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Electromagnetic form factors of the nucleon: New fit and analysis of uncertainties
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Electromagnetic form factors of proton and neutron, obtained from a new fit of data, are presented. The proton
form factors are obtained from a simultaneous fit to the ratio µpGEp/GMp determined from polarization transfer
measurements and to ep elastic cross section data. Phenomenological two-photon exchange corrections are taken
into account. The present fit for protons was performed in the kinematical region Q2 ∈ (0, 6) GeV2. For both
protons and neutrons we use the latest available data. For all form factors, the uncertainties and correlations of
form factor parameters are investigated with the χ 2 method.
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I. INTRODUCTION

The nucleon electromagnetic form factors are fundamental
quantities of great theoretical and experimental importance.
The issue of their determination has been revisited in recent
years, thanks to the results of several experiments at Bates,
Mainz Microtron (MAMI), and the Thomas Jefferson National
Accelerator Facility (JLab), which put under question previous
analyses based on less precise data and urged the necessity for
a new parametrization and a new analysis of the form factors
themselves (for a review, see, for example, Refs. [1–3]).

A precise knowledge of the electromagnetic form factors
of the nucleon is important for the determination of the axial
nucleon form factor in charged current (CC) quasielastic
neutrino-nucleon scattering [4] and strange form factors of
the nucleon in neutral current (NC) elastic neutrino-nucleon
scattering. For example, NC vector form factors that char-
acterize elastic NC scattering are given by the following
expressions [5]:

G
NC;p(n)
E = ± 1

2 {GEp − GEn} − 2 sin2 θWGEp(n) − 1
2GEs,

G
NC;p(n)
M = ± 1

2 {GMp − GMn} − 2 sin2 θWGMp(n) − 1
2GMs.

In the above, the dominant terms are the electric (GE) and
magnetic (GM ) form factors of the nucleon. Their precise
knowledge is essential to determining the small strange form
factors of the nucleon, GEs and GMs . Hence, it is obvious that
not only a good knowledge of the electromagnetic form factors
is required, but also the present level of their uncertainty.

In this paper, we performed new fits of the nucleon
electromagnetic form factors. The proton ones are extracted
from (i) elastic ep cross section data and (ii) polarization
data, providing the µpGE/GM ratio (µp being the magnetic
moment of the proton). The neutron form factors are extracted
from electron-nucleus (typically deuterium and 3He) scattering
processes. The latest experimental data are used.

The proton form factors determined from the measurements
of polarization transfer in elastic electron-proton scattering

*graczyk@to.infn.it

(first appearing between 1999 and 2002) were in significant
disagreement with those obtained from elastic ep scattering
data via the customary Rosenbluth separation. The main
suggestion for solving this inconsistency was to account for
two photon exchange (TPE) diagrams [6–9], which should
affect the cross section to a greater extent than the polarization
data.

This disagreement became even more evident after the new
JLab data on ep scattering cross sections [10] appeared. Hence,
as already pointed out by several authors (see, e.g., Ref. [11]),
a reliable global fit must include the TPE correction; we will
explicitly show the effect of TPE on the goodness of the fit
(GoF). For a recent review devoted to TPE correction, see
Ref. [12].

Several parametrizations of the nucleon form factors have
been considered in the literature [11,13–22]. Among these, the
older ones have a purely empirical Q2 dependence [13–16]:

GEp(Q2), GMp(Q2)/µp ∼ 1

1 + ∑N
i=1 ciQi

, Q =
√

Q2.

The specific form of the parametrization may depend on the
Q2 region. For instance, in Ref. [19] the low-Q2 data were
analyzed with form factors given by a continued fraction
parametrization:

GEp(Q2), GMp(Q2)/µp ∼ 1

1 + b1Q2

1+ b2Q2

1+···

.

The newest empirical form factors are constrained to have a
proper physical behavior at low-Q2 as well as at high-Q2.
One example is Kelly’s parametrization [18], which will
be employed in our analysis (see the next section). The
form factors depend on powers of the invariant Q2, and for
large Q2 the form factors behave like 1/Q4. In Ref. [20],
Kelly’s parametrization is additionally constrained to satisfy a
duality hypothesis, and the low-Q2 behavior is described as in
Ref. [19].

The electric neutron form factor is usually separately treated
and described with a smaller number of parameters [23] (see
also Ref. [24]).
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It is also worth mentioning those parametrizations obtained
on the basis of the vector meson dominance model. In
particular, the parametrization proposed by Lomon [22] seems
especially suited to successfully describing the neutron form
factor data.

