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Abtract 

Campylobacter-contaminated food products are currently the cause of the highest 

number of gastroenteritis cases in developed countries. Apart for biosafety measures 

at the primary production level, no other official control measures are currently in 

place for its control. This is partly due to the lack of quantitative data regarding the 

prevelance and contamination level of different food products by Campylobacter spp. 

that does not allow for quantitative risk assessment. PCR-based methods, applied 

without prior enrichment, in food samples circumvent limitations associated with the 

quantification of foodborne pathogens by traditional, culture-dependent methods. In 

this study, we report the development of a protocol, based on the amplification of the 

rpoB gene of Campylobacter jejuni, by quantitative PCR (qPCR), directly in food 

samples. The quantification limit of the protocol was determined to be in the order of 

10 colony forming units (cfu)/g or ml of food sample. The optimized protocol was 

applied for the survey of C. jejuni in naturally contaminated poultry samples. In 

parallel, traditional sampling was also performed. A high percentage of samples 

(87%) resulted to be positive by qPCR, while no C. jejuni was detected by traditional 

analysis. Furthermore, important differences were observed in the detection by qPCR 

between samples before and after enrichment.  
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1. Introduction  

Campylobacter spp. is currently the bacterial foodborne pathogen causing the highest 

number of gastrointestinal disease in developed countries, according to the World 

Health Organization (www.who.int). The main vehicle, responsible for human 

infections, is broiler meat, either through consumption of inadequately cooked 

chicken meat or through cross-contamination of ready to eat foods. C. jejuni is the 

most important species with the highest rate of isolation from human cases of 

gastroenteritis. In Europe in 2007, the proportion of positive poultry meat samples 

ranged from 4.3 % to 67.1 % and C. jejuni accounted for the majority of the isolates 

(Anonymous, 2009). A number of factors make it a problematic agent to control: (i) it 

is a zoonotic agent, that is asymptomatic in broilers (as well as other birds), (ii) 

available sampling and testing methods for its detection and quantification give 

variable results, thus surveillance data from different sources may not be comparable, 

(iii) compared to other foodborne pathogens, little is known regarding its physiology 

and its ability to survive common food processing conditions. Furthermore, the 

previous belief that thermophilic campylobacters are sensitive to conditions they 

encounter outside their host seems not to be supported by the epidemiological data 

(Humphrey et al., 2007).  

The application of molecular methods to rapidly and inequivocally detect and identify 

foodborne pathogens in foodstuffs is offering a valid alternative to traditional 

microbiological testing. The challenge nowdays is the application of these methods, 

primarily based on amplification of a target DNA (or RNA) sequence by PCR, 

without previous enrichment or culturing, in order to quantify foodborne pathogens 

directly in foods. Such an approach has already been employed for other pathogens 

like Listeria monocytogenes (Rantsiou et al., 2008). Methods to detect and quantify C. 

jejuni in foods until recently have been applied after an enrichment step (Josefsen et 
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al., 2004; Nogva et al., 2000; Oliveira et al., 2005; Sails et al., 2003; Yang et al., 

2003), while direct quantification of C. jejuni in chicken rinses has been performed 

(Debretsion et al., 2007).  

In this paper we focused on the development of a protocol for the detection and 

quantification of C. jejuni in foods. The protocol is based on the amplification, by 

quantitative PCR, of the rpoB gene, encoding the β-subunit of the RNA polymerase of 

C. jejuni. The ultimate goal was to apply the protocol to naturally contaminated 

poultry samples obtained from the retail market in Italy.  

 

2. Materials and methods 

2.1. Strains and media.  

Strains of C. jejuni belonging to the Laboratory of Microbiology of the University of 

Ghent, Belgium (strain LMG8842) and to the Collection of Institute Pasteur, France 

(strain CIP70.2T), as well as 3 strains, with codes 119, 592 and 221/05, isolated from 

bovine feaces the first and poultry the latter two, were employed in this study. In 

addition, Campylobacter coli DSMZ 4689, Campylobacter upsaliensis DSMZ 5365 

and Campylobacter lari DSMZ 11375 were also used. All strains of Campylobacter 

spp. were propagated either in Brain Heart Infusion (BHI) supplemented with 5% 

horse blood (BHIB) (Oxoid, Milan, Italy) or in Campylobacter blood-free selective 

medium, CCDA (Oxoid) in microaerophilic conditions (CampyGen, Oxoid) at 37 ºC. 

