursive lookup in the tail of the list). The key point in findredef is the static
annotation that guides the search in a type-safe way (as shown in Section 6). If the search succeeds, then we replace this
with the sublist returned by findredef (this corresponds to the delegation mechanism of replacing this with the original
sender); otherwise, we replace this with the head of the scanned list, since that method was not intended to be redefined.

It is important to notice that objects of the shape ⟨l, l′⟩ where l ≠ l′ appear only as message receivers and they are
produced only during method invocations; thus, the actual values produced by programs (returned by methods, passed to
methods, used in object compositions, etc.) can only be of the shape ⟨l, l⟩. This is formally proved in Theorem 6.14.

1004 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

5.1. Dealing with imperative features

Our language is based on FJ that abstracts the functional core of Java; then, also our approach has a functional flavor, i.e.,
it does not consider side effects and imperative features. In this section we want to show how the present approach can
be adapted to an imperative version of FJ (e.g., using heaps and object identifiers similarly to [11]), based on our run-time
representation of objects.

The key point is that, when objects are composed, the resulting object consists of a list of sub-objects; in particular, these
sub-objects are not modified by the composition, which always produces a brand new object.

Consider the (R-Comp) rule in Fig. 6:
⟨new C(v) :: ϵ, new C(v) :: ϵ⟩ ←+ ⟨l, l⟩ −→ ⟨new C(v) :: l, new C(v) :: l⟩

The new object contains the sub-objects without changing them; notice that the removal of :: ϵ from ⟨new C(v) ::
ϵ, new C(v) :: ϵ⟩ is due only to our uniform representation for complete and incomplete objects and it has nothing to
do with the state of the object itself.

Each object composition creates a brand new object and all the sub-objects are actually shared. For instance, each object
composition gets a newobject identifier in an imperativemodel. The code employing object composition in Listing 1 clarifies
this point: the (same) complete object deleg is used for completing all the three incomplete objects. Actuallywe could have
also written the code as follows:

SaveActionDelegate deleg = new SaveActionDelegate();
Action saveMenu = newMenuItem("save") <- deleg;
myFrame.addToMenu(saveMenu);
Action saveButton = new Button("save") <- deleg;
myFrame.addToToolbar(saveButton);
Action saveKeyb = new KeyboardAccel("Ctrl+S") <- deleg;
myFrame.setKeybAcc(saveKeyb);

Thus,modifying the internal state ofdelegwill assure that all the actions are updated too. For instance, if theSaveAction-
Delegate had logging features, we could enable them and disable them during the execution of our program, and all the
actions resulting from the object compositions will use logging consistently. Furthermore, this mechanism will assure that
there will not be problems when an object is pointed to by references in different parts of the program.

This shows that objects are not only instances of classes (possibly incomplete classes), but they are also prototypes that
can be used, via the object composition, to create new objects at run time, while ensuring statically that the composition is
type safe. We then can use incomplete and complete objects as our re-usable building blocks to assemble at run time, on
the fly, brand new objects.

Finally, not modifying incomplete objects directly also makes them more re-usable especially in cases when object
composition may not have to be permanent: the behavior of an object may need to evolve many times during the execution
of a program and the missing methods provided during an object composition might need to be changed, e.g., because the
state of the incomplete object has changed. Since the original incomplete object is not modified, then it can be re-used
smoothly in many object compositions during the evolution of a program.

5.2. Examples of reduction

In this section we present some examples of reductions, based on the code of Section 3; these will help understanding
the operational semantics, and, in particular, how the run-time behaves when dealing with composed objects and required
methods (as in Section 3 we will use basic types, and void).

We recall that an incomplete object can redefine a method of the complete one in an object composition and that the
new version of the method provided by the incomplete object is called redefining, while the old one in the complete object
is called redefined; the redefining method body can refer to the redefined one via the special variable next.

5.2.1. Graphical widgets
Let us first consider the code of Listing 1, and the method invocation (for simplicity we do not consider constructor

arguments, and since annotations are not interesting in this example, we will omit them to keep the presentation simple):
(new MenuItem()←+ deleg).run()

where deleg = new SaveActionDelegate(). By using (R-New) and (R-Comp)we get (we do not write the list tail :: ϵ)
⟨new MenuItem() :: deleg, new MenuItem() :: deleg⟩.run()

Now, since run is an abstract method in MenuItem, then we apply (R-DInvk) (we abbreviate l = new MenuItem() ::
deleg):

⟨deleg, l⟩.run()

The method run is defined in SaveActionDelegate and it is not a redefining method, therefore we can apply
(R-Invk), thus we select the body of run in SaveActionDelegate. The only interesting instruction in the body

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 1005

class Inc1 abstracts ... {
voidm() { n(10); }
void n(int i);

}

class Inc2 abstracts ... {
void m() { n(10); }
redef void n(int i) {

next.n(i);
...

}
}

class Inc3 abstracts ... {
voidm() { n(true); }
redef void n(boolean b) {

next.n(b);
...

}
}

class Inc4 abstracts ... {
redef voidm() { next.m(10); }
void n(int i);

}

class C1 {
voidm() { ... }
void n() { m(); }

}

class C2 {
void m(boolean b) { ... }
void n() {m(true); }

}

Fig. 7. Some incomplete and complete classes.

of run is this.enable(false). In order to execute it, we must apply the substitution this ⇐ ⟨deleg, l⟩ (defined in
Definition 5.3). In particular, we are in the case 3 of Definition 5.3, where the type annotation is boolean → void. Now,
findredef(enable, new MenuItem() :: deleg, boolean→ void) returns new MenuItem() :: deleg, since enable is redefining in
MenuItem and the method signature matches. Thus, after the substitution we get:

⟨new MenuItem() :: deleg, new MenuItem() :: deleg⟩.enable(false)

Now, we can apply (R-RInvk); in particular, the substitution for next is next ← ⟨deleg, l⟩. Thus, for the redefining
method enable the semantics of delegation was adopted (and next is correctly bound).

5.2.2. Streams
Now, let us consider the stream example (Listing 3), in particular, the invocation ofmethod read on the composed object

Stream myStream = new CompressStream() <- (new BufferedStream() <- new FileStream("foo.txt"));

Since read is a redefining method in CompressStream, we use (R-RInvk), and next is bound to

⟨new BufferedStream() :: new FileStream(), new CompressStream() :: new BufferedStream() :: new FileStream()⟩

The semantics is call-by-value, thus, we first execute read in BufferedStream. The substitution of this in the expression
this.readBuffer()void→byte[] is crucial; when we call findredef(readBuffer, new CompressStream() :: new BufferedStream() ::
new FileStream(), void → byte[]) we use the ‘‘otherwise’’ case of Definition 5.2-2, since readBuffer is not redefining in
CompressStream, and on the recursive invocation, findredef will correctly return new BufferedStream() :: new FileStream(),
so that, inside read in BufferedStream, we correctly use readBuffer in BufferedStream.

