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Abstract

A principal Cartan connection is canonically defined by gauge-
natural invariant variational problems of finite order due to the ex-
istence of a reductive split structure associated with canonical La-
grangian conserved quantities on gauge-natural bundles.
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1 Introduction

In the following classical physical fields are assumed to be sections of bundles
functorially associated with gauge-natural prolongations of principal bundles
[2, 5]. We consider finite order Lagrangian variational problems in terms of
exterior differentials of forms modulo contact forms as framed in the context
of finite order variational sequences [7].

As well known, following Noether’s theory [8], from invariance properties
of the Lagrangian the existence of suitable conserved currents and identities
can be deduced. Within such a picture generalized Bergmann–Bianchi iden-
tities are conditions for a Noether conserved current to be not only closed
but also the global divergence of a tensor density called a superpotential
[10]. Recently, we proposed an approach to deal with the problem of canoni-
cal covariance and uniqueness of conserved quantities which uses variational
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derivatives taken with respect to the class of (generalized) variation vector
fields being Lie derivatives of sections of bundles by gauge-natural lifts of
infinitesimal principal automorphisms [9, 11, 12, 13, 3].

In this note, we shortly review some of the outcomes and in particular we
recall how the kernel of the gauge-natural Jacobi morphism (coinciding with
generalized Bergmann–Bianchi identities) defines a split reductive structure
on the relevant underlying principal bundle. As a consequence, we prove
that a principal Cartan connection is canonically defined by gauge-natural
invariant variational problems of finite order.

Let us recall some useful concepts of prolongations, mainly with the aim
of fixing the notation; for details see e.g. [5, 14]. Let π : Y →X be a fibered
manifold, with dim X = n and dim Y = n + m. For s ≥ q ≥ 0 integers
we deal with the s–jet space JsY of s–jet prolongations of (local) sections
of π; in particular, we set J0Y ≡ Y . We recall that there are the natural
fiberings πsq : JsY → JqY , s ≥ q, πs : JsY → X, and, among these, the
affine fiberings πss−1. We denote by V Y the vector subbundle of the tangent
bundle TY of vectors on Y which are vertical with respect to the fibering π.

For s ≥ 1, we consider the following natural splitting induced by the nat-
ural contact structure on jets bundles (see e.g. [6, 7]): JsY ×

Js−1Y
T ∗Js−1Y =

JsY ×
Js−1Y

(T ∗X ⊕ V ∗Js−1Y ).

A vector field ξ on Y is said to be vertical if it takes values in V Y . A ver-
tical vector field can be prolonged to a vertical vector field jsξ characterized
by the fact that its flow is the natural prolongation of the flow of ξ. Given a
vector field Ξ : JsY → TJsY , the above splitting yields Ξ ◦πs+1

s = ΞH + ΞV ,
where ΞH and ΞV are the horizontal and the vertical part of Ξ, respectively.
As well known, the above splitting induces also a decomposition of the exte-
rior differential on Y , (πr+1

r )∗ ◦ d = dH + dV , where dH and dV are called the
horizontal and vertical differential, respectively. Such decompositions always
rise the order of the objects.

Let P → X be a principal bundle with structure group G. For r ≤ k
integers consider the gauge-natural prolongation of P given by W (r,k)P

.
=

JrP ×
X
Lk(X), where Lk(X) is the bundle of k–frames in X [2, 5]; W (r,k)P

is a principal bundle over X with structure group W (r,k)
n G which is the

semidirect product with respect to the action of GLk(n) on Gr
n given by jet

composition and GLk(n) is the group of k–frames in IRn. Here we denote by
Gr
n the space of (r, n)-velocities on G.
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Let F be a manifold and ζ : W (r,k)
n G×F → F be a left action of W (r,k)

n G

on F . There is a naturally defined right action of W (r,k)
n G on W (r,k)P × F

so that we have in the standard way the associated gauge-natural bundle of
order (r, k): Y ζ

.
= W (r,k)P ×ζ F . All our considerations shall refer to Y as

a gauge-natural bundle as just defined.
Denote now by A(r,k) the sheaf of right invariant vector fields on W (r,k)P .