In the present paper, we aim to provide reliable fits of
both proton and neutron electromagnetic form factors, by
employing a relatively small number of parameters; moreover,
one of the major merits of this work is the analysis of errors
on the parameters of the fit, which allows one to estimate the
present uncertainty on our knowledge of the electromagnetic
form factors.

The paper is organized as follows: in Sec. II we consider the
proton form factors, by analyzing both the polarization data
(Sec. II A) and the cross section data (Sec. II B). Section III
is devoted to the neutron form factors, separately considering
the electric and the magnetic form factors. Finally, Sec. IV
presents a discussion of our results in comparison with
previous analyses and the conclusions.

II. PROTON FORM FACTORS

In Sec. II A we consider the recent polarization transfer and
asymmetry measurement data, which give information on the
ratio of the electric and magnetic proton form factors. Then,
in Sec. II B, we present the results of the combined fit of the
polarization and cross section data.

A. Fit of polarization data

In this section we consider the direct determination of the
ratio of the electric and magnetic proton form factors

R(Q2) ≡ µp

GEp(Q2)

GMp(Q2)
, (1)

which has been obtained with the measurement of the polariza-
tion of the recoil proton and with asymmetry measurements.
Here Q2 ≡ −q2, q being the four-momentum transfer. In the
one-photon approximation, q is the four-momentum of the
virtual photon.

The recoil polarization technique (see Ref. [3]) has been
employed in several ep experiments for a direct measurement
of the ratio R(Q2). In the laboratory frame, it is given by

R(Q2) = −µp

Pt

Pl

E + E′

2M
tan

(
θ

2

)
, (2)

where Pl and Pt are the longitudinal and transverse compo-
nents of the polarization of the recoil proton, M is the proton
mass, E and E′ are the initial and final electron energies, and
θ is the electron scattering angle. The latter is related to Q2

according to

Q2 = 4EE′ sin2

(
θ

2

)
. (3)

The ratio R(Q2) has been also determined from the
measurement of the asymmetry in elastic ep scattering with
both polarized beam and target: we have (see Ref. [3])

σ+ − σ−
σ+ + σ−

= −2µp

√
τ (1 + τ ) tan

(
θ

2

) R sin θ∗ cos φ∗ + µp

√
τ

[
1 + (1 + τ ) tan2

(
θ
2

)]
cos θ∗

R2 + µpτ/ε
, (4)

where σ+ and σ− are the cross sections for positive and negative
electron helicities, respectively, θ∗ and φ∗ are the polar and
azimuthal angles of the target polarization relative to the three-
momentum transfer vector �q and the scattering plane (in the
laboratory frame)

τ ≡ Q2

4M2
, (5)

and

ε ≡
[

1 + 2(1 + τ ) tan2

(
θ

2

)]−1

(6)

is the virtual photon polarization.
We consider the recoil polarization and asymmetry data

published in Refs. [25–36]. These data are plotted in Fig. 1,
together with their error bars, which include the statistical and
systematic uncertainties added in quadrature. The Q2 range
of the data goes from 0.15 to 5.6 GeV2. As one can see from

Fig. 1, all data are well described by a linear function
in Q2:

R(Q2) = c0 + c1Q
2. (7)

We fitted the data points with this linear function, by
minimizing the least-squares function

χ2
rat =

Nrat∑
j=1

(
R

(
Q2

j

) − Rexp
j

)2

(
�Rexp

j

)2 . (8)

where Nrat = 65 is the total number of recoil polarization and
asymmetry data points and Rexp

j is the value of the ratio
at the squared-momentum transfer Q2

j , with corresponding
uncertainty �Rexp

j .
We found the following best-fit values of the parameters:

c0 = 1.022 ± 0.005, c1 = −0.130 ± 0.005, (9)

065204-2



ELECTROMAGNETIC FORM FACTORS OF THE NUCLEON: . . . PHYSICAL REVIEW C 79, 065204 (2009)

]2 [GeV2Q

0 21 3 54 6

M
p

/G
E

p
G

pµ

0.2

0.4

0.6

0.8

1

Cra06

Gay02

Hu06

MacL06

Mil98

Pos01

Pun05

Jon06

Gay01

Die01

Ron07

linear fit

 errorσ3

FIG. 1. Linear fit (9) of the recoil polarization and asymmetry
measurements of the ratio µpGEp/GMp . The shadowed area denotes
the 3σ C.L. region of the fit.

with 1σ uncertainties computed from the covariance matrix1

(they are given by the square roots of the diagonal elements of
the covariance matrix).