If we had another object in front of the object composition, say MyStream where void readBuffer(int, byte[]) is
redefining, findredef would still correctly return new BufferedStream() :: new FileStream(): even though readBuffer is
redefining in MyStream still its signature would not match the type annotation void→ byte[].

5.2.3. Other examples
We conclude this section by considering some possible object composition configurations and the correspondingmethod

lookup executions. We consider the incomplete classes in Fig. 7 (we omit the base classes, not relevant in this example), and
we assume that we already instantiated some corresponding objects inc1, . . . , inc4, c1, c2.6 We consider some possible
compositions and the semantics of the invocation ofm on the corresponding composed object:

• (inc1 ←+ c1).m(): method n is abstract for inc1, therefore the invocation of n inside m is delegated to c1. Then, the
invocation ofm inside n selects the definition of C1 sincem is not redefining in class Inc1 (that is, Inc1 does not provide
a new implementation for m); otherwise, although the selection of m in Inc1 would have been type safe, the program
would loop;
• (inc2←+ c1).m(): similarly to the previous case, the invocation ofm inside n selects the definition form of C1;
• (inc3←+ c1).m(): this composition is rejected by the compiler since it is not well typed (the signature of the redefining

method n, boolean, does not match the one for n in the complete object, which is int);

6 We name them with the same name of their class but with a lowercase letter at the beginning.

1006 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

Γ ⊢ new C(v) : C
Γ ⊢ new C(v) :: ϵ : C

(T-ListH)

Γ ⊢ new C(v) : C sign(C) = ⟨S1, S2⟩ S2 ≠ ∅

Γ ⊢ l : T sign(T) = ⟨S′1,∅⟩ S2 ⊆ S′1
Γ ⊢ new C(v) :: l : ⟨C⟩

(T-List)

Γ ⊢ l : T Γ ⊢ l′ : T′ l ⊆ l′

Γ ⊢ ⟨l, l′⟩ : T
(T-ORunTime)

Γ ⊢ e : T Γ ⊢ e : T
mtype(m, T) = B→ B T <: B concrete(T)

Γ ⊢ e.m(e)B→B
: B

(TA-Invk)

Fig. 8. Run-time expression typing.

• (inc4 ←+ (inc1 ←+ c2)).m(): we have the following method selection sequence 7: Inc4.m, Inc1.m, C2.n, C2.m, in
fact, even thoughm is redefining in Inc4, it does not have the same signature of the definition ofm in C2, therefore that
redefinition is ignored;
• (inc4 ←+ (inc1 ←+ c1)).m(): we have the following method selections: Inc4.m, Inc1.m, C1.n, Inc4.m and the

program loops, in fact, even thoughm is not redefining in Inc1, it is redefining in Inc4 with the matching type.

The last case is an example of a loop due to the delegation, and we will get back to this scenario in Section 7.

6. Properties

This section is devoted to prove the type safety property for IFJ, which means that no message-not-understood errors
can occur at run time during method invocations on composed objects. Before giving the main proofs of standard type
preservation and progress theorems, we develop some required lemmas and properties.

First of all, we have to define the typing rules for annotated run-time expressions. Three additional rules are needed for
typing our run-time representations of objects, that is, lists and pairs of lists. Moreover, the rule formethod invocation needs
to be adapted to take into consideration method call annotations. We present these new rules in Fig. 8, while all the other
typing rules are the same as the ones presented in Fig. 5, where e is intended to denote a run-time expression. We note that
the type of a composed object is the one of the head of the list, consistently with the typing rule for object composition.
Moreover, rule (T-List) implicitly requires that l ≠ ϵ since ϵ is not typable.

We use |l| to denote the length of the list l and the following definition of list inclusion.
Definition 6.1 (List Inclusion). Let l1 and l2 be two well-typed object lists; we say that l1 is included in l2, denoted by
l1 ⊆ l2, if and only if
1. either l1 = l2, or
2. l2 = l′1 :: l1, with l′1 ≠ ϵ.

By the definition of annotation (Definition 5.1), it is also easy to verify the following property.
Property 6.2 (Types are Preserved Under Annotation). If Γ ⊢ e : T for some Γ and T, then Γ ⊢ A[[e]]Γ : T.

Thus, in the following, to make the presentation of the properties simpler, we will not write the annotations explicitly
when they are not significant, and we will use e to refer to annotated run-time expressions.
Property 6.3. Let l = new C(v) :: l′ such that l′ ≠ ϵ and Γ ⊢ l : T. Then:
1. concrete(T) holds.
2. Γ ⊢ l′ : T′ for some T′ such that concrete(T′) holds.
3. If sign(C) = ⟨S1, S2⟩, for any m such that m : B→ B ∈ S2 then mtype(m, T′) = B→ B.
Proof. It follows directly from rule (T-List). �

Corollary 6.4. Let l = new C(v) :: l′ such that Γ ⊢ l : T. Then, for any l′′ ⊆ l′ such that l′′ ≠ ϵ, Γ ⊢ l′′ : T′′ and
concrete(T′′).
Proof. By iterate applications of Property 6.3-1,2. �

Property 6.5 (Well-Typedness of List Inclusion). 1. If Γ ⊢ l′ : T′ and concrete(T′) then Γ ⊢ ⟨l, l′⟩ : T, for some T where
concrete(T), for any l ⊆ l′.

2. If Γ ⊢ ⟨l, l′⟩ : T where concrete(T), then Γ ⊢ l′ : T′ for some T′ where concrete(T′).

7 In order to refer to a specific version of a method in a class, we use the fully qualified method notation, thus, e.g., A.m denotes the definition of m in
class A.

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 1007

Proof. 1. By Corollary 6.4 and then by using (T-ORunTime).
2. By (T-ORunTime) we have Γ ⊢ l′ : T′ for some T′, and l ⊆ l′. If l = l′ we have the thesis; otherwise, since l ≠ ϵ, by

Property 6.3-1, we have concrete(T′). �

In order to state the Substitution Lemma, both for standard class methods and for incomplete class (possibly redefining)
methods, we need a uniform way to refer to the type of this; in fact, as shown in Section 4, in rules (T-MethodA) and
(T-RMethod), Fig. 5, this is used with a concrete type. Thus we introduce the following notation.

