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Turbulence induced by Rayleigh-Taylor instability is a ubiquitous phenomenon with applications ranging
from atmospheric physics and geophysics to supernova explosions and plasma confinement fusion. Despite its
fundamental character, a phenomenological theory has been proposed only recently and several predictions are
untested. In this Rapid Communication we confirm spatiotemporal predictions of the theory by means of direct
numerical simulations at high resolution and we extend the phenomenology to take into account intermittency
effects. We show that scaling exponents are indistinguishable from those of Navier-Stokes turbulence at
comparable Reynolds number, a result in support of the universality of turbulence with respect to the forcing
mechanism. We also show that the time dependence of Rayleigh, Reynolds, and Nusselt numbers realizes the
Kraichnan scaling regime associated with the ultimate state of thermal convection.
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The Rayleigh-Taylor �RT� turbulence is a well-known
buoyancy induced fluid-mixing mechanism occurring in a
variety of situations ranging from geophysics �see, e.g., Ref.
�1� in relation to cloud formation� to astrophysics �in relation
to thermonuclear reactions in type-Ia supernovae �2,3� and
heating of solar coronal �4�� to technological related prob-
lems, e.g., inertial confinement fusion �see Ref. �5��.

Despite the ubiquitous nature of RT turbulence, a consis-
tent phenomenological theory has been proposed only re-
cently �6�. In three dimensions, this theory predicts a
Kolmogorov-Obukhov turbulent cascade in which tempera-
ture fluctuations are passively transported. This scenario,
which is partially supported by numerical simulations �3,7�,
has however been contrasted by an alternative picture which
rules out Kolmogorov phenomenology �8�.

The goal of our work is twofold. On one hand we give
stronger numerical support to the phenomenological theory á
la Kolmogorov in RT turbulence. On the other hand, we push
the analogy with usual Navier-Stokes �NS� turbulence much
further: we find that small scale velocity fluctuations in RT
turbulence develop intermittent statistics analogous to NS
turbulence.

We consider the three-dimensional, incompressible �� ·v
=0�, miscible Rayleigh-Taylor flow in the Boussinesq ap-
proximation,

�tv + v · �v = − �p + ��v + �gT , �1�

�tT + v · �T = ��T , �2�

where T is the temperature field, proportional to density via
the thermal expansion coefficient �, � is the kinematic vis-
cosity, � is the molecular diffusivity, and g= �0,0 ,g� is the
gravitational acceleration.

At time t=0 the system is at rest with cooler �heavier�
fluid placed above the hotter �lighter� one. This corresponds
to v�x ,0�=0 and to a step function for the initial temperature
profile: T�x ,0�=−��0 /2�sgn�z�, where �0 is the initial tem-
perature jump which fixes the Atwood number A= �1 /2���0.
The development of the instability leads to a mixing zone of

width h which starts from the plane z=0 and is dimension-
ally expected to grow in time according to h�t�=�Agt2 �3,9�.
Inside this mixing zone, turbulence develops in space and
time. The phenomenological theory �6� predicts for velocity
and temperature fluctuations the scaling laws

�rv�t� � �Ag�2/3t1/3r1/3, �3�

�rT�t� � �0�Ag�−1/3t−2/3r1/3. �4�

The first relation represents Kolmogorov scaling with a time-
dependent energy flux 	��Ag�2t. From the above scaling
laws one obtains that the buoyancy term �gT becomes sub-
leading at small scales in Eq. �1�, consistently with the as-
sumption of passive transport of temperature fluctuations.

We integrate Eqs. �1� and �2� by a standard 2/3-dealiased
pseudospectral method on a periodic domain with uniform
grid spacing, square basis Lx=Ly, and aspect ratio Lx /Lz=r,
with a resolution up to 512
512
2048 �r=1 /4�. Time evo-
lution is obtained by a second-order Runge-Kutta scheme
with explicit linear part. In all runs, Ag=0.25, Pr=� /�=1,
and �0=1. Viscosity is sufficiently large to resolve small
scales �kmax��1.2 at final time�. In the results, scales and
times are made dimensionless with the box scale Lz and the
characteristic time �= �Lz /Ag�1/2 �10�.

Rayleigh-Taylor instability is seeded by perturbing the
initial condition with respect to the step profile. Two differ-
ent perturbations were implemented in order to check the
independence of the turbulent state from initial conditions. In
the first case the interface T=0 is perturbed by a superposi-
tion of small amplitude waves in a narrow range of wave
number around the most unstable linear mode �11�. For the
second set of simulations, we perturbed the initial condition
by “diffusing” the interface around z=0. Specifically, we
added a 10% of white noise to the value of T�x ,0� in a small
layer of width h0 around z=0.

Figure 1 shows a snapshot of the temperature field for a
simulation with r=1 /2 at advanced time. Large scale struc-
tures �plumes� identify the direction of gravity and break the
isotropy. Nonetheless, we find that at small scales isotropy is
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almost completely recovered: the ratio of vertical to horizon-
tal rms velocity is vz /vx�1.8 while for the gradients we
have �zvz /�xvx�1.0. The horizontally averaged temperature
�T�z�� follows closely a linear profile within the mixing layer
where, therefore, the system recovers statistical homogene-
ity.

