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Summary 

 • The fruiting bodies of the ectomycorrhizal (ECM) fungus Tuber melanosporum are 

usually collected in an area devoid of vegetation which is defined as a ‘burnt area’ (brulé in 

French). 

 •  Here, the soil fungal populations of inside and outside brulé were compared in order to 

understand whether the scanty plant cover was related to a change in fungal biodiversity. 

Both denaturing gradient gel electrophoresis (DGGE) and molecular cloning of the internal 

transcribed spacer (ITS) marker were employed on soil DNA to obtain profiles from nine 

truffle grounds and fungal sequences from one selected truffle ground sampled in two years. 

 •  Denaturant gradient gel electrophoresis profiles from the two areas formed two distinct 

clusters while molecular cloning allowed 417 fungal sequences to be identified. T. 

melanosporum was the dominant fungus within the brulé. There were nine new haplotypes, 

which had never been detected in fruiting bodies. The Basidiomycota ECM fungi decreased 

within the brulé, indicating a competitive effect of T. melanosporum on the other ECM 

fungi. 

 • Among other factors, the dynamics of fungal populations seems to be correlated to brulé 

formation. 

Introduction 

Truffles are ectomycorrhizal (ECM) fungi that produce hypogeous fruiting bodies, belonging to the 

Tuber genus (Ascomycota, Pezizales). Truffle species have common ecological features such as a 

wide range of host species (oak, willow, poplar, hazel and some shrubs) and the requirement of 

calcareous soil (pH between 7 and 8), except for Tuber borchii, which tolerates slightly acidic soils 

(Mello et al., 2006). Among the Tuber species, the black truffle T. melanosporum and the white 

truffle T. magnatum are highly appreciated because of their special taste and smell (Mello et al., 
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2006). T. melanosporum grows in symbiosis with several oak species and hazelnut trees in 

Mediterranean conditions, in France, Italy and the Iberian Peninsula (Ceruti et al., 2003). Truffle 

plantations have, however, been introduced in New Zealand, Australia, Israel and North America 

(Bonet et al., 2006). 

The development of mycorrhizal symbiosis in some Tuber species is associated with the production 

of a burnt area (commonly referred to by the French word brulé) around their symbiotic plants. This 

brulé is usually circular, characterized by scanty vegetation and typical of T. melanosporum and T. 

aestivum (Pacioni, 1991). Explanations for the formation of the brulé have been proposed. Plattner 

& Hall (1995) hypothesized parasitism of the Tuber spp. on the nonhost herbaceous plants, whereas 

Delmas (1983) thought that Tuber ectomycorrhizas may compete for nutrients or water. A 

phytotoxic effect by truffle metabolites was highlighted by Pacioni (1991) and Lanza et al. (2004). 

Recently, Splivallo et al. (2007) showed that truffle volatiles inhibit growth and induce an oxidative 

burst in Arabidopsis thaliana, indicating that fungal volatiles are molecules that can mediate 

fungal–plant interactions, at least in in vitro conditions. However, the mechanisms are still 

unknown, as is its ecological meaning. To our knowledge, only two studies, limited to cultivable 

fungi, have tested the hypothesis that the presence of Tuber spp. could affect fungal biodiversity 

(Luppi-Mosca, 1972; Luppi & Fontana, 1977). On the basis of this knowledge, we have focused 

attention on the fungal composition in the brulé associated with T. melanosporum, where the 

fruiting bodies of this species are usually collected in late autumn and winter. 

Suz et al. (2008), through relative quantification of DNA from T. melanosporum mycelia, suggested 

that the brulé appears only when a certain amount of mycelium has formed; they also demonstrated 

that the onset of truffle production in orchards is unpredictable (4–12 yr) and variable among trees 

in the same orchard, and that the brulé appears before the onset of truffle production, but it does not 

guarantee that the tree will produce truffles. It is totally unknown which populations live within a 

brulé. Therefore, our aims were to compare soil microorganisms between the two areas – inside and 

outside the brulé– and to understand whether the scanty plant cover is correlated with a change in 

fungal biodiversity. Denaturing gradient gel electrophoresis (DGGE) is the main technique used to 

detect microbial community shifts through the simultaneous comparison of band patterns originated 

from numerous samples (Anderson & Cairney, 2004). In order to achieve our goal, soil samples 

were collected in nine truffle grounds located in Cahors, France, and the internal transcribed spacer 