Notation 6.6. Given a class name C, we denote [C] = C if concrete(C), [C] = ⟨C⟩ otherwise.

The following lemma states the substitution property for method bodies in class definitions. Then, in the Substitution
Lemma, it is sufficient to consider typed expressions which are annotated versions of source code. This lemma is the crucial
point for proving the Type Preservation Theorem.

Lemma 6.7 (Substitution Lemma). If Γ , x : C, this : [C], next : S ⊢ e : T, and

1. Γ ⊢ e : T′ where T′ <: C,
2. Γ ⊢ v : T1 where T1 <: [C],
3. Γ ⊢ v′ : T∗ where sign(T∗) = ⟨S∗,∅⟩ and S ⊆ S∗,

then Γ ⊢ [x← e, this⇐ v, next← v′]e : T′ for some T′ such that, either T′ <: T or sign(T′) = ⟨S′,∅⟩ and S ⊆ S′.

Proof. By induction on the derivation of Γ , x : T, this : [C], next : S ⊢ e : T, with a case analysis on the last applied
rule.

(T-Var) If x ∉ x and x ≠ this and x ≠ next, then the conclusion is immediate since [x← e]x = x; otherwise,
• x = xi, T = Ci, and [x← e]x = [x← e]xi = ei; then, by assumption, Γ ⊢ ei : T′i <: Ci.
• x = this and T = [C], let v = ⟨l, l′⟩, then [this ⇐ v]this = ⟨l, l⟩ (see the first case of Definition 5.3),

and Γ ⊢ ⟨l, l⟩ : T1 <: [C].
• x = next, then [next← v′]x = v′ and the thesis follows from the hypothesis 3.

(T-Field) By induction hypothesis, taking into account that fields, with their types, are inherited in subclasses and all field
names are assumed to be distinct.

(TA-Invk) The thesis follows by the induction hypothesis in all cases but in the most crucial one when
• e = this.m(e0)

B→B,
• v = ⟨l, l′⟩,
• findredef(m, l′, B→ B) = l1, where l1 ≠ ∅ ≠ l
that is, when there is an object in the list where m is redefining (with the same signature). By hypothesis Γ ⊢

⟨l, l′⟩ : T1 <: [C], thus concrete(T1); then, by Property 6.5-2, Γ ⊢ l′ : T′′ and concrete(T′′). By Definitions 5.3
and 5.2 we have l ⊆ l1 ⊆ l′, thus by Property 6.5-1 we have Γ ⊢ ⟨l1, l′⟩ : T∗ and concrete(T∗).8 By (TA-Invk)
we have

Γ ⊢ this : [C] Γ ⊢ e0 : T0
mtype(m, [C]) = B→ B T0 <: B concrete([C])

Γ ⊢ this.m(e0)
B→B
: B

By definition of findredef, we have that mtype(m, T∗) = B → B; by induction hypothesis, e∗ = [x ←
e, this ⇐ v]e0 is such that Γ ⊢ e∗ : T∗ for some T∗ such that T∗ <: T0 (note that next cannot occur in
e0 by Property 4.1). Thus, we can apply (TA-Invk), (using transitivity <:):

Γ ⊢ ⟨l1, l′⟩ : T∗ Γ ⊢ e∗ : T∗

mtype(m, T∗) = B→ B T∗ <: B concrete(T∗)

Γ ⊢ ⟨l1, l′⟩.m(e∗)B→B
: B

(T-New) It follows from the induction hypothesis on the arguments (where next cannot occur by Property 4.1).
(T-Comp) For e = e′ ←+ e′′, the last applied rule is (T-Comp) and T = ⟨D⟩ for some incomplete class D:

Γ ⊢ e′ : D sign(D) = ⟨S1, S2⟩ S2 ≠ ∅

Γ ⊢ e′′ : T′′ sign(T′′) = ⟨S′1,∅⟩ S2 ⊆ S′1
Γ ⊢ e′ ←+ e′′ : ⟨D⟩

8 Note that in this case, we cannot state that T∗ <: [C] since the classes of the objects in an object composition might be unrelated.

1008 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

By the induction hypothesis one′ ande′′ (we denote their substituted versionswithe′
∗
ande′′

∗
, respectively), we

have Γ ⊢ e′
∗
: D (since there is no subtyping on incomplete classes), Γ ⊢ e′′

∗
: T′′
∗

<: T′′, thus sign(T′′
∗
) = ⟨S′′,∅⟩

such that S′1 ⊆ S′′. We get the thesis by applying (T-Comp):

Γ ⊢ e′
∗
: D sign(D) = ⟨S1, S2⟩ S2 ≠ ∅

Γ ⊢ e′′
∗
: T′′
∗

sign(T′′
∗
) = ⟨S′′,∅⟩ S2 ⊆ S′′

Γ ⊢ e′
∗
←+ e′′

∗
: ⟨D⟩

�

The following lemma is a standard structural property which is useful in other proofs: it states that we can add to any Γ

typing assertions for new variables without changing the typing assertions that can be derived under Γ .

Lemma 6.8 (Weakening). If Γ ⊢ e : T, then Γ , x : T′ ⊢ e : T.

Proof. By induction on the derivation of Γ ⊢ e : T. �

Lemma 6.9. If mtype(m, C) = B→ B and mbody(m, C) = (x, e), then, for some D, where C = D or D is a superclass of C, there
exists T <: B such that:

1. If m ∉ redef(C), then x : B, this : [D] ⊢ e : T,
2. otherwise, x : B, this : [D], next : S2 ⊢ e : T, where sign(D) = ⟨S1, S2⟩.

Proof. Straightforward induction on the derivation of mbody(m, C), using (T-Method) or (T-MethodA), depending on the
method being defined in a standard or incomplete class, for point 1, and (T-RMethod) for point 2. �

Theorem 6.10 (Type Preservation). If Γ ⊢ e : T and e −→ e′ then Γ ⊢ e′ : T′ for some T′ <: T.

Proof. By induction on a derivation of e −→ e′, with a case analysis on the final rule. We only consider reduction rules,
since the property on congruence rules follows straightforwardly by the induction hypothesis.