The corresponding minimum χ2 is(
χ2

rat

)
min/NDF = 58.89/63, (10)

where NDF = Nrat is the number of degrees of freedom; the
goodness of the fit (see Ref. [38]) is 62%.

The solid line in Fig. 1 corresponds to the best-fit values
of the parameters in Eq. (9), while the shadowed area denotes
3σ C.L. region of the fit. One can see that the linear fit has
small uncertainties, especially for Q2 <∼ 3 GeV2, where there
are many data points.

The best-fit values of the parameters c0 and c1 in Eq. (9) are
close to those obtained by Arrington in Ref. [16], cbf

0 = 1.0324
and cbf

1 = −0.135. Notice that in Ref. [16] it was assumed that
for Q2 < 0.24 GeV2 the form factor ratio is equal to unity.

B. Fit of polarization and cross section data

The values of the proton form factors have been extracted
from the data of many elastic ep scattering experiments using
the Rosenbluth method. In the one-photon approximation,
the differential cross section in the laboratory frame for
unpolarized ep elastic scattering reads (in the same notation
used in the previous subsection)

σ (E,Q2) ≡ dσ1γ

d cos θ

= σM(E,Q2)
(
G2

Ep + τ

ε
G2

Mp

) (
1

1 + τ

)
, (11)

1Detailed numbers of the covariance matrices relative to these and
to the following fit parameters can be found in Ref. [37].

σM being the Mott’s differential cross section

σM(E,Q2) ≡
(

dσ

d cos θ

)
M

= πα2E′ cos2(θ/2)

2E3 sin4(θ/2)
. (12)

The Rosenbluth separation is then obtained by considering the
reduced differential cross section

σR(E,Q2) ≡ ε(1 + τ )
σ (E,Q2)

σM(E,Q2)

= τG2
Mp(Q2) + εG2

Ep(Q2). (13)

A linear fit of the reduced differential cross section at fixed
Q2 and different values of ε gives the value of τG2

Mp(Q2) from
the intercept (ε = 0) and the value of G2

Ep(Q2) from the slope.
Notice, however, that the measurement of G2

Ep(Q2) with the
Rosenbluth method has large uncertainties, because the con-
tribution of G2

Ep(Q2) to the reduced differential cross section
in Eq. (13) is suppressed for large values of Q2 (τ >∼ ε) while
for small values of Q2 we have G2

Ep � G2
Mp/µp � G2

Mp/7.8.
In our analysis, in the first fit, later called fit I, we assume

that GEp is related to GMp by the linear relation of Eq. (7),
which is favored by the direct measurement of R(Q2) in
polarization experiments, as discussed in Sec. II A.

For the proton magnetic form factors, we adopt the
parametrization proposed by Kelly [18]:

GMp(Q2)

µp

= 1 + ∑n
k=1 aM

p,kτ
k

1 + ∑n+2
k=1 bM

p,kτ
k
, (14)

which guarantees the asymptotic behavior GMp(Q2) ∝ Q−4

at high Q2 [39]. We shall employ the parametrization of
Eq. (14) with four parameters (n = 1):

GMp(Q2)

µp

= 1 + aM
p,1τ

1 + bM
p,1τ + bM

p,2τ
2 + bM

p,3τ
3
. (15)

We will see that this choice turns out to be quite satisfactory
for the description of the data. Moreover a relatively small
number of parameters allows a better control of the errors.

We have also performed a fit with both the mag-
netic and electric proton form factors parametrized by the
expression (15). This fit will be called fit II in the following.
In this case, the electric form factor reads

GEp(Q2) = 1 + aE
p,1τ

1 + bE
p,1τ + bE

p,2τ
2 + bE

p,3τ
3
. (16)

In our analysis, we consider similar sets of cross section
data as the ones employed by Arrington in Ref. [17], namely,
the data from Refs. [40–62]. Some of the data were taken
from the JLab data base [63]; we include also data from Ref.
[64]. Additionally, we considered the latest data of the JLab
experiment [10] in which the cross section was measured with
the smallest errors.