(ITS) region was processed with both DGGE and molecular cloning. Since the brulé is a dynamic 

area that can move from one year to the next (Sourzat, 1997), one truffle ground was also surveyed 

2 yr later in order to compare the temporal dynamics of the fungal communities between the two 

areas. In this case, only molecular cloning was applied. DGGE profiles from the two areas – inside 

and outside the brulé– formed two distinct clusters. In both years, T. melanosporum turned out to be 

the most dominant ECM fungus within the brulé; unexpectedly, it was possible to type more 

haplotypes than those described in the literature. Finally, the biodiversity of ECM fungi decreased 

within the brulé, which would seem to indicate a competitive effect of T. melanosporum on other 

ECM fungi. 

Materials and Methods 

Soil Sampling 

The sampling sites are T. melanosporum truffle grounds in Cahors (France) which belong to La 

Station de la Trufficulture de Cahors-Le Montat (Station d’expérimentation sur la truffe, Lycée 

professionnel agricole Lacoste, Le Montat, France). All the truffle grounds proved to be productive, 

with a yield of between 100 and 1000 g (P. Sourzat, pers. comm.). 
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Soil samples were collected in May 2006 and March 2008, the months in which T. melanosporum 

mycelium spreads, colonizing the soil, and sexual reproduction takes place (Sourzat, 1997). For the 

first soil sampling (May 2006), we chose nine T. melanosporum/Quercus pubescens truffle grounds, 

and one well-defined brulé was analyzed for each truffle ground. Seven truffle grounds are natural; 

only two are artificial. The mean values of the granulometric fraction contents are: 19.3% clay, 

48.6% silt and 32.1% sand. Chemical soil features present 5.8–6.8% organic matter and an 

approximate pH of 8. The host ages, the date of T. melanosporum inoculation in the artificial truffle 

grounds and the origin of the sites are shown in Table 1. Samples of c. 200 g of soil from each area 

were taken at a depth of c. 10–15 cm and stored at −80°C until they were analyzed. A number of 

samples, ranging from one to five, were collected inside and outside each brulé (Table 1). The 

numbers of samples collected for each area were different because of the heterogeneity – different 

shapes and sizes – of the brulé, the distance of the brulé limit from the tree trunk (Supporting 

Information, Fig. S1) and because some resistance was encountered by the owners to digging the 

soil of such economically important environments. In total, 45 soil samples were collected from 

inside and outside nine brulé areas. 

Table 1.   Details of each considered truffle ground and Shannon index values resulting from denaturing 

gradient gel electrophoresis (DGGE) profiles of the first sampling  

Truffle 

ground 

number 

Place Origin 

Typology and 

Tuber 

melanosporum 

inoculation age 

(yr) 

Host 

age 

(yr) 

First year 

sampling 

Second year 

sampling 

Shannon 

index (H′) 

No. of 

samples 

Inside 

No. of 

samples 

Outside 

No. of 

samples 

Inside 

No. of 

samples 

Outside 

Inside Outside 

1 
Fontanes, 

Lot 

Fallow 

land 
Natural 

40–

50 
1 2     1.09 1.1 

2 

La 

Bigouse, 

Lalbenque 

Quercus 

pubescens 

plantation 

Natural 60 2 5 12 12 1.12 1.33 

3 

La 

Bigouse, 

Lalbenque 

Q. 

pubescens 

plantation 

Natural 60 1 3     0.79 1.2 

4 Le Montat 
Fallow 

land 
Natural 

20–

25 
2 1     1.04 1.27 

5 Le Montat 
Fallow 

land 
Natural 

20–

25 
2 2     1.05 1.31 

6 Le Montat Pasture Natural 
50–

60 
3 3     1.09 1.24 

7 Le Montat Pasture Natural 
50–

60 
3 3     1.2 1.29 
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Truffle 

ground 

number 

Place Origin 

Typology and 

Tuber 

melanosporum 

inoculation age 

(yr) 

Host 

age 

(yr) 

First year 

sampling 

Second year 

sampling 

Shannon 

index (H′) 

No. of 

samples 

Inside 

No. of 

samples 

Outside 

No. of 

samples 

Inside 

No. of 

samples 

Outside 

Inside Outside 

8 Le Montat 

Q. 