(R-New) By hypothesis Γ ⊢ new C(e) : C, thus we can apply (T-ListH) and then (T-ORunTime) to get Γ ⊢ ⟨new C(v) ::
ϵ, new C(v) :: ϵ⟩ : C.

(R-Comp) By hypothesis Γ ⊢ ⟨new C(v) :: ϵ, new C(v) :: ϵ⟩ ←+ ⟨l, l⟩ : T which can be obtained only by using
(T-Comp); by (T-Comp) we get Γ ⊢ ⟨new C(v) :: ϵ, new C(v) :: ϵ⟩ : D (for some D), sign(D) = ⟨S1, S2⟩, S2 ≠ ∅,
Γ ⊢ ⟨l, l⟩ : T∗, sign(T∗) = ⟨S′1,∅⟩ andS2 ⊆ S′1, and in particularT = ⟨D⟩.Γ ⊢ ⟨newC(v) :: ϵ, newC(v) :: ϵ⟩ : D
can be obtained only by (T-ORunTime) and (T-ListH), i.e., Γ ⊢ new C(e) : C = D (*) and thus T = ⟨C⟩. Now, by
using (*) and the other premises of (T-Comp), we can apply (T-List) to get Γ ⊢ new C(v) :: l : ⟨C⟩, and then
(T-ORunTime) to get Γ ⊢ ⟨new C(v) :: l, new C(v) :: l⟩ : ⟨C⟩.

(R-Field) By hypothesis Γ ⊢ ⟨new C(v) :: l, new C(v) :: l⟩.fi : T. By rule (T-Field), we have Γ ⊢ ⟨new C(v) ::
l, new C(v) :: l⟩ : T′ for some T′, such that concrete(T′) and fields(T′) = C f, thus T = Ci. Since e −→ fi, then
we have the thesis.

(R-Invk) e = (⟨new C(v) :: l, l′⟩).m(u)B→B, mbody(m, C) = (x, e0) and m ∉ redef(C). By (TA-Invk), we have Γ ⊢

⟨new C(v) :: l, l′⟩ : T∗, Γ ⊢ u : T, mtype(m, T∗) = B → B, T <: B and concrete(T∗). If l = ϵ, then
by (T-ListH), we have T∗ = C; otherwise, by (T-ORunTime) and (T-ListH) we have T∗ = ⟨C⟩. By Lemmas 6.9-
1 and 6.8, Γ , x : B, this : [D] ⊢ e0 : B′ <: B for some D where C = D or D is a superclass of C.
Since C and D are in subclass relation and since concrete([D]), we have T∗ <: [D]. By Substitution Lemma 6.7,
Γ ⊢ [x← u, this⇐ ⟨new C(v) :: l, l′⟩]e0 : T0 <: B′ <: B.

(R-RInvk) As in the previous case, using Lemma 6.9-2 instead of Lemma 6.9-1.
(R-DInvk) Follows from Property 6.3-2 and Property 6.3-3. �

Lemma 6.11. If Γ ⊢ new C1(v1) :: . . . :: new Cn(vn) :: ϵ : T where concrete(T), let sign(Ci) = ⟨Si
1, Si

2⟩, 1 ≤ i ≤ n, then, for
any method m:

1. mtype(m, T) = B→ B implies that there exists some Ci, 1 ≤ i ≤ n, such that m : B→ B ∈ Si
1.

2. For any Ci, 1 ≤ i ≤ n, m : B→ B ∈ Si
1 implies mbody(m, Ci) = (x, e).

3. For any Ci, 1 ≤ i ≤ n, m : B→ B ∈ Si
2 and m ∈ redef(Ci) imply mbody(m, Ci) = (x, e).

Proof. 1. By induction on n:
• If n = 1, since concrete(T), then S1

2 = ∅ and m : B→ B ∈ S1
1.

• In the inductive step, if m : B→ B ∈ S1
2, then, by Property 6.3, Γ ⊢ new C2(v2) :: . . . :: new Cn(vn) :: ϵ : T′, where

concrete(T′); therefore the proof follows by the induction hypothesis.
2. If m : B → B ∈ Si

1, then, by definition, m : B → B is defined in Ci or in inherited from a superclass; then, the result
follows from the definition ofmbody.

3. As in the previous case. �

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 1009

Concerning the progress property, we will prove that the values that can result from applying an evaluation rule to a
well-typed expression are of the shape ⟨l, l⟩, where l ≠ ϵ, which we call final values, while pairs of different lists are used
only as receivers of method invocations. A final value ⟨l, l⟩ denotes the fully evaluated object which is represented by the
list l.

We first recall that pairs of lists do not occur in the source code of our language, namely an evaluation rule always applies
to a well-typed (annotated) source code expression.
Property 6.12 (Source Code Reduction). Suppose e is a closed, well-typed expression, which is the annotated version of a source
code expression. Then e −→ e′ for some e′.
Proof. By induction on typing rules of Fig. 5, using (TA-Invk) in place of (T-Invk). �

Lemma 6.13 (Method Body Reduction). Suppose e is a well-typed expression, which is the annotated version of a source code
expression. If x : C, this : [C], next : S ⊢ e : T, and
1. ⊢ v : T′ where T′ <: C,
2. ⊢ v : T1 where T1 <: [C],
3. ⊢ v′ : T∗ where sign(T∗) = ⟨S∗,∅⟩ and S ⊆ S∗,
4. v are final values,

then [x← v, this⇐ v, next← v′]e either is a final value or can be reduced.
Proof. Let us denote [x ← v, this ⇐ v, next ← v′] with σ and σe with e∗. The proof proceeds by induction on the
derivation x : C, this : [C], next : S ⊢ e : T, using the property that e∗ is well typed (by the Substitution Lemma 6.7).

(T-Var) Either e = this, then e∗ is a final value by Definition 5.3-1, or e = xi, then e∗ = vi which is final by hypothesis.
(T-Field) e∗ = (σe1).f for some e1 and f; by the induction hypothesis, either σe1 reduces to e2, for some e2, or σe1 is a

final value; in the first case, e∗ reduces to e2.f using the corresponding congruence rule; in the second case, since
(σe1).f is well typed, then field selection can be performed (this can be easily proved as in FJ [25]).

(TA-Invk) We consider the only interesting case when e∗ = ⟨l, l′⟩.m(u), for some well-typed run-time object ⟨l, l′⟩,
method m, and final values u (the remaining cases follow straightforwardly from the induction hypothesis, using
congruence rules); since e∗ is well typed, then, by Lemma 6.11, it can be reduced.