We fitted the ep cross section data by minimizing the least-
squares function

χ2
cs =

Mcs∑
i=1

⎧⎨
⎩

N cs
i∑

j=1

[
niσ

exp
i,j − σ

(
Ei,j ,Q

2
i,j

)]2

(
�σ

exp
i,j

)2 + (1 − ni)2

(�ni)2

⎫⎬
⎭ ,

(17)
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where Mcs = 24 or Mcs = 28 are the number of data sets,2N cs
i

is the number of points in the ith data set, ni and �ni

are the corresponding overall normalization and uncertainty,
σ

exp
i,j is the j th differential cross section point in the ith

data set, with electron energy Ei,j and four-momentum
transfer Q2

i,j , σ (Ei,j ,Q
2
i,j ) is the corresponding differential

cross section computed with Eq. (11). The uncertainty �σi,j

of σ
exp
i,j includes the statistical and uncorrelated systematic

uncertainties added in quadrature.
We perform a simultaneous fit of the polarization and

cross section data by minimizing the sum of the least-square
functions, Eqs. (8) and (17):

χ2 = χ2
rat + χ2

cs. (18)

For fit I, the range of Q2 taken into account is

0.1 GeV2 � Q2 � 6 GeV2, (19)

which corresponds to the interval of Q2 values where polar-
ization transfer data are available.

For fit II, we extend the range of Q2 down to Q2 � 0:

0 � Q2 � 6 GeV2. (20)

Notice that a precise knowledge of the form factors in the
low Q2 region is of special interest for neutrino-nucleon
(-nucleus) scattering processes. In both cases, the upper limit,
Q2 = 6 GeV2, is determined by the polarization data. We do
not consider higher Q2 points.

As already stressed in the literature [11], the inclusion of
the most precise data of Ref. [10] definitely indicates the need
of corrections to formula (11). Beyond the classical radiative
corrections [65], to get agreement with the polarization data,
one needs to consider also the two photon exchange (TPE)
corrections, which can be written as an additive term to the
reduced cross section:

σR → σR + δTPE. (21)

The calculation of δTPE is difficult and model dependent;
however, one can use general properties to derive a phe-
nomenological expression of the TPE term. The scattering
amplitude for electron-nucleon interaction must satisfy general
symmetry properties, such as crossing symmetry and C

invariance [66]. They can be used to constrain δTPE.
Following Ref. [67], we adopt a TPE correction given by a

function F (Q2, y), that is,

σR → σR + τF (Q2, y), (22)

where

y =
√

1 − ε

1 + ε
. (23)

The function F (Q2, y) must satisfy the relation F (Q2, y) =
−F (Q2,−y). The analytical properties of F (Q2, y) allow one
to express this function as a series of odd powers of y. Chen
et al. [67] truncated the expansion to the second term:

F (Q2, y) = αG2
D(Q2)y + βG2

D(Q2)y3, (24)

2For Q2 ∈ (0.1, 6) we have 24 independent data sets, while for
Q2 ∈ (0, 6) we have 28 independent data sets.

α and β being fit parameters, and GD(Q2) the usual dipole
form factor

GD(Q2) =
(

1 + Q2

M2
V

)−2

, (25)

with M2
V = 0.71 GeV2.

We consider both types of fit; for fit I we obtained

χ2
min

/
NDF = 375.97/392, GoF = 71%, (26)

with the following values for the best-fit parameters:

aM
p,1 = 1.53 ± 0.01, bM

p,1 = 12.87 ± 0.07,

bM
p,2 = 29.16 ± 0.25, bM

p,3 = 41.40 ± 0.33, (27)

c0 = 1.02 ± 0.01, c1 = −0.13 ± 0.01.

The parameters of the TPE correction are

α = −0.39 ± 0.09, β = −0.04 ± 0.09. (28)

Notice that the values of c0 and c1 parameters are very similar
to those in Eq. (9), obtained by fitting the polarization transfer
data alone.

For fit II, the minimization procedure leads to

χ2
min

/
NDF = 450.95/468, GoF = 71%, (29)

with the following values for the fit parameters:

bM
p,1 = 12.31 ± 0.07, bM

p,2 = 25.57 ± 0.22,

bM
p,3 = 30.61 ± 0.27, aM

p,1 = 1.09 ± 0.01,
(30)

bE
p,1 = 11.12 ± 0.15, bE

p,2 = 15.16 ± 1.03,

bE
p,3 = 21.25 ± 3.27, aE

p,1 = −0.19 ± 0.06.