pubescens 

plantation 

17 16 2 1     1.06 1.33 

9 Escayrac 

Q. 

pubescens 

plantation 

10 10 2 1     1.18 1.29 

Truffle ground 2 was also surveyed 2 yr later (March 2008). In this case, it was possible to obtain a 

number of more representative soil samples of the checked area. Twelve samples were collected 

inside and outside the brulé, as shown in Fig. S1. The same sampling and soil storing method as 

previously used were adopted. After removing any visible roots or small pebbles from the soil 

collected in both 2006 and 2008, the soil samples (c. 50 g) from each area were mixed to make 

them homogeneous. Two pools (inside and outside the brulé) per site were created. In this way, 18 

pools (nine inside the brulé and nine outside) and two pools, respectively, were obtained for the first 

and second samplings. Those from the soil samples collected in 2008 from truffle ground 2 were 

air-dried and sieved through a 2 mm sieve for further homogenization. 

Soil DNA extraction 

The total DNA was extracted from 0.5 g of soil using a Fast DNA Spin Kit for Soil (Qiagen), with 

modifications according to Luis et al. (2004). Two extractions were made for each pool, and mixed 

in order to obtain the most representative DNA of the soil sample. In this way, 18 DNA samples 

were obtained for the first sampling and two were obtained for the second sampling. All these DNA 

samples were quantified with NanoDrop (Thermo Scientific, Wilmington, DE, USA) and 

concentrations of 20 ng μl−1 were used in the subsequent PCR procedures. 

Denaturing gradient gel electrophoresis 

All the 18 DNA pools from the first sampling were analyzed in the DGGE experiment. The fungal 

ITS region was amplified with the ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2 (5′-

GCTGCGTTCTTCATCGATGC-3′) fungal-specific primers (White et al., 1990; Gardes & Bruns, 

1993) and a GC clamp of 40 bp (Muyzer et al., 1993) was added to the 5′-end of the ITS1F primer 

(ITS1F-GC). For the DGGE molecular marker preparation, fungal organisms were isolated directly 

from a single soil sample and morphologically identified (Table S1). DNA was extracted from the 

obtained cultures and the ITS region was amplified with the primers. ITS fragments which covered 

a broad range in DGGE were chosen and pooled to constitute the marker. ITS rDNA of T. 

melanosporum was added to the marker in order to follow its presence in all of the samples studied. 

Polymerase chain reaction was performed in a 40 μl reaction volume containing c. 5 ng of template 

DNA; 20 pmol of each primer; 3 mM MgCl2; 0.4 μl BSA (100×); 4 μl 10 × buffer; 4 μl dNTPs 

(2.5 mM each) and 0.3 μl Expand High Fidelity PCR System (5 U μl−1) (Roche). The PCR 
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programme was conducted according to Yergeau et al. (2007), except for the final extension, which 

was at 68°C for 10 min. 

The DGGE analysis was performed on 8% (w/v) acrylamide/bisacrylamide (37.5 : 1) gels with a 

denaturing ranging from 15 to 55%. All the gels were run in a Bio-Rad DCode System (Bio-Rad, 

Hemel Hempstead, United Kingdom) at a constant temperature of 60°C, for 17 h at 60 V in a 

1 × TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA, pH 8). The gels were stained using 

the silver nitrate method (Bassam et al., 1991) and the image was captured using a digital camera. 

DGGE analysis 

The digitized DGGE images were analyzed with Quantity One image analysis software (Version 

4.5.2, Bio-Rad), which was used to apply lanes and bands to the image with additional manual 

adjustment of the band designations. A similarity matrix that related the band patterns was 

automatically calculated with the Dice coefficient. Dendrogram and clustering were done applying 

UPGMA algorithms. 

The Shannon index (H ′) and the Fisher alpha (α), based on the intensity and number of bands, were 

calculated for each lane, according to Konstantinov et al. (2003) and Scanlan et al. (2006), 

respectively. Each band was presumed to correspond to a single fungal microorganism, and the 

band density to its abundance. A statistical analysis was carried using Student’s t-test (Microsoft 

Excel), and a probability level of 0.05 was considered to be statistically significant. 