(T-New) e∗ = new C(σe) for some e. If σe are all final values, then we can apply rule (R-New). Otherwise, by induction
hypothesis, one of the subexpression reduces, thus we can apply a congruence rule.

(T-Comp) e∗ = σe1 ←+ σe2 for some well-typed e1, e2; by the induction hypothesis, if σe1 and σe2 are final values then
e∗ can be reduced using (R-Comp), otherwise a congruence rule can be applied. �

Theorem 6.14 (Progress). Let e be a closed run-time expression. If ⊢ e : T, for some T, and e −→ e′ for some e′, then either
e′ is a final value, or e′ can be reduced.
Proof. By induction on the derivation e −→ e′, with a case analysis on the final rule, taking into account that e′ is well
typed by Theorem 6.10.We only consider reduction rules: if e −→ e′ is obtained by using a congruence rule, then the thesis
follows from the induction hypothesis.

(R-New), (R-Comp) Immediate: e′ is a final value.
(R-Field) v are obtained by reducing well-typed expressions, then v are final values by the induction hypothesis.
(R-Invk), (R-RInvk) As in the previous case, all the values in e are final values, thus the thesis follows by Lemma 6.13.
(R-DInvk) Since e′ is well typed, then l ≠ ϵ, thus we can apply either (R-Invk) or (R-RInvk). �

Theorem 6.15 (Type Soundness). Let e be a closed annotated source code expression, such that ⊢ e : T. If e −→⋆ e′, and e′ is
such that no evaluation rule applies, then e′ is a final value v, such that ⊢ v : T′ <: T.
Proof. By Lemma 6.13, Theorem 6.10 and Theorem 6.14. �

7. Adding consultation

In this section we show how the language IFJ can be extended in order to provide also ‘‘consultation’’, as an additional
semantic feature that coexists with delegation. This extension is smooth from the technical point of view, thanks to our
representation of incomplete and run-time objects. Following the aim of enhancing language flexibility, the choice of
whether to use consultation or delegation is left to the invoker, not to the writer of the method. Furthermore, the extension
is conservative (a program using only delegation is still a valid program in this extended language).

In our opinion, both delegation and consultation should be available in a language with object composition, where the
behavior can be changed at run timewith redefiningmethods. However, we preferred not to present these twomechanisms
in the same calculus from the beginning to keep the presentation of themetatheory simple, following the style of theoretical
language calculi (see, e.g., Featherweight Java itself [25] and [38,1,14,15]), thus starting from a core framework and build
additional features on top of it.

We briefly discuss some motivations of the proposed extension before presenting its technical and formal treatment. In
particular, at the end of this section we show how to extend the properties of Section 6. Namely, the type safety is preserved
in the extended language.

1010 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

e −→ e′

consult(e.m(e)B→B) −→ consult(e′.m(e)B→B)

ei −→ e′i

consult(v0.m(v, ei, e)B→B) −→ consult(v0.m(v, e′i, e)
B→B)

consult(⟨new C(v) :: l, l′⟩.m(u)B→B) −→ ⟨new C(v) :: l, ϵ⟩.m(u)B→B (R-InvkC)

Fig. 9. Additional semantics rules.

Motivations. As we discussed in previous sections, delegation with the redefining method mechanism plays the same role
as dynamic binding: it ensures that, at run time, the most recent version of a method is invoked. However, there might be
cases when the programmer of a class wants to be sure that a method version is not overridden, or at least, that the binding
at run time for that method is static. This possibility is present in mainstream programming languages such as Java and C++.
In C++, if a method is not declared as virtual, then a static binding mechanism is used for method invocation. This means
that if a class B redefines amethodm of a class A, then, when using a variable of type B, the invocation of methodm results in
selecting the redefined version; instead,whenusing a variable of typeA, evenwhen it refers to an object of class B at run time,
the definition of m in A will be selected. Java provides a similar mechanism, but, by default, all methods can be redefined,
unless they are declared as final (and in this case, overriding of these methods in a derived class is completely ruled out).

The ability of requiring a static binding strategy gives the programmer more control on the possible evolution of the
software, since it can be used to forbid derived classes to change the behavior of early-bound method invocations. If this is
important in standard static class-based inheritance, it is even more crucial in our context, where the behavior of method
invocation can bemodified at run time via object composition.Moreover, the delegationmechanism can bring to unexpected
loops in a program, as in the last case considered in Section 5.2.9 Such cases cannot be caught by the type system, since they
do not represent a type error, but only some ill-designed code. In fact, there is no name clash, but a (possible not wanted)
override of a method which is in the chain of the composed object. In our setting, a static binding strategy can be provided
by the consultationmechanism.

The extended language. First of all, we extend the syntax of IFJ with the following expression:

consult(e.m(e))

No change to the lookup functions and to the substitution of this (Definition 5.3) is required and we still use our
representation of run-time objects.

Since consultation influences only the semantics ofmethod invocation, the typing rule for the new construct simply relies
on the typing rule (T-Invk) (and thus it is straightforward to extend the annotation function as well):

Γ ⊢ e.m(e) : B
Γ ⊢ consult(e.m(e)) : B

(T-InvkC)

Instead,we have to add two congruence rules and one reduction rule to the operational semantics; these rules are defined
in Fig. 9. Our form of run-time objects as lists makes it straightforward to implement consultation. In fact, the new reduction
rule simply removes the consult keyword and reduces the expression to a standard method invocation where the second
list of the run-time object is empty; from this point on, the reduction procedure will use the rules previously defined in
Section 5. This results in implementing a method call using the consultation mechanism, because the second list represents
the entire object composition, which is used only to implement delegation. If that list is empty, the reduction procedure
performs a consultation: in fact, when the method is found in the current node of the list, rule (R-Invk) substitutes this
using point 3 of Definition 5.3. Then,

• the substitution calls the findredef function, passing the second list which is empty,
• then findredef returns ∅ (Definition 5.2-1),
• and, thus, we substitute ⟨new C(v) :: l, ϵ⟩ for this.

Therefore, when we forward a method invocation, we will never be able to ‘‘go back’’ to the original sender, which
corresponds exactly to the consultation semantics. This subsumes the consultation mechanism of [10] without changing
Definition 5.3.

Note that consult acts at a method invocation level, not at a method declaration level (like, instead, virtual and
final); this is consistent with the object composition run-time sought flexibility. Namely, it is the user of a method who
decides whether a method should be invoked with delegation or consultation. For instance, consider the classes of Fig. 7 in
Section 5.2; if we performconsult(inc4←+ (inc1←+ c1).m()), thenwe have the followingmethod selections:Inc4.m,
Inc1.m, C1.n, C1.m (while with delegation the program looped).