The parameters of the TPE correction are

α = −0.36 ± 0.09, β = −0.08 ± 0.09. (31)

We note that from both fits we obtained comparable values
of the TPE parameters [see Fig. 2, which illustrates the allowed
regions in the (α, β) parameter space with a given confidence
level (C.L.)]. In both cases, the TPE correction turns out to
be negative. Let us mention that the way we introduce the TPE
corrections in our analysis also motivates the choice for the
upper Q2 limit; indeed, following the approach of Ref. [67],
the magnitude of TPE is fitted to the data and, in the elastic
cross section, it can be comparable to the magnitude of
GEp. Hence the inclusion of the polarization data (which
are less affected by TPE correction) allows a more precise
determination of the TPE fit parameters, but restricts the Q2

range to the one of the available polarization data.
It is worth mentioning that by excluding the TPE correction

[hence using for the cross section formula (11)], both fits
worsen, particularly in the goodness of fit. For fit I, we
obtain χ2

min/NDF = 467.07/394 with GoF = 0.6%; similarly
for fit II we get χ2

min/NDF = 544.31/470 with GoF = 1%. We
noticed that this result stems from the presence, in the analysis,
of the very accurate JLab data [10], without which GoF would
increase to 45% and 47%, respectively.

In addition to the above discussed form factors, we also
checked a different parametrization, based on a two-poles
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FIG. 2. Projection on the α-β parameter
space of the contours delimiting the allowed
regions in the two-dimensional space of TPE
correction parameters, with 1σ (dashed lines) and
2σ (solid lines) C.L. The contours are computed
for fit I (left) and fit II (right). The crosses indicate
the projections of the best-fit point, Eq. (28) for
fit I and Eq. (31) for fit II.

formula for both the electric and magnetic proton form factors
[5]:

GEp(Q2) = aE
1

1 + aE
2 Q2

+ 1 − aE
1

1 + aE
3 Q2

, (32)

GMp(Q2)

µp

= aM
1

1 + aM
2 Q2

+ 1 − aM
1

1 + aM
3 Q2

. (33)

With respect to Kelly’s parametrization this would offer the
advantage of having a smaller number of parameters, in
addition to the ones of the TPE correction. A new, global fit
can be obtained with χ2

min/NDF = 1.10, but GoF = 0.06%,
thus indicating that the former parametrization is preferable.

As already mentioned in the Introduction, one of our main
tasks is to compute the form factor uncertainties as they can be
extracted from the fit. This goal can be achieved by performing
an accurate error analysis on the various fit parameters.

We calculated the correlated uncertainties of the fit param-
eters and the related uncertainties of the form factors with
the standard least-squares method, which is appropriate and
widely used for nonlinear models3 (see Refs. [38,68,69]): the
allowed region in the space of N parameters with λ confidence
level (C.L.) is delimited by the contour defined by

χ2 = χ2
min + �χ2(N, λ), (34)

3In this case, the uncertainties of the parameters and their corre-
lations estimated from the covariance matrix are quite approximate.
This method was widely used in the past, when computer power
was insufficient to perform more accurate evaluations, as the one
presented in this paper.

where �χ2(N, λ) is the value for which a χ2 variable
with N degrees of freedom has a cumulative probability
λ. We consider 2σ (95.45% C.L.) and 3σ (99.73% C.L.)
uncertainties.

Since we have eight parameters in fit I and ten in fit II, the
exploration of the parameter space to find the contours defined
by Eq. (34) cannot be done with the simplest grid method.
Therefore, we used a Monte Carlo Markov chain generator of
random points, which allows us to find the allowed parameter
regions with good accuracy in a few hours of CPU time of a
normal PC.

It is interesting to notice that the estimated values of the
magnetic form factor parameters aM

p,1, b
M
p,1, b

M
p,2 and bM

p,3 are
strongly correlated. In particular, the estimates of a1 and b3

are almost linearly dependent. These parameters determine
the asymptotic behavior of GMp(Q2), which turns out to be

lim
Q2→∞

Q4GMp(Q2) = (4M2)2
aM

p,1

bM
p,3

� (
0.68+0.01

−0.01 GeV2
)2

,

(35)

in fair agreement with the one given by the usual dipole form
factor (25) (the above uncertainties are at 3σ ).

In Fig. 2 (left panel) the error contours for α and β

parameters are shown. We see that solutions with β positive but
very small are possible, but in this case α should be negative
and large in magnitude. Therefore the TPE corrections are
always negative.

In Fig. 3 we show our best fits (fit I) for the magnetic
and electric proton form factors with their uncertainties. We
compare with Kelly’s fit [18]. One can see that Kelly’s fit
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FIG. 3. The fits of GMp/µpGD

and GEp/GD form factors obtained
with fit I and showing the 2σ and 3σ

C.L. allowed regions. Kelly’s fit [18] is
also shown.
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FIG. 4. Electric and magnetic pro-
ton form factors obtained with fit II and
showing the 2σ and 3σ C.L. allowed
regions. Our previous fit I is also
shown.

of the magnetic proton form factor lies within our 3σ C.L.
region in almost the whole Q2 range under consideration. For
the electric form factor, the fits differ by more than 3σ in a
relatively wide range of Q2.