The gauge-natural lift is defined as the functorial map G : Y ζ ×
X
A(r,k) →

TY ζ : (y, Ξ̄) 7→ Ξ̂(y), where, for any y ∈ Y ζ , one sets: Ξ̂(y) = d
dt

[(Φζ t)(y)]t=0,
and Φζ t denotes the (local) flow corresponding to the gauge-natural lift of
Φt. Such a functor defines a class of parametrized contact transformations.

This mapping fulfils the following properties (see [5]): G is linear over
idY ζ

; we have Tπζ ◦ G = idTX ◦ π̄(r,k), where π̄(r,k) is the natural projec-

tion Y ζ ×
X
A(r,k) → TX; for any pair (Λ̄, Ξ̄) ∈ A(r,k), we have G([Λ̄, Ξ̄]) =

[G(Λ̄),G(Ξ̄)]. In the following, by an abuse of notation we denote by VA(r,k)

the bundle of vertical parts of sections of A(r,k) →X.
Let γ be a (local) section of Y ζ , Ξ̄ ∈ A(r,k) and Ξ̂ its gauge-natural lift.

Following [5] we define the generalized Lie derivative of γ along the vector field
Ξ̂ to be the (local) section £Ξ̄γ : X → V Y ζ , given by £Ξ̄γ = Tγ ◦ ξ− Ξ̂ ◦ γ.

The Lie derivative operator acting on sections of gauge-natural bundles
is an homomorphism of Lie algebras; furthermore, for any gauge-natural lift,
the fundamental relation holds true: Ξ̂V = −£Ξ̄.

2 Gauge-natural Jacobi equations and Car-

tan connections

The fibered splitting induced by the contact structure on finite order jets
yields the sheaf splitting Hp

(s+1,s) =
⊕p

t=0 C
p−t
(s+1,s) ∧Ht

s+1, where the sheaves

Hp
(s,q) and Hp

s of horizontal forms with respect to the projections πsq and

πs0, respectively, while Cp(s,q) ⊂ H
p
(s,q) and Cps ⊂ Cp(s+1,s) are contact forms,

i.e. horizontal forms valued into C∗s [Y ] (they have the property of vanishing
along any section of the gauge-natural bundle). We put Hp,h

s+1
.
= h(Λp

s) for
0 < p ≤ n and the map h is the horizontalization, i.e. the projection on the
summand of lesser contact degree. Let η ∈ C1

s ∧C1
(s,0)∧Hn,h

s+1; then there is a

unique morphismKη ∈ C1
(2s,s)⊗C1

(2s,0)∧Hn,h
2s+1 such that, for all Ξ : Y → V Y ,

C1
1(j2sΞ⊗Kη) = EjsΞcη, where C1

1 stands for tensor contraction on the first
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factor and c denotes inner product and EjsΞcη = (π2s+1
s+1 )∗jsΞcη+FjsΞcη (with

FjsΞcη a local divergence) is a uniquely defined global section of C1
(2s,0)∧Hn,h

2s+1

(see [15]).
By an abuse of notation, let us denote by d kerh the sheaf generated by

the presheaf d kerh in the standard way. We set Θ∗s
.
= kerh + d kerh. We

have that 0 → IRY → V∗s , where V∗s = Λ∗s/Θ
∗
s, is an exact resolution of the

constant sheaf IRY [7]. A section Edλ
.
= En(λ) ∈ Vn+1

s is the generalized
higher order Euler–Lagrange type morphism associated with λ.

The morphism Kη can be integrated by parts to provide a representation
of the generalized Jacobi morphism associated with λ [10]. Let λ be a La-
grangian and consider Ξ̂V as a variation vector field. Let us set χ(λ, Ξ̂V ) ≡
EjsΞ̂chdLj2s+1Ξ̄V

λ. Because of linearity properties of KhdLj2sΞ̄V
λ, and by using

a global decomposition formula due to Kolář, we can decompose the mor-
phism defined above as χ(λ, Ξ̂V ) = Eχ(λ,Ξ̂V ) + Fχ(λ,Ξ̂V ), where Fχ(λ,Ξ̂V ) is a
local horizontal differential which can be globalized by fixing of a connection.