The analysis of the mixing layer width growth is also
presented in Fig. 1. As shown by previous studies �3,12�, the
naive compensation of h�t� with Agt2 does not give a precise
estimation of the coefficient � because of the presence of
subleading terms which decay slowly in time. We have there-
fore implemented the similarity method introduced in �3�
which gives an almost constant value of ��0.038 for t /�

1.5, consistent with previous studies �9,12�.

Figure 2 shows the kinetic energy E�k� and temperature
ET�k� spectra within the similarity regime. From Eqs. �3� and
�4�, we expect the following spatial-temporal scaling of spec-
tra: E�k , t�� t2/3k−5/3 and ET�k , t�� t−4/3k−5/3. Kolmogorov
scaling k−5/3 is evident for both velocity and temperature
fluctuations. Moreover, self-similar temporal evolution of
spectra is well reproduced, as shown in the lower inset. Also
in Fig. 2 the two contributions to kinetic energy flux in spec-
tral space are shown. Buoyancy contribution, dominant at
large scale, becomes subleading at smaller scales, in agree-
ment with the Kolmogorov-Obukhov picture. The above re-
sults, together with previous simulations �3,7� and theoretical
arguments �6�, give a coherent picture of RT turbulence as a
Kolmogorov cascade of kinetic energy forced by large scale
temperature instability.

In the following we push this analogy one step ahead by
showing that small scale fluctuations in RT turbulence dis-
play intermittency corrections typical of usual NS turbu-
lence. Intermittency in turbulence is a consequence of non-
uniform transfer of energy in the cascade which breaks down

scale invariance. As a consequence, scaling exponents devi-
ate from mean-field theory and cannot be determined by di-
mensional arguments �13�. Several studies have been de-
voted to the intermittent statistics in NS turbulence, where
the main issue concerns the possible universality of anoma-
lous scaling exponent with respect to the forcing mecha-
nisms and the large scale geometry of the flow. While uni-
versality has been demonstrated for the simpler problem of
passive scalar transport, it is still an open issue for nonlinear
NS turbulence. Therefore the key question is whether small
scale statistics in RT turbulence is equivalent to the statistics
observed in homogeneous isotropic turbulence.

The simplest, and historically first, evidence of intermit-
tency is in the dependence of energy dissipation on Reynolds
number �14–16�. Classical statistical indicators are the flat-
ness K of velocity derivatives �15,16� �corresponding to K
��	2� / �	�2 in terms of energy dissipation�, and the variance
of the logarithm of kinetic energy dissipation which is ex-
pected to grow with Reynolds number as

�ln 	
2 = a + �3�/2�ln R�. �5�

The exponent � is the key ingredient for the log-normal
model of intermittency and its value is determined experi-
mentally �15,17� and numerically �18� to be ��0.25. More
in general, moments of local energy dissipation are expected
to have a power-law dependence on R�,

�	p� � �	�pR�
�p, �6�

where the set of exponents �p can be predicted within the
multifractal model of turbulence �13,19,20� in terms of the
set of fractal dimensions D�h�.

Because in RT turbulence the Reynolds number increases
in time, it provides a natural framework for a check of Eqs.
�5� and �6�. Figure 3 shows the dependence of the variance of
ln 	 on R� together with the first moments of energy dissipa-
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FIG. 1. �Color online� �a� Snapshot of temperature field for
Rayleigh-Taylor turbulence at t /�=2.6. White �black� regions cor-
respond to hot �cold� fluid. �b� Mean temperature profiles �T�z�� for
times t /�=1.4 �continuous�, t /�=2.0 �dashed� and t /�=2.6 �dotted�.
�c� Growth of the mixing layer thickness h�t� defined as the vertical
range for which 	�T�z��	�0.98�0 /2 compensated with the dimen-
sional prediction Agt2 in order to get the dimensionless coefficient

�. Filled symbols: �=h / �Agt2�, open symbols: �= ḣ2 / �4Agh� �3�.
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FIG. 2. Two-dimensional kinetic energy spectrum ��� and tem-
perature spectrum ��� at time t /�=2.6 corresponding to R�=245.
Spectra are computed by Fourier transforming velocity and tem-
perature fields on two-dimensional horizontal planes and averaging
over z in the mixing layer. Dashed lines represent Kolmogorov
scaling k−5/3. Lower inset: evolution in time of the amplitude of
kinetic energy �
� and temperature �+� spectra at fixed wave num-
ber k0=12. Lines represent the dimensional predictions t2/3 �con-
tinuous� and t−4/3 �dashed� given by Eqs. �3� and �4�. Upper inset:
inertial �continuous� and buoyancy �dashed� contributions to kinetic
energy flux ��k� in Fourier space.
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tion. Despite the limited range of R�, a clear scaling of ln 	 is
observable, even if with some fluctuations. The best fit with
Eq. �5� gives an exponent ��0.24, very close to that ob-
served in homogeneous isotropic turbulence �18�.