Moreover, strains of food related bacteria were selected and used in this study in order 

to determine the specificity of the assay. These were: Lactobacillus sakei, 

Staphylococcus xylosus, Lactococcus lactis, Streptococcus thermophilus, 

Enterococcus faecium, Pseudomonas aeruginosa, Serratia marcescens, Bacillus 

cereus, Escherichia coli, Listeria monocytogenes, Listeria innocua, Listeria ivanovvi, 

Listeria seeligeri and Listeria welshimeri. At least 2 strains for each species were 
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tested. The strains belonged to the culture collection of the University of Turin, Italy 

(Rantsiou et al., 2008) and were rutinelly propagated in Brain Heart Infusion (BHI) 

medium (Oxoid, Milan, Italy). 

2.2. DNA extraction.  

For strains grown in pure culture, DNA was extracted as previously described by 

Rantsiou et al. (2008). For the extraction of DNA from food samples the Master-

Pure™ Complete DNA and RNA Purification Kit (Epicentre, Madison, WI, USA) 

was used according to the manufacturer’s instructions and to previous application for 

DNA extractions from foodstuffs (Rantsiou et al., 2008).  

2.3. Quantitative PCR amplification.  

Quantitative PCR was performed by using the SYBR Green chemistry. To amplify 

part of the rpoB gene of C. jejuni, primers Cj_rpoB1 (5’-

GAGTAAGCTTGGTAAGATTAAAG-3’) and Cjs_rpoB2 (5’-

AAGAAGTTTTAGAGTTTCTCC-3’) were designed by multiple sequence alignment 

(ClustalW2 algorithm, EBI, UK, available at: 

http://www.ebi.ac.uk/Tools/clustalw2/index.html). Amplification was carried out 

using the FluoCycle SYBR Green Mix of Euroclone (Euroclone Spa., Milan, Italy) in 

the Chromo4 Real-Time PCR Detection System (Biorad, Milan, Italy). The reaction 

was performed in 25 µl final volume containing 12.5 µl of the 10X mix, 400 nM of 

Cj_rpoB1 primer, 60 nM of Cjs_rpoB2 primer and 100 ng of DNA extracted from 

pure cultures or 1 µl of DNA extracted from food samples. The optimized cycle was: 

95 ºC for 30 seconds, 62 ºC for 30 seconds and 72ºC for 30 seconds, followed by the 

fluorescence reading. The cycle was repeated 50 times and was preceded by a 

denaturation step at 95 ºC for 10 minutes. In each run, a positive and negative control 

was used. The positive control was represented by DNA extracted from a pure culture 

of C. jejuni LM8842, standardized to 100 ng/µl. In a total reaction volume of 25 µl, 1 
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µl of DNA was added. For the negative control, 1 µl of sterile, PCR-grade DNA 

(Sigma-Aldrich, Italy) was added. A melting curve analysis was carried out at the end 

of each run. 

2.4. Construction of calibration curves.  

Calibration curves were constructed in milk, poultry skin and poultry meat. For the 

construction of calibration curves in food samples, the strain of C. jejuni LM8842 was 

used. The strain was streaked in BHIB plates and after 24 hours of incubation, the 

cells were scraped off the agar surface with 1 ml of Ringer’s solution (Oxoid, Milan, 

Italy) and the use of a plastic, sterile spreader. The cell suspension was serially diluted 

in Ringer’s solution and counted on BHIB plates incubated at 37°C for 24-48 hours. 

Each dilution was inoculated in 10 g (for poultry skin or poultry meat) or 10 ml (for 

milk) of food sample. Then, 40 ml of Bolton broth (Oxoid, Milan, Italy), with 

supplement (Oxoid, Milan, Italy) but without blood, were added. Solid samples 

(poultry skin and meat) were homogenized, using a stomacher (PBI, Milan, Italy) for 

2 minutes at maximum speed, while liquid samples (milk) mixed well. Subsequently, 

one ml was recovered and mixed with 9 ml of Ringer’s solution and 1 ml of the 

diluted sample was used for DNA extraction as described above (DNA at t=0). The 

DNA extraction was also performed on the samples after 24 hours of incubation at 37 

ºC in Bolton Broth. Also in this case, 1 ml of a ten-fold dilution in Ringer’s solution 

was processed (DNA at t=24). One µl of the t=0 DNA (in triplicate) was used in 

qPCR amplifications and calibration curves were constructed plotting the threshold 

cycle against the colony forming units (cfu)/g or ml. Similarly, the t=24 DNA was 

used in amplification to determine the detection limit after overnight enrichment. The 

efficiency of the reactions was calculated according to Rutledge and Cote (Rutledge 

and Cote, 2003). Standard curves were contructed at least three times from three 

independent experiments. 
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2.4. Sampling.  