Finally, it is easy to verify that the proposed extended language preserves type safety. To this aim,we need to add a typing
rule for run-time expressions of the shape ⟨l, ϵ⟩:

Γ ⊢ l : T
Γ ⊢ ⟨l, ϵ⟩ : T

(T-ORunTimeC)

9 Note that such situations can be experienced even with standard class inheritance, method overriding and dynamic binding.

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 1011

Property 6.5 is only used in the Substitution Lemma for the case of delegation, and it is not needed in the case of
consultation. Therefore, it can be extended by adding the assumption l′ ≠ ϵ, for lists of the shape ⟨l, l′⟩, in order to
rule out the consultation evaluation case.

We restate this property as in the following, while its proof stays the same, taking into account that if a list can be typed
then it cannot be empty.
Property 7.1 (Well-typedness of List Inclusion). 1. If Γ ⊢ l′ : T′, concrete(T′), then Γ ⊢ ⟨l, l′⟩ : T, for some T where

concrete(T), for any l ⊆ l′.
2. If Γ ⊢ ⟨l, l′⟩ : T where concrete(T), and l′ ≠ ϵ, then Γ ⊢ l′ : T′ for some T′ where concrete(T′).

All the other properties of Section 6, including the final type soundness property (Theorem 6.15), still hold, based on the
fact that final valuesmust be always of the shape ⟨l, l⟩with l ≠ ϵ. More precisely, by Definition 5.3-1, whenwe eventually
replace this with a list ⟨l, l′⟩, we discard the second list and substitute this by ⟨l, l⟩; thus, the case when l′ is empty
does not make any difference.

8. Related work

Concerning the theory of incomplete objects, our main inspiration comes from [7]; however, while that calculus builds
on top of the lambda calculus, here we aim at investigating on how object composition can fit within the basic principles of
Java-like languages. Comparisons with other related work follow.

Incomplete objects in lambda calculus. An explicit form of incomplete objects was introduced in [12], where an extension
of Lambda Calculus of Objects of [20] is presented. In this work, labeled types are used to collect information on the
mutual dependencies among methods, enabling a safe subtyping in width. Labels are also used to implement the notion
of completion, which permits adding methods in an arbitrary order allowing the typing of methods that refer to methods
not yet present in the object, thus supporting a form of incomplete objects. The context is again a lambda calculus, while in
this work we are interested in incorporating object composition into Java-like languages.

Otherwork on delegation. In [26], delegation is presented in themodel of the languageDarwin; however, thismodel requires
some basic notions to be modified, such as method overriding. Our language, instead, proposes a conservative extension of
a Java-like language (so that existing code needs not to be changed). Furthermore, in [26] the type of the parent object must
be a declared class and this limits the flexibility of dynamic composition, while in our approach there is no implicit parent
and missing methods can be provided by any complete object, independently from its class.

On mixins. Incomplete object mechanisms were originally inspired by mixin-based inheritance [13]: mixins are classes
parametrized over the superclass and new subclasses can be generated by applying a mixin to a class (that provides all the
requirements of the mixin). However, object composition in our language takes place at run time, while mixin inheritance,
although more flexible than standard class-based inheritance, is still a compile-time mechanism.

Onwrappers and delegates. Incomplete objects can be seen aswrappers for the objects used in object composition. However,
they differ from decorator-based solutions such as the language extension presented in [11]: incomplete objects provide a
more general-purpose language construct and the wrappers of [11] could be actually implemented through incomplete
objects. Another form of wrapping of methods is the one offered by the delegates of C#. Delegates are objects pointing to one
method or to a set of methods, that will be executed when invoked appropriately on the delegate. Therefore, it is possible
to treat methods as anonymous functions, implementing a form of reuse. Delegates can be then seen as complementary to
incomplete objects, as the latter implements a different form of reuse, allowing to customize a prototype (i.e., an incomplete
object) in more than one way via object composition.

On partial classes. A further construct of C# that deals with some form of incompleteness is the one of partial classes, that
makes it possible to subdivide a class definition among two or more files. This mechanism is useful to implement a form
of reuse oriented to the design of large scale projects, as a class distributed over distinct files allows more programmers to
work on it, moreover it helps the addition of new code to a class without modifying the source. In addition, the mechanism
of partial classes is a static one, and it does not take place at run time like our object composition. Once again, the form of
reuse offered by partial classes is complementary to the one implemented by incomplete objects.

On categories. Objective-C [27] provides categories, a run-time mechanism for modifying existing code: the programmer
can place groups of related methods into a category and can add the methods within a category to a class at run time. Thus,
categories permit the programmer to addmethods to an existing class without the need to recompile that class or even have
access to its source code. The main difference with our incomplete object mechanism is that categories act at the class level,
while our linguistic feature acts at the object level.

On traits. Traits [18] are composable units containing only methods, and they were proposed as an add-on to traditional
class-based inheritance in order to enhance decoupling and high cohesion of code in classes, therefore with the aim of
allowing a higher degree of code reuse. Incomplete objects can be seen as a tool for rapid prototyping, that is, for adding
methods on the fly to already existing objects. Traits and incomplete objects share an important feature, composition, which
permits composing sets ofmethods ‘‘at the right level’’, for instance not too high in a hierarchy for traits, and ‘‘when needed’’

1012 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

for incomplete objects. Themain difference is that traits are a compile-time feature, while incomplete objects are composed
at run time. An issue to pursue as a further research may be the use of incomplete objects as an exploratory tool to design
traits: experiments made at run time without modifying a class hierarchy might give indications on where to put a method
in a new version of the hierarchy.

On aspects. There are some relations between aspects [17] and our incomplete objects. Both are used to combine features
taken from different sources. In the aspect case, the main idea is to factorize into aspects some cross-cutting functions (such
as logging services or concurrency primitives) that are needed globally by a library, instead of duplicating and scattering
them into the business code. In our case, we consider objects as building blocks that can be used to combine features on the
fly, in order to obtain and experiment with multi-function objects whenever it is desired. In a sense, the role of incomplete
objects is orthogonal to the one of aspects, because the former play a local role, while the latter a more global one.