A similar error analysis is performed for fit II. Here, the
number of form factor parameters is larger (four parameters
for each form factor). As above, we show a contour plot for
the TPE correction parameters (Fig. 2, right panel).

Analogous to the case of fit I, the estimates of the parameters
aM

p,1 and bM
p,3 are linearly dependent, and their ratio is similar:

lim
Q2→∞

Q4GMp(Q2) = (4M2)2
aM

p,1

bM
p,3

� (
0.66+0.02

−0.02 GeV2
)2

.

(36)

One could also derive from the form factor parameters the
charge and magnetic rms radii for the proton, as given by the
slope of the electric and magnetic form factors at Q2 = 0.
They turn out to be

√
〈r2

Ep〉 = 0.87 ± 0.01 fm and
√

〈r2
Mp〉 =

0.86 ± 0.01 fm. These results are comparable with previous
analyses in the literature, but slightly lower than the most recent
and advanced estimates of Refs. [70,71]; indeed, the latter take
into account Coulomb distortion, which is relevant at low Q2.
For example, Ref. [71] provides

√
〈r2

Ep〉 = 0.895 ± 0.018 fm.
The present fit of the form factors is carried out in a plane-
wave approximation, and low-Q2 properties like charge and
magnetic radii are not properly reproduced without accounting
for radiative corrections to the Rosenbluth cross sections.

In Fig. 4 we present GMp and GEp obtained in fit II, with
the 2σ and 3σ C.L. error bands. Here the results from fit I
are also plotted. Both fits lead to very similar magnetic form
factors. On the contrary, there is a visible difference between
the corresponding electric form factors: the GEp obtained in
fit I decreases faster then the one obtained in fit II.

Figure 5 shows the ratio µpGEp/GMp obtained with fits I
and II. The linear ratio fitted only to the polarization data is no
longer shown, since it is very similar to the one obtained with
fit I. The ratio uncertainties are larger for fit II than for fit I,
because the parametrization in fit II contains a larger number
of degrees of freedom.

Finally, taken for granted that they are necessary, it is
interesting to understand what is the quantitative impact of the
TPE corrections: they are expected to be relevant especially
for the electric form factors. For this purpose, we compare in
Fig. 6 the proton form factors obtained with and without TPE
correction (only fit II is considered). The magnetic proton form
factor obtained without TPE is systematically shifted down by
about 1.5%, and above Q2 � 1 GeV2 it lies outside the 3σ

C.L. region of the form factor obtained by including the TPE
correction. The analogous effect on the electric form factor is
shown in the middle panel of the same figure and appears to
be less uniform than for the magnetic form factor; this can be
better appreciated from the bottom panel of Fig. 6, where the
ratio

GEp(without TPE)/GEp(with TPE) (37)

is plotted. One can see that the TPE correction substantially
alters the Q2 dependence of the electric form factor, in

]2 [GeV2Q

0 1 2 3 4 5 6

M
p

/G
E

p
G

pµ

0.2

0.4

0.6

0.8

1

Cra06
Gay02

Hu06

MacL06

Mil98

Pos01

Pun05

Jon06
Gay01

Die01

Ron07

fit I

fit II
 error, fit Iσ3

 error, fit IIσ3

FIG. 5. Ratio µpGEp/GMp obtained in the simultaneous fit to
polarization measurements and cross section data. Fits I and II are
shown with their corresponding 3σ C.L. allowed regions.
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first and second panels, GMp/(µpGD) and
GEp/GD are plotted, respectively. The
shadowed areas denote the 3σ allowed
regions. In the bottom panel, the ratio (37)
is shown. Results are obtained for fit II.

particular, for Q2 > 2 GeV2, with an effect which grows up to
the order of 10%. In any case, the impact of the TPE correction
turns out to be non-negligible for both form factors.