Definition 1 We call the morphism J (λ, Ξ̂V )
.
= Eχ(λ,Ξ̂V ) the gauge-natural

generalized Jacobi morphism associated with the Lagrangian λ and the vari-
ation vector field Ξ̂V . We call the morphism H(λ, Ξ̂V )

.
= Ξ̂V cEn(Ξ̂V cEn(λ))

the gauge-natural Hessian morphism associated with λ.

The morphism J (λ, Ξ̂V ) is a linear morphism with respect to the pro-
jection J4sY ζ ×

X
V J4sA(r,k) → J4sY ζ . Notice that, since δ2

Gλ
.
= LΞ̂V

LΞ̂V
λ =

Ξ̂V cEn(Ξ̂V cEn(λ)), we have H(λ, Ξ̂V ) = δ2
Gλ; furthermore, being also δ2

Gλ =
En(Ξ̂V ch(dδλ)) [10], then H(λ, Ξ̂V ) is self-adjoint. Furthermore, we have
J (λ, Ξ̂V )

.
= Eχ(λ,Ξ̂V ) = En(Ξ̂V ch(dδλ)) = H(λ, Ξ̂V ), stating that the Hessian

and as a consequence also the Jacobi morphism are symmetric self-adjoint
morphisms. The Jacobi morphism J (λ, Ξ̂V ) can be interpreted as an endo-
morphism of J4sVA(r,k).

In the following we concentrate on some geometric aspects of the space
K

.
= kerJ (λ, Ξ̂V ). Such a kernel defines generalized gauge-natural Jacobi

equations [10], the solutions of which we call generalized Jacobi vector fields.
It characterizes canonical covariant conserved quantities. In fact, given [α] ∈
Vns , since the variational Lie derivative of classes of forms can be repre-
sented the variational sequence, we have the corresponding version of the
First Noether Theorem:

LjsΞ[α] = ω(λ, Ξ̂V ) + dH(j2sΞ̂V cpdV h(α) + ξch(α)) , (1)
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where we put ω(λ, Ξ̂V )
.
= Ξ̂V cEn(λ)

.
= −£Ξ̄cEn(λ).

As usual, λ is defined a gauge-natural invariant Lagrangian if the gauge-
natural lift (Ξ̂, ξ) of any vector field Ξ̄ ∈ A(r,k) is a symmetry for λ, i.e.
if Ljs+1Ξ̄ λ = 0. In this case, as an immediate consequence we have that

ω(λ, Ξ̂V ) = dH(−js£Ξ̄cpdV λ + ξcλ).

The generalized Bergmann–Bianchi morphism β(λ, Ξ̂V )
.
= Eω(λ,Ξ̂V ) is canon-

ically vanishing along K. This fact characterizes canonical covariant con-
served Noether currents [10, 9]. Furthermore, along the kernel of the gauge-
natural generalized gauge-natural Jacobi morphism we have that Ljs+1Ξ̄H [Ljs+1Ξ̄V λ] ≡
0. Hence Bergmann–Bianchi identities are equivalent to the invariance con-
dition Ljs+1Ξ̄[Ljs+1Ξ̄V λ] ≡ 0 and can be suitably interpreted as Noether iden-
tities associated with the invariance properties of the Euler–Lagrange mor-
phism En(ω) [12]. This fact can be used to prove that K is characterized as
a vector subbundle, being the kernel of a Hamiltonian operator [3, 11].

Proposition 1 A principal Cartan connection is canonically defined by gauge-
natural invariant variational problems of finite order.