In [3], a general model (Method DrivenModel) for languages supporting object composition is proposed: this is based on
the design of classes in an aspect-oriented style. The authors do not formalize their model within a calculus, but it is possible
to see that the main feature of a language based on this model would be to compose dynamically the overall behavior of
an object from the multiple ‘‘aspects’’ that abstract the variant behavior, as discussed in [4]. The main difference between
their proposal and ours is that for them the run-time behavior is codified in aspects, whereas we internalize it in Java by
exploiting partial classes and object composition.

On gbeta. The language gbeta [19] supports amechanismcalled ‘‘objectmetamorphosis’’, which is amechanism to specialize
dynamically an existing object, by applying to it a class as a constraint in such a way the object becomes an instance of that
class. Themain difference between the gbeta specializing objects and our incomplete objects is that the formermaintain the
object identity, while the latter are used to create dynamically new objects which are not instances of any classes present in
the program. Both proposals are proved type safe, but amore direct comparison is not straightforward, as the type system of
gbeta exploits concepts such as virtual classes which are not present in a Java-like setting like ours. The language gbeta also
supports dynamic class composition [30] (classes are first class values and existing classes may be composed dynamically
to yield new classes), while in our language we act on object composition. It is important to remark that one of our main
design decision was that our extension must integrate seamlessly in a Java-like language as a conservative extension.

On roles. Roles [28] are a conceptual abstraction that can be used in object-oriented systems to implement specific entities
within a domain. ObjectTeams/Java (OT/J) [24] is a programming language that provide roles in a Java context, following the
criteria defined in [34]. Although the inherent compositional nature of roles looks similar to incomplete objects, the two
approaches are rather different both for features and for intention. First of all, incomplete objects are a low level linguistic
feature: they represent a dynamic and object-based implementation of inheritance. Thus, once objects are composed, they
cannot be de-composed (althoughwemight consider studying such an operation andhow this affects the static type system).
On the contrary, roles can be attached to base objects and detached; in particular, upon removal, a role is also destroyed.
This is another important difference with respect to our object composition: objects in our language keep their own identity
and life cycle (and they can be used in many object composition), while roles can be attached to one base object only and
they ‘‘live’’ only when they are part of such a base object. Role definitions also specify the class of their base objects, and this
couples them to these classes (this coupling can be reduced, but not removed, by using unbound roles, similar to abstract
classes, and subroles), while in our approach the type of objects in composition is not known in advance. Moreover, OT/J
implements a ‘‘flattening’’ semantics concerning fields, while in our composed objects all the sub-objects have their own
fields. Summarizing, roles are a higher level featurewhich is somehow complementary to incomplete objects, and these two
linguistic constructs aim at solving different programming contexts. These differences seem inherent of the role approach
and can be found in other implementations (see, e.g., [5]).

9. Conclusions

Our goal was to design a language based on a trade-off between the dynamic flexibility of object-based languages and the
static type discipline of class-based languages. To this aim,wepresented linguistic constructs to dealwith incomplete objects
and object composition in a type-safe way. In our proposal, objects are still instances of (possibly incomplete) classes and
they are still disciplined by the nominal subtyping, but they are also prototypes that can be used, via the object composition,
to create new objects at run time, while ensuring statically that the composition is type safe.

We introduced twodifferent treatments ofmethod body lookup, one delegation-based, the other consultation-based. The
former was presented in [6] and the latter was introduced in [10]. The delegation mechanism unleashes the flexibility of
incomplete objects (compared to the consultation-based proposal) by enabling a form of dynamic method redefinition. This
poses some interesting technical challenges that we solved in a pragmatic way (with in mind the constraint of being easily
implementable in a Java-like language). For instance, object composition and delegation introduce the ‘‘width subtyping
versus method addition’’ problem that is well known in the object-based setting (see, e.g., [21]). We solve this issue by
representing objects as lists of sub-objects in such away thatwe can explicitly deal with the ‘‘scope’’ of amethod invocation;
we believe this solution is more implementation-oriented than the dictionaries of [32] and simpler than the one of [7].

We pointed out that delegation is more powerful than consultation because it introduces a dynamic form of method
redefinition. In practice, in our calculus, the leftmost object in a composition has always the power to override the methods

L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014 1013

of the other objects whenever the method lookup is performed by delegation. However, as discussed in Section 7, there are
some situations in which redefinition is not desirable. On the other hand, no redefinition at all, as it is with consultation,
may be too restrictive in some other context.

This highlights the benefits of providing both delegation and consultation by object composition in Java-like languages.
In the present paper, the interaction between the two mechanisms has been interpreted in a basic way: the programmer
can decide to switch from the delegation mechanism to the consultation one by using a specific keyword (the operator
consult). As an ongoing research, we are studying intermediate and more flexible forms of method lookup, in such a way
that it is possible to enforce whether a certain method (or a set of methods), in a given chain of invoked methods, is (are)
overridden dynamically or not. Our formalization of objects via pairs of lists allows us to introduce new operators, for such
intermediate forms of combination of consultation and delegation, in such a way that the operators are independent from
each other and the semantics of the language remains compositional (as it is with the addition of consultation in Section 7).

In [8] we presented I-Java, an extension of the Java language with incomplete objects and object composition. We
implemented a preprocessor that, given a program that uses our language extension, produces standard Java code (the
preprocessor is available at http://i-java.sf.net). The implementation in Java of incomplete objects with delegation
is currently under development. The I-Java implementation via a preprocessor suggests a basis for a formal embedding of
our calculus into Featherweight Java [25], and this is matter of an ongoing work.

In this introductory version of our calculus, we only allow an incomplete object to be completed in one shot, by
composition with a completed object. To add practicality to our approach, it would be useful for incomplete objects to
be also partially completed by a single composition, such that a new incomplete object is created, to be completed by one or
further compositions. An additional mechanism would be to compose two incomplete objects. On the one hand, these two
extensions would not pose any particular issue from an operational point of view, on the other hand they require a careful
study of a suitable form of subtyping from the point of view of the type system. In fact, combining full object composition
with subtyping introduces issues similar to ones discussed in [9,7], and they are the subject of future work.

Acknowledgements

We thank the referees for their helpful comments. The suggestions helped greatly to improve the final version of the
paper.