Fourty eight samples of individually packaged poultry were purchased from super 

markets in the Piedmont region, in the Northwest part of Italy. The packaging was 

removed under a laminar flow hood. From each package, ten g of either meat (for 

samples without skin) or skin were aseptically cut and mixed with 40 ml of Bolton 

broth (Oxoid, Milan, Italy), with supplement (Oxoid, Milan, Italy) but without blood, 

and homogenized as above. One ml of the homogenate was mixed with 9 ml of 

Ringer’s solution and 1 ml of this mix was used for DNA extraction (t=0). At the 

same time, the homogenate, the 1 to 10 and 1 to 100 dilutions of it were plated in 

CCDA medium. Plates were incubated at 37 ºC for 48 hours in microaerophilic 

conditions by using the Anaerogen system (Oxoid, Milan, Italy). The homogenate was 

also incubated for 18 hours at 37 ºC and DNA extraction was carried out from a ten-

fold dilution in Ringer’s solution, while a loopfull of the enriched homogenate was 

streaked in CCDA and incubated at 37 ºC for 48 hours (t=24). Campylobacter spp. 

suspected colonies from the CCDA plates were isolated in BHIB and subjected to 

qPCR amplification as described above.  

 

3. Results and Discussion 

The method of detection and quantification of C. jejuni presented in this paper is 

based on the amplification of partial rpoB gene. Primers, intended to be specific for C. 

jejuni, were designed based on all sequences of Campylobacter spp. available in 

GeneBank. By multiple sequence alingment (ClustalW2 algorithm, EBI, UK, 

available at: http://www.ebi.ac.uk/Tools/clustalw2/index.html), regions were 

identified that in silico were specific. Subsequently, the specificity of the 

amplification was optimized in vitro using as target, DNA extracted from pure 

cultures of different Campylobacter spp. Furthermore, a set of bacteria commonly 
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found in foods was also used. Several conditions of amplifications, focusing mainly 

on the temperature of annealing and concentration of the primers were tested, in order 

to obtain amplification signals only when C. jejuni DNA was added as template in the 

reaction. The conditions described in the materials and methods resulted to be specific 

for C. jejuni. Sequences of the rpoB gene of phylogenetically close species, namely 

Helicobacter and Arcobacter spp., were also used in an in silico analysis to check for 

possible annealing sites of the primers used in this study. Sequence heterogeneity was 

high and the primers described here did not align to Helicobacter or Arcobacter 

sequences.  

In order to quantify, in terms of cfu/g or ml, C. jejuni in foods, appropriate calibration 

curves were constructed. For the DNA extraction, a determining factor for the success 

of such applications in foodstuffs, a commercial kit (Epicentre) was used which has 

been previously proven adequate for qPCR in foods (Rantsiou et al., 2008). Its 

applicability was further confirmed in this study, during the optimization phase. Three 

food matrices were chosen, based on available information from the literature 

regarding C. jejuni contamination (Anonymous, 2009; Heuvelink et al., 2009; 

Horrocks et al., 2008). These were: milk and poultry (meat and skin). The calibration 

curves are presented in Figure 1. The efficiencies calculated for the three matrices 

were: 100% for the milk, 79% for the poultry meat and 83% for the poultry skin. The 

R2 values were 0.96, 0.90 and 0.99 respectively. As can be seen in Figure 1, for all 

three matrices a linearity range that spanned 5 logarithms was obtained and the 

quantification limit was in the order of 10 cfu/g or ml. The results obtained, in terms 

of efficiency, R2 and limit of quantification were comparable when three independent 

experiments were performed (data not shown). After the 18 hours overnight 

enrichment (t=24) at 37 ºC, also matrices inoculated with concentrations of 1-10 cfu/g 

or ml could be detected.  
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The qPCR based protocol was applied, in parallel to traditional microbiological 

analysis, to detect and quantify C. jejuni in poultry samples. Fourty-eight samples 

were taken from large super markets in the Piedmont region in the Northwest of Italy. 