III. NEUTRON FORM FACTORS

The measurement of the neutron form factors is much
more difficult than that of the proton form factors, since
a target of free neutrons does not exist. The neutron form

factors are extracted from measurements of electron-nucleus
scattering, usually electron-deuteron or electron-helium scat-
tering. Therefore, the data analysis is affected by uncertainties
stemming from the nuclear theoretical model assumed to de-
scribe the target nucleus. Since these models have consistently
improved with time, in our analysis we consider only relatively
recent data. At variance with the proton case, we take directly
from the literature the published values of neutron form factors
“data” and apply our fitting procedure to them.
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A. Electric neutron form factor

For the electric neutron form factor, we adopt the Galster-
like parametrization

GEn(Q2) = Aτ

1 + Bτ
GD(Q2), (38)

with the dipole form factor of Eq. (25).
We consider the electric neutron form factors “data” which

have been published in several papers. Some of the data have
been obtained in asymmetry and recoil polarization measure-
ments [72–85]. We consider also the reanalyzed electron-
deuteron data [86] and the newest BLAST measurements [87].
Additionally, to have a proper slope of the electric form factor
in the limit Q2 → 0, we impose to our fit the additional
constrain [88]〈

r2
En

〉 = −0.1148 ± 0.0035 fm2. (39)

We considered a least-squares function similar to the one
in Eq. (8), with the experimental statistical and systematical
uncertainties added in quadrature. With the values

A = 1.68 ± 0.05, B = 3.63 ± 0.39, (40)

we obtained

χ2
min/NDF = 25.82/37, (41)

and the goodness of the fit turned out to be excellent: 91%.
In Fig. 7 we plot the best-fit value of GEn as a function of

Q2 together with the 2σ and 3σ C.L. allowed regions. We plot
also Kelly’s fit [18].

As an alternative to the most commonly used Galster-like
parametrization, we considered a neutron electric form factor
given by the sum of two dipole form factors:

GEn(Q2) = a

(1 + b1Q2)2
− a

(1 + b2Q2)2
. (42)
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FIG. 7. Fit of the electric neutron form form factor (solid
line) obtained with the Galster-like parametrization [Eq. (38)]. The
shadowed areas denote the 2σ and 3σ C.L. allowed regions. Kelly’s
fit [18] is also shown.
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FIG. 8. Fit of the electric neutron form form factor (solid line).
The BLAST-like parametrization (42) is shown with the shadowed
2σ and 3σ C.L. allowed regions. Also shown are the Galster-like
parametrization and the Lomon result (GKex02S) [22].

This parametrization is similar to the one considered in the
latest BLAST data analysis [87], and for this reason we will
call it the BLAST-like parametrization. The fitting procedure
for the above parametrization leads to

χ2/NDF = 17.95/36, GoF = 99%, (43)

with the parameters

a = −0.10 ± 0.02, b1 = 2.83 ± 0.37, b2 = 0.43 ± 0.11.

(44)

In Fig. 8 the BLAST-like parametrization is compared with
the data from the Galster-like parametrization and a recent
Lomon parametrization [21,22] (GKex02S). Notice that the
parametrization (44) rises faster with Q2 than the Galster-like
or the Lomon one, but the latter remain both within the BLAST
parametrization uncertainties.

B. Magnetic neutron form factor

For the neutron magnetic form factor, we adopted again the
simplest form of Kelly’s parametrizations, with n = 1,

GMn(Q2)

µn

= 1 + aM
n,1τ

1 + bM
n,1τ + bM

n,2τ
2 + bM

n,3τ
3
. (45)

We considered 11 data sets, obtained from asymmetry
measurements [89–93] and cross section measurements in
electron-deuterium scattering [94–103], where Ref. [103]
contains the latest JLab measurements. The fit to all these data
sets leads, however, to a minimum χ2/NDF = 2.05, not quite
satisfactory. According to Kelly [70], the data from Refs. [101]
and [97] were extracted using the same associated-particle
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FIG. 9. Fit of magnetic neutron form factor (solid line), normal-
ized to the dipole form factor, and showing the 2σ and 3σ C.L.
allowed regions. Kelly’s fit [18] is also shown.

technique for the neutron efficiency, a technique that appears to
be in contradiction with the method used in other experiments.
Therefore we omitted those two data sets from our final
analysis. After excluding the two above mentioned data sets,
we obtained a fit over N = 56 points with

χ2
min

/
NDF = 52.79/52 = 1.01, (46)

and GoF = 44%. The corresponding values for the parameters
in the neutron magnetic form factor are

bM
n,1 = 21.30 ± 4.56, bM

n,2 = 77 ± 31,
(47)

bM
n,3 = 238 ± 105, aM

n,1 = 8.28 ± 3.89.

We performed the error analysis over the four parameters
above. Even if the fit of GMn was done on a slightly different
basis than the one of the proton, we still observe strong
correlations between estimated values of the parameters, in
full analogy with our findings for the proton form factor. In

particular, the estimated values of parameters (a1 and b3) which
determine the asymptotic behavior of the form factor at large
Q2 are almost linearly dependent:

lim
Q2→∞

Q4GMn(Q2) = (4M2)2 aM
n,1

bM
n,3

� (
0.66+0.01

−0.01 GeV2)2
.