References

[1] M. Abadi, L. Cardelli, A Theory of Objects, Springer, 1996.
[2] C. Anderson, F. Barbanera, M. Dezani-Ciancaglini, S. Drossopoulou, Can addresses be types? (A case study: objects with delegation), in: WOOD’03,

in: ENTCS, vol. 82(8), Elsevier, 2003, pp. 1–22.
[3] C. Babu, D. Janakiram, Method driven model: a unified model for an object composition language, ACM SIGPLAN Notices 39 (8) (2004) 61–71.
[4] C. Babu, W. Jaques, D. Janakiram, DynOCoLa: enabling dynamic composition of object behaviour, in: Proc. of Workshop on Reflection, AOP and Meta-

Data for Software Evolution, RAM-SE, 2005.
[5] M. Baldoni, G. Boella, L.W.N. van der Torre, Interaction between objects in PowerJava, Journal of Object Technology 6 (2) (2007).
[6] L. Bettini, V. Bono, Type safe dynamic object delegation in class-based languages, in: Proc. of PPPJ, ACM Press, 2008, pp. 171–180.
[7] L. Bettini, V. Bono, S. Likavec, Safe and flexible objects with subtyping, Journal of Object Technology 10 (4) (2005) 5–29.
[8] L. Bettini, V. Bono, E. Turin, I-Java: an extension of Java with incomplete objects and object composition, in: A. Bergel, J. Fabry (Eds.), Proc. of Software

Composition, in: LNCS, vol. 5634, Springer, 2009, pp. 27–44.
[9] L. Bettini, V. Bono, B. Venneri, Subtyping-inheritance conflicts: the mobile mixin case, in: Proc. Third IFIP International Conference on Theoretical

Computer Science, TCS 2004, Kluwer Academic Publishers, 2004.
[10] L. Bettini, V. Bono, B. Venneri, Object incompleteness and dynamic composition in Java-like languages, in: TOOLS 2008, in: LNBIP, vol. 11, Springer,

2008, pp. 198–217.
[11] L. Bettini, S. Capecchi, E. Giachino, Featherweight Wrap Java: wrapping objects and methods, Journal of Object Technology 7 (2) (2008) 5–29.
[12] V. Bono,M. Bugliesi,M. Dezani-Ciancaglini, L. Liquori, A subtyping for extensible, incomplete objects, Fundamenta Informaticae 38 (4) (1999) 325–364.
[13] G. Bracha, The programming language Jigsaw: mixins, modularity and multiple inheritance. Ph.D. Thesis, University of Utah, 1992.
[14] K. Bruce, Foundations of Object-Oriented Languages – Types and Semantics, The MIT Press, 2002.
[15] G. Castagna, Object-oriented programming: a unified foundation, in: Progress in Theoretical Computer Science, Birkhauser, 1997.
[16] C. Chambers, Object-oriented multi-methods in cecil, in: Proc. of ECOOP, in: LNCS, vol. 615, Springer, 1992, pp. 33–56.
[17] D. Crawford, Communications of the ACM Archive — Special Issue on Aspect-Oriented Programming, vol. 44, ACM, New York, 2001.
[18] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, A. Black, Traits: a mechanism for fine-grained reuse, ACM Transactions on Programming Languages and

Systems 28 (2) (2006) 331–388.
[19] E. Ernst, gbeta — a Language with Virtual Attributes, Block Structure, and Propagating, Dynamic Inheritance. Ph.D. Thesis, Department of Computer

Science, University of Århus, Denmark, 1999. Url: http://www.daimi.au.dk/~eernst/gbeta/.
[20] K. Fisher, F. Honsell, J.C. Mitchell, A lambda-calculus of objects and method specialization, Nordic Journal of Computing 1 (1) (1994) 3–37.
[21] K. Fisher, J.C. Mitchell, A delegation-based object calculus with subtyping, in: Proc. of FCT, in: LNCS, vol. 965, Springer, 1995, pp. 42–61.
[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.
[23] A. Goldberg, D. Robson, Smalltalk 80: The Language, Addison-Wesley, 1989.
[24] S. Herrmann, A precise model for contextual roles: the programming language ObjectTeams/Java, Applied Ontology 2 (2) (2007) 181–207.
[25] A. Igarashi, B. Pierce, P. Wadler, Featherweight Java: a minimal core calculus for Java and GJ, ACM Transactions on Programming Languages and

Systems 23 (3) (2001) 396–450.
[26] G. Kniesel, Type-safe delegation for run-time component adaptation, in: Proc. of ECOOP, in: LNCS, vol. 1628, Springer, 1999, pp. 351–366.
[27] S. Kochan, Programming in Objective-C 2.0, 2nd edition, Addison-Wesley, 2008.
[28] B.B. Kristensen, K. Østerbye, Roles: conceptual abstraction theory and practical language issues, Theory and Practice of Object Sytems 2 (3) (1996)

143–160.
[29] H. Lieberman, Using prototypical objects to implement shared behavior in object oriented systems, ACM SIGPLAN Notices 21 (11) (1986) 214–223.

http://www.daimi.au.dk/~eernst/gbeta/

1014 L. Bettini et al. / Science of Computer Programming 76 (2011) 992–1014

[30] A.B. Nielsen, E. Ernst, Optimizing dynamic class composition in a statically typed language, in: R. Paige, B. Meyer (Eds.), Proc. of TOOLS, in: LNBIP,
vol. 11, Springer, 2008, pp. 161–177.

[31] B.C. Pierce, Types and Programming Languages, The MIT Press, Cambridge, MA, 2002.
[32] J. Riecke, C. Stone, Privacy via subsumption, Information and Computation 172 (2002) 2–28.
[33] A.J. Riel, Object-Oriented Design Heuristics, Addison-Wesley, 1996.
[34] F. Steimann, On the representation of roles in object-oriented and conceptual modelling, Data Knowledge Engineering 35 (1) (2000) 83–106.
[35] A. Taivalsaari, On the notion of inheritance, ACM Computing Surveys 28 (3) (1996) 438–479.
[36] D. Ungar, R.B. Smith, Self: the power of simplicity, ACM SIGPLAN Notices 22 (12) (1987) 227–242.
[37] J. Viega, B. Tutt, R. Behrends, Automated delegation is a viable alternative to multiple inheritance in class based languages. Technical Report CS-98-03,

UVa Computer Science, 1998.
[38] A. Wright, M. Felleisen, A syntactic approach to type soundness, Information and Computation 115 (1) (1994) 38–94.

	Delegation by object composition
	Introduction
	Incomplete Featherweight Java
	Programming examples
	Graphical widgets
	Streams

	Typing
	Operational semantics
	Dealing with imperative features
	Examples of reduction
	Graphical widgets
	Streams
	Other examples

	Properties
	Adding consultation
	Related work
	Conclusions
	Acknowledgements
	References