Samples were parts of chicken and turkey that were pre-packaged and stored at 4 ºC. 

A qPCR analysis was performed on DNA extracted at the time of sampling (t=0), as 

well as after an overnight enrichment (t=24). In parallel, traditional microbiological 

analysis was performed, both at t=0 and at t=24. The results obtained by the two 

approaches are summarized in Table 1. By direct qPCR analysis on the DNA 

extracted at t=0, 42 of the 48 (87%) samples resulted positi ve for the presence of C. 

jejuni. Apart from one sample, for which the concentration of C. jejuni was 

determined to be 24 cfu/g, all other positive samples had concentrations below the 

quantification limit. Melting curve analysis at the end of each run, resulted in melting 

temperatures for the positive samples, similar to those of C. jejuni used as control in 

the qPCR (data not shown). By traditional analysis, for 33 of 48 samples the 

Campylobacter spp. populations were below the detection limit, while for the 

remaining 15 samples, counts were in the order of 102-103 cfu/g. When suspected 

Campylobacter spp. colonies, randomly selected from the CCDA plates, were 

subjected to DNA and qPCR analysis, none of them resulted to be C. jejuni. Most 

likely, the colonies belonged to other Campylobacter spp. that are capable of growing 

on this medium. It is possible that the lack of correlation observed between the results 

obtained by traditional method and qPCR is due to the very low concentration of C. 

jejuni and the presence of cells in the samples that were injured or stressed and 

therefore did not develop on the selective medium. 

Surprisingly, at t=24, the percentage of positive samples, obtained by qPCR, 

decreased compared to the situation at t=0. Thirteen of the 48 samples (27%) gave a 

positive signal by qPCR. This observation may be attributed either to the presence of 
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DNA of dead cells of C. jejuni in the samples at t=0, or to the presence of stressed 

and/or injured cells of C. jejuni that are not able to propagate in the selective (and 

stringent) environment of the enrichment broth used. The latter explanation is 

supported also by the data of the traditional analysis: none of the Campylobacter 

populations counted at t=0 was detected at t=24. Such a behaviour has already been 

reported for Campylobacter in Bolton enrichment broth (Habib et al., 2008). These 

authors also concluded that lower Campylobacter concentrations had lower likelihood 

of giving a positive result after enrichment compared to direct plating (Habib et al., 

2008). It should also be noted that the conditions used for enrichment in this study 

(incubation at 37 ºC, Bolton Broth without blood), have recently been shown to have 

no negative effect on the recovery of campylobacters (Williams et al., 2009). 

Furthermore, in a previous study, Bolton enrichment broth without blood detected 

more samples positive for thermophilic Campylobacter spp. than did Preston 

enrichment broth (Paulsen et al., 2005). However, it is possible that in these 

conditions, competing microflora has better chances of outnumbering Campylobacter. 

In fact, it has been previously reported that non-Campylobacter species, after 

enrichment in Bolton broth, can generate in some cases colonies very similar to those 

produced by Campylobacter on selective plating medium (Baylis et al., 2000; Habib 

et al., 2008, Jasson et al., 2009). Only one sample (P7, Table 1), was negative at t=0 

and positive at t=24. It is probable that a C. jejuni population below the quantification 

limit was present in the sample and it was able to produce a signal in qPCR after 

enrichment.  

The use of the qPCR protocol developed in this study accurately detected C. jejuni in 

a high percentage of poultry samples, while the traditional analysis failed to do so. 

Additionally, the results obtained highlighted important aspects of the physiology of 



 12 

C. jejuni in food and in enrichment media, commonly used for its isolation, that 

require further investigation.  
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Table 1. Results of microbiological and molecular analysis on poultry samples 

Results t=01 Results t=242 Sample 
Code 

Type of Sample 
Traditional 

analysis 
(cfu/g) 

qPCR 
analysis 
(cfu/g) 

