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Abstract

We relate the generalized Bergman–Bianchi identities for Lagrangian
field theories on gauge-natural bundles with the kernel of the associ-
ated gauge-natural Jacobi morphism.
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1 The Bergman–Bianchi morphism

Our general framework is the calculus of variations on finite order gauge-
natural bundles [3, 8]. Such geometric structures have been widely recog-
nized to suitably describe so-called gauge-natural field theories, i.e. physical
theories in which right-invariant infinitesimal automorphisms of the structure
bundle P uniquely define the transformation laws of the fields themselves (see
e.g. [4] and references quoted therein). We shall in particular consider finite
order variational sequences on gauge-natural bundles, whereby foundamental
objects of calculus of variations such as Lagrangians, Euler–Lagrange and Ja-
cobi morphisms are conveniently represented as quotient morphisms (see e.g.
[9, 6]). For basic notions and fixing notation we refer to [1, 3, 4, 5, 6, 8, 11]
and references therein.
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Recall that generalized Bergman–Bianchi identities for field theories are
necessary and (locally) sufficient conditions for the Noether conserved cur-
rent to be not only closed but also the divergence of a skew-symmetric (ten-
sor) density along solutions of the Euler–Lagrange equations [1]. It was
also stressed that in the general theory of relativity these identities coin-
cide with the contracted Bianchi identities for the curvature tensor of the
pseudo-Riemannian metric.

Let Y ζ be a gauge-natural bundle and let λ be a gauge-natural Lagrangian
[4, 8] on the s-th order prolongation JsY ζ . Let A(r,k) be the vector bundle of
right-invariant principal automorphisms of the underlying principal structure
bundle P . In the following we shall consider variation vector fields which are
vertical parts of gauge-natural lifts of a given Ξ̄ ∈ A(r,k) . Let C∗2s[A(r,k)] '
J2s+1A(r,k) ×J2sA(r,k) V J2sA(r,k). By a slight abuse of notation, we denote by
G(Ξ̄)V the vertical part – with respect to the contact structure induced by
the projections Js+1Y ζ → JsY ζ – of (jet prolongation of) the gauge-natural
lift G(Ξ̄) [3, 4, 5]. We set

ω(λ,G(Ξ̄)V ) ≡ £Ξ̄cEn(λ) : J2sY ζ → C∗2s[A(r,k)]⊗C∗0 [A(r,k)] ∧ (
n
∧T ∗X) , (1)

where £Ξ̄ is the Lie derivative operator acting on sections of the gauge-
natural bundle [5], c is the interior product and En(λ) is the generalized
Euler-Lagrange morphism associated with λ [6]. The morphism ω(λ,G(Ξ̄)V )
so defined is a generalized Lagrangian associated with the field equations of
the original Lagrangian λ and it has been considered in applications e.g. in
General Relativity. By the linearity of £ we can regard ω(λ,G(Ξ̄)V ) as the ex-
tended morphism defined on J2sY ζ×

X
V J2sA(r,k). We have DHω(λ,G(Ξ̄)V ) =

0, where DH is the exterior differential; thus, as a consequence of a global
decomposition formula for vertical morphisms [7], we can state the following
[11].

Lemma 1 Let ω(λ,G(Ξ̄)V ) be as above. On the domain of ω(λ,G(Ξ̄)V ) we
have (up to pull-backs):

ω(λ,G(Ξ̄)V ) = β(λ,G(Ξ̄)V ) + Fω(λ,G(Ξ̄)V ) ,

where

β(λ,G(Ξ̄)V ) ≡ Eω(λ,G(Ξ̄)V )

and, locally, Fω(λ,G(Ξ̄)V ) = DHMω(λ,G(Ξ̄)V ).
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Definition 1 We call the global morphism β(λ,G(Ξ̄)V ) :=Eω(λ,G(Ξ̄)V ) the
generalized Bergman–Bianchi morphism associated with the Lagrangian λ
and the variation vector field Ξ̄.

Let K be the kernel of J (λ,G(Ξ̄)V ). We have the following characterization
of the Bergman-Bianchi identities for gauge-natural theories [11].

Theorem 1 The generalized Bergman–Bianchi morphism is globally vanish-
ing for the variation vector field Ξ̄ if and only if δ2

Gλ ≡ J (λ,G(Ξ̄)V ) = 0,
i.e. if and only if G(Ξ̄)V ∈ K.

From now on we shall write ω(λ,K) to denote ω(λ,G(Ξ̄)V ) when G(Ξ̄)V
belongs to K. Analogously for β and other morphisms.

First of all let us make the following important consideration. Let LjsΞ̄ be
the variational Lie derivative operator [6] acting on gerneralized variational
morphisms.

Proposition 1 For each Ξ̄ ∈ A(r,k) such that Ξ̄V ∈ K, we have

LjsΞ̄H
ω(λ,K) = −DH(−js£Ξ̄cpDV ω(λ,K)) . (2)

Proof. We have

LjsΞ̄V
ω(λ,K) = LjsΞ̄V

LjsΞ̄λ = Ljs[Ξ̄V ,Ξ̄H ]λ .

On the other hand it is also easy to verify that

LjsΞ̄H
ω(λ,K) = Ljs[Ξ̄H ,Ξ̄V ]λ = −LjsΞ̄V

ω(λ,K) .

Since

LjsΞ̄V
ω(λ,K) = −£Ξ̄cEn(ω(λ,K)) +DH(−js£Ξ̄cpDV ω(λ,K)) =

= β(λ,K) +DH(−js£Ξ̄cpDV ω(λ,K)) ,

from the Theorem above we get the assertion.

The new generalized Lagrangian ω(λ,K) is gauge-natural invariant too,
i.e. LjsΞ̄ ω(λ,K) = 0.

Even more, we can state the following

Proposition 2 Let Ξ̄V ∈ K. We have

LjsΞ̄H
ω(λ,K) = 0 . (3)
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Corollary 1 Let Ξ̄V ∈ K. We have the covariant conservation law

DH(−js£Ξ̄cpDV ω(λ,K)) = 0 . (4)

Definition 2 We define the covariantly conserved current

H(λ,K) = −js£Ξ̄cpDV ω(λ,K) , (5)

to be a Hamiltonian form for ω(λ,K) (in the sense of [10]).
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