(48)

This value is very similar to the one obtained for the proton.
Notice, however, that without the newest JLab data, instead
of the value in Eq. (48) we would get (0.58+0.04

−0.05 GeV2)2. In
Fig. 9, our final fit of GMn is different from Kelly’s result [18],
since it contains the newest JLab measurements.

IV. DISCUSSION AND CONCLUSIONS

In this section, we start by presenting further comparisons
of the form factors resulting from our fits with the ones of
previous data analyses. In Ref. [11] the first systematic global
analyses of the cross section and polarization transfer data
on the proton with the inclusion of the TPE correction was
performed. That fit is valid up to Q2 = 30 GeV2 for the
magnetic form factor and up to 6 GeV2 for the electric form
factor. In Fig. 10 we display together our global fits and those
of Ref. [11]: it clearly appears that, even though different
approaches for the TPE correction were employed, the global
fits are very similar.

We also compare our fits with the recent one of Bodek
et al. [20] (BBBA07). This global fit is tailored to accurately
describe the form factors at low Q2 as well as in the intermedi-
ate region of Q2. These authors used Kelly’s parametrization
with four parameters, but each form factor was multiplied
by some Legendre polynomial, which depends on several
additional parameters, constrained to reproduce the low Q2

behavior obtained in Ref. [19].
The authors of Ref. [20] plotted the form factors against

the so-called Nachtman variable, which for elastic scattering
is defined as ξ = 2/(1 + √

1 + 1/τ ). Therefore to make the
comparison with their results, we express our form factors in
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between fit I (solid lines) and Arring-
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C.L. allowed region.
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FIG. 11. Proton and neutron electric and magnetic form factors (normalized to the dipole form factor). The fits of electric and magnetic
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dash-dotted lines, respectively. The form factors are plotted against the Nachtman variable. The dashed vertical bar represents the upper bound
of the Q2 range where our fits were performed.

terms of the ξ variable. Plots are shown in Fig. 11. In the
region of ξ corresponding to the range of validity of our fits,
the predictions of the two parametrizations are very similar;
however, our magnetic proton form factor is systematically
higher (by several percent) then the one given by the BBBA07
parametrization. The difference is given by the TPE correction
that we considered in our fitting procedure (see Fig. 6), while
authors of Ref. [20] did not discuss this effect. For higher ξ

values, one can notice sizable deviations for our form factors.
However, we notice, that the ξ variable compresses in a very
short range the large Q2 region.

Finally we compare our estimates of uncertainties with
those obtained by Arrington and Sick [19], who made a
serious attempt to compute the uncertainties of the nucleon
form factors, which is crucial information in the study of
parity-violating ep scattering. Their method to compute errors
is explained in Ref. [19] and differs from ours, particularly
in the treatment of the systematic uncertainties. In particular,
we usually obtain asymmetric uncertainties around the best-fit
value. Hence in Fig. 12 we compare the errors of Arrington
and Sick on the electric and magnetic proton form factors
with our lower and upper bounds for the 3σ confidence level

errors. For the magnetic proton form factor, within the 3σ

C.L. our results are consistent with those of Ref. [19]. For
the electric proton form factor, we notice some deviations
between our results and the ones obtained by Arrington and
Sick.

In conclusion, we have presented two fits of the proton
and neutron electromagnetic form factors, using the best
available data. The ep elastic cross sections were reproduced
by including a simple but realistic parametrization of the
two photon exchange correction. Alternative parametrizations
with fewer parameters than the one employed here do not
obtain equally good fits. We show that the impact of the TPE
correction on the magnetic and electric proton form factors is
larger than the 3σ uncertainty of the fits (in a wide range of
Q2). In fit I, we constrained the electric proton form factor by
the ratio µpGEp/GMp extracted from recoil polarization and
asymmetry data. Fit II employs Kelly’s parametrization with
four parameters, both for the electric and magnetic proton form
factors. This fit is obtained with two additional parameters with
respect to fit I; however, we believe that it is more reliable
than the former, particularly in the low Q2 region. We also
performed a careful analysis of the uncertainties resulting on
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the parameters of the fit and hence on the form factors. It
is worth stressing that only a few papers, among the many
devoted to the nucleon electromagnetic form factors, include
the TPE correction in the analysis. As a final remark, we remind
the reader that even small uncertainties in the magnetic form
factors of the proton and neutron turn out to be important for
a correct analysis of the neutrino-nucleon cross sections.

The numerical results of our fits are available on the web
site [37].
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