Scaling exponents �p for the moments of dissipation �6�
are also shown in Fig. 3. We were able to compute moments
up to p=2 with statistical significance. Log-normal approxi-
mation, which is in general valid for p→0, is found to be
unsatisfactory for larger values of p. For p=2, which corre-
sponds to the flatness K of velocity derivatives, we find �2
�0.27. This result is consistent with experiments at compa-
rable Reynolds numbers �15� which shows that K�R�

0.2 for
R��200 while an asymptotic exponent �2�0.41 is reached
for R��103 only.

In NS turbulence intermittency is also observed in the
inertial range of scales as deviations of velocity structure
functions Sp�r�= ���rv�p� from the dimensional prediction �3�
which corresponds to Sp�r��rp/3 �13�. Anomalous scaling is
observed, which corresponds to scaling laws Sp�r��r�p with
a set of exponents �p�p /3. We remind that constancy of
energy flux in the inertial range implies �3=1 independently
on intermittency, as required by the Kolmogorov’s “four-
fifths” law S3�r�=−4 /5	r �13�, which is indeed observed in
our simulations �see inset of Fig. 4�. Figure 4 shows the first
longitudinal scaling exponents computed from our simula-
tions exploiting the extended self-similarity procedure which
allows for a precise determination of the exponents at mod-
erate Reynolds numbers �21�. A deviation from dimensional
prediction �p= p /3 is clearly observable for higher moments.
Figure 4 also shows the scaling exponents obtained from a
homogeneous isotropic simulation of NS equations at a com-
parable R� �22�. The two sets agree within the error bars; this
gives further quantitative evidence in favor of the equiva-
lence between RT turbulence and NS turbulence in three di-
mensions.

We end by discussing the behavior of turbulent heat flux
and rms velocity fluctuations as a function of the mean tem-
perature gradient. In terms of dimensionless variables, these
quantities are represented respectively by the Nusselt number
Nu=1+ �vzT�L / ���0�, the Reynolds numbers Re=vrmsL /�,

and Rayleigh number Ra=AgL3 / ����. The relation between
these quantities has been object of many experimental and
numerical studies in past years, mainly in the context of
Rayleigh-Bénard turbulent convection �23–28�. Experiments
have reported both simple scaling laws Nu�Ra� with expo-
nent � scattered around �=0.3 �25,29� and more compli-
cated behavior �26,30� partially in agreement with a phenom-
enological theory �24�. However, in the limit of very large
Ra, Kraichnan �31� predicted an asymptotic scaling Nu
�Ra1/2 now called the ultimate state of thermal convection.
This regime is expected to hold when thermal and kinetic
boundary layers become irrelevant and indeed has been ob-
served in numerical simulation of thermal convection at
moderate Ra when boundaries are artificially removed �27�.
It is therefore natural to expect that the ultimate state scaling
arises in RT convection where boundaries are absent.

The ultimate state relations can formally be obtained from
kinetic energy and temperature balance equations �24�. In the
context of RT turbulence, they are a simple consequence of
the dimensional scaling of the mixing length L
h�Agt2
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FIG. 5. The scaling of Nusselt number �open circles� and Rey-
nolds number �solid circles� as functions of Rayleigh number. Lines
represent the ultimate state predictions �Eq. �7��.
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2 / ���zvz�rms��, obtained from two realizations
with white noise initial perturbation. The line is the best fit corre-
sponding to �=0.24 in Eq. �5�. Inset: scaling exponents of the
moments of local dissipation �p obtained from best fits according to
Eq. �6�. The line represents the log-normal approximation
�p= �3 /4���p2− p�.
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FIG. 4. Scaling exponents of isotropic longitudinal velocity
structure functions Sp�r�= ���rv · r̂�p��r̂=r /r� for the late stage of RT
turbulence �open circle�. Exponents are computed by compensation
of Sp�r� with S3�r�, according to the extended self-similarity proce-
dure �21� averaging inside the mixing layer and on all directions.
Filled circles: scaling exponents from simulations of homogeneous
isotropic turbulence at R�=381 �22�. Line represents dimensional
prediction �p= p /3. Inset: third-order isotropic longitudinal structure
function S3�r�. The line represents Kolmogorov’s four-fifth law
S3�r�=−4 /5	r.
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and of the rms velocity vrms�Agt. Inserting in the definition
of the dimensionless numbers one obtains

Nu � Pr1/2Ra1/2, Re � Pr−1/2Ra1/2, �7�

where Pr=� /�.
We remark that the above relations are independent of the

statistics of the inertial range and on the presence of inter-
mittency as they involve large scale quantities only. Our nu-

merical results shown in Fig. 5 confirm the ultimate state
scaling �7�. The same behavior has been predicted and ob-
served for two-dimensional RT simulations, where tempera-
ture fluctuations are not passive and Bolgiano scaling is ob-
served in the inertial range �28�. The elusive Kraichnan
scaling in thermal convection finds its natural manifestation
in Rayleigh-Taylor turbulence, which turns out to be an ex-
cellent setup for experimental studies in this direction.
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