Proof. Let h be the Lie algebra of right-invariant vertical vector fields
on W (r+4s,k+4s)P and k the Lie subalgebra of generalized Jacobi vector fields
defined as solutions of generalized Jacobi equations. Consider now that, since
the Jacobi morphism self-adjoint, its cokernel coincides with the cokernel of
the adjoint morphism, thus we have that dimK = dimCokerJ . If we further
consider that K is of constant rank because it is the kernel of a Hamiltonian
operator [11], we are able to define the split structure given by h = K⊕ImJ .
The Lie derivative of a solution of Euler–Lagrange equations with respect to a
Jacobi vector field is again a solution of Euler–Lagrange equations. However,
the Lie derivative with respect to vertical parts of the commutator between
the gauge-natural lift of a Jacobi vector field and (the vertical part of) a lift
not lying in K is not a solution of Euler–Lagrange equations. Thus, since J
is a projector and a derivation of h, it is easy to see that the split structure is
also reductive, being [k, ImJ ] = ImJ . We have then proved that the kernel
K defines a reductive structure on W (r+4s,k+4s)P .

In particular, for each p ∈ W (r,k)P by denoting W ≡ hp, K ≡ kp and
V ≡ ImJp we have the reductive Lie algebra decomposition W = K ⊕ V ,
with [K,V ] = V . Notice that W is the Lie algebra of the Lie group W (r,k)

n G.
Since K is a vector subbundle of A(r,k) = TW (r,k)P /W (r,k)

n G there exists a
principal subbundle Q ⊂W (r,k)P such that dimQ = dimW , K = TQ/K|q,
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where K is the (reduced) Lie group of the Lie algebra K and the embedding
Q→W (r,k)P is a principal bundle homomorphism over the injective group
homomorphism K →W (r,k)

n G.
Now, if ω is a principal connection on W (r,k)P , the restriction ω|Q is a

Cartan connection of the principal bundle Q→X. In fact, let us consider a
principal connection ω̄ on the principal bundle Q i.e. a K-invariant horizontal
distribution defining the vertical parallelism ω̄ : VQ → K by means of the
fundamental vector field mapping in the usual and standard way. Since K
is a subalgebra of the Lie algebra W and dimQ = dimW , it is defined a
principal Cartan connection of type W/K, that is an W-valued absolute
parallelism ω̂ : TQ → W which is an homomorphism of of Lie algebras,
when restricted to K, preserving Lie brackets if one of the arguments is in
K, and such that ω̂|V Q = ω̄, that means that ω̂ is an extension of the natural
vertical parallelism.

We have then to show that such a ω̂ exists. We can define ω̂ as the restic-
tion of the natural vertical parallelism defined by a principal connection ω on
W (r,k)P by means of the fundamental vector field mapping ω : VW (r,k)P →
W to TQ. This restiction is, in particular, K-invariant since is by con-
struction W-invariant. Of course, this definition is well done provided that
TQ ⊂ VW (r,k)P . In fact, it is easy to see that TQ ⊂ VW (r,k)P holds true
as a consequence of the reductive split structure on W (r+4s,k+4s)P . In par-
ticular, ∀q ∈ Q, we have TqQ ∩Hq = 0, where Hq, ∀p ∈W (r,k)P is defined
by ω as TpW

(r,k)P = VpW
(r,k)P ⊕Hp; furthermore, dimX = dimW/K.

QED

Let us now explicate some consequences. In fact, let us consider once
more the reductive decomposition W = K ⊕ V , with [K,V ] = V . The K-
component η = prK◦ω̂ is a principal connection form on the K-manifold Q. A
K-invariant horizontal distribution H = ω̂−1(V) ⊂ Q complementary to the
K-invariant vertical distribution ζK(Q) ⊂ Q spanned by the K-action and
such that [ζK,Γ(H)] ⊂ Γ(H), with Γ(H) ⊂ χ(Q) is the space of section of the
bundle H. The V-component θ = prV ◦ ω̂ is a sort of a displacement form and
we have kerθ = ζK(Q). In fact, being K a reductive Lie subgroup of W (r,k)

n G
the principal Cartan connection could be seen as a K-structure equipped
with a principal connection form η on Q. By considering the reduction of
the structure bundle W (r,k)P to a subbundle with structure group a subgroup
of the differential group (of a certain order), we see that generalized Jacobi
vector fields can be interpreted as a kind of reductive gauge-natural lift in

6



the sense of [4].
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World Scientific (Singapore, 1990) 236–254.

[8] E. Noether: Invariante Variationsprobleme, Nachr. Ges. Wiss. Gött.,
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