Traditional 
analysis 

qPCR 
analysis 

C1 Meat (chicken) <50 Positive Negative Negative 
PT1 Meat (chicken breast) <50 Positive Negative Negative 
PT2 Meat (chicken breast) <50 Negative Negative Negative 
C2 Meat (chicken) 6x102 Positive Negative Positive 
C3 Meat (chicken) <50 Positive Negative Negative 
GC Meat (turkey) <50 Positive Negative Negative 
1C Meat (chicken) <50 Positive Negative Negative 
2C Meat (chicken) <50 Positive Negative Negative 
3C Meat (chicken) <50 Positive Negative Negative 
4C Meat (chicken) 2x102* Positive Negative Positive 
5C Meat (chicken) 7x102* Positive Negative Negative 
6C Meat (chicken) 3,5x102* Negative Negative Negative 

10 PT A Meat (chicken breast) <50 Positive Negative Negative 
10 PT B Meat (chicken breast) <50 Positive Negative Negative 
PT3 A Meat (chicken breast) <50 Positive Negative Negative 

C5 Meat (chicken) <50 Positive Negative Positive 
AC1 Meat (chicken wing) <50 Positive Negative Negative 
C6 Meat (chicken) 1x103* Positive Negative Negative 
Ca Meat (chicken) <50 Positive Negative Negative 
Cc Meat (chicken) <50 Positive Negative Negative 
Cb Meat (chicken) <50 24 Negative Positive 
C7 Meat (chicken) <50 Positive Negative Negative 

GC2 Meat (turkey) <50 Positive Negative Positive 
C8 Meat (chicken) <50 Positive Negative Negative 

CS1 Meat (chicken leg) <50 Positive Negative Positive 
CA Meat (chicken) <50 Positive Negative Negative 
CB Meat (chicken) <50 Positive Negative Negative 
CS2 Meat (chicken leg) <50 Negative Negative Negative 
CS3 Meat (chicken leg) <50 Positive Negative Negative 
CS4 Meat (chicken leg) <50 Positive Negative Positive 
P8 Skin (chicken) 2x103* Positive Negative Negative 
P1 Skin (chicken) <50 Negative Negative Negative 
P2 Skin (chicken) <50 Positive Negative Negative 
P3 Skin (chicken) <50 Positive Negative Negative 
GP Skin (turkey) <50 Negative Negative Negative 
7SP Skin (chicken leg) <50 Positive Negative Negative 
8SP Skin (chicken leg) <50 Positive Negative Positive 
P5 Skin (chicken) 7x102* Positive Negative Negative 

AP1 Skin (chicken wings) 3,5x102* Positive Negative Negative 
P6 Skin (chicken) 2x102* Positive Negative Negative 
Pa Skin (chicken) 4x103* Positive Negative Positive 
Pb Skin (chicken) 5x102* Positive Negative Positive 
Pc Skin (chicken) 4,5x102* Positive Negative Positive 
P7 Skin (chicken) 2x103* Negative Negative Positive 

GP1 Skin (turkey) 3x103* Positive Negative Negative 
PA Skin (chicken) <50 Positive Negative Negative 
PB Skin (chicken) <50 Positive Negative Negative 
PS2 Skin (chicken leg) 6x102* Positive Negative Positive 

1 Results at t=0 are reported as cfu/g as determined by the direct counts on CCDA plates (Campylobacter spp. suspected colonies 
in the traditional analysis) or based on the C(t) values obtained for the sample and the appropriate calibration curve. If the C(t) 
value falls out of the quantification limit of the calibration curve, the sample is reported as positive but without a quantification 
value. 2 Results at t=24 are reported as positive or negative. In the traditional analysis, positive refers to the presence of suspected 
colonies while in the qPCR analysis it refers to a fluorescence signal obtained during the amplification. * Randomly selected and 
isolated Campylobacter spp. suspected colonies from the CCDA plates were not confirmed as C. jejuni by qPCR. 
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Figure legends 

Figure 1. Calibration curves of C. jejuni, serially diluted and inoculated in different 

food matrices. DNA samples, extracted as described in the materials and methods, 

corresponding to each C. jejuni dilution, were loaded in triplicate in a qPCR reaction. 

For each C. jejuni dilution, the mean and standard deviation of the C(t) values 

obtained were calculated and used to contsruct the calibration curve. Three 

independent calibration curves were constructed for each food matrix but only one is 

shown here. Figure 1a: calibration curve in milk. Figure 1b: calibration curve in 

poultry meat. Figure 1c: calibration curve in poultry skin. 
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Figure 1a. 

 
Figure 1b. 
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