DGGE band recovering 

Most bands from two lanes were excised from the gel with a sterile razor blade and DNA extraction 

was carried out using the QIAquick Gel Extraction Kit (Qiagen) developed for extraction of DNA 

fragments from polyacrylamide gels. The recovered DNA was eluted in 10 μl of sterile water. A 

PCR with ITS1F-GC/ITS2 primers (20 pmol of each) and 1 μl of DNA was performed. After 

fragment purification (QIAquick PCR Purification Kit, Qiagen) and ligation (pGEM-T Easy Vector 

System, Promega), transformation was carried out with XL1 Blue competent cells (Stratagene, 

Agilent Technologies, Santa Clara, CA, USA), according to the manufactures’ instructions. Six 

blank colonies were recovered for each cloning and the insert was re-amplified with the same 

primers. By doing so, we obtained a useful PCR product for a new DGGE. Four PCR products were 

run for each band in a new gel against the initial sample to ensure that the target band had been 

amplified. The fragments that ran in the same position of the corresponding band were selected and 

sequenced. Similarity comparisons of the 25 sequences obtained (accession numbers from 

FN377830 to FN377854) were performed using the National Center for Biotechnology Information 

(NCBI) online standard BLAST (Basic Local Alignment Search Tool) programme. 

Molecular cloning 

Four cloning experiments were performed for samples collected in both 2006 and 2008 on truffle 

ground 2, leading to four different clone libraries (inside 2006, outside 2006, inside 2008 and 

outside 2008). The ITS region of the fungal rDNA was amplified with the common ITS1F and ITS4 

fungal primers (White et al., 1990; Gardes & Bruns, 1993), using the Expand High Fidelity DNA 

PCR System (Roche). The cycling parameters were as follows: 94°C for 4 min followed by 30 

cycles at 94°C for 45 min, 55°C for 1 min, 72°C for 1 min, and a final extension of 72°C for 

10 min. The purified PCR products were cloned using a TOPO Cloning Kit (Invitrogen). White 

colonies were screened for each insert, and random colonies that showed an insert of c. 600–800 bp 

were sequenced. The accession numbers for the four clone library sequences are: FN391297-
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FN391375 (inside 2006), FN397102-FN397186 (outside 2006), FN397187-FN397322 (inside 

2008) and FN397323-FN397439 (outside 2008). 

Sequences analysis 

The sequences from each clone library were analyzed separately. Putative chimeric sequences were 

identified with a Bellerophon program and removed from the analysis. Multiple alignments were 

generated for each group of sequences using ClustalW (with default parameters). Alignments were 

adjusted manually using Gene-Doc to ensure that all the sequences had the same start and end 

points. A distant matrix was constructed using DNAdist from PHYLIP version 3.68 with default 

parameters. Each output file served as input for DOTUR 1.53. This programme allows sequences to 

be assembled in operational taxonomic units (OTUs), rarefaction curves to be generated, and the 

richness and diversity indices, Ace and Chao1, to be calculated. OTUs were defined for 97% of 

pairwise similarity. A representative sequence was chosen for each OTU and a search of the 

GenBank database was conducted using the online BLAST program. 

All the sequences grouped in the OTUs corresponding to T. melanosporum were brought into 

alignment separately to highlight any possible single nucleotide polymorphisms (SNPs). The 

chromatogram of each sequence was carefully analyzed, focusing on the peak for which the 

polymorphism was detected, in order to ensure that the chromatogram reading was correct. 

Results 

Denaturing gradient gel electrophoresis was applied to all the samples from the first sampling in 

order to have a comprehensive picture of the soil fungal biodiversity inside and outside the brulé 

(Table 1). The identification of the main taxa occurring in the two different areas was obtained from 

a single truffle ground with both DGGE and molecular cloning. 

Denaturing gradient gel electrophoresis 

The DGGE analysis was performed with a fragment of 300 bp, representing the fungal ITS1 region. 

All the 18 different sample pools, belonging to the nine truffle grounds sampled in 2006, ran in the 

gel, revealing a general view of the fungal communities. A comprehensive DGGE gel of all the nine 

sampled truffle grounds was performed in duplicate to verify the repeatability of the fingerprints. 

As a result, the two gels were overlapped (Fig. 1 and Fig. S2). Since this, the following further 

analyses were made for one of the two gels, which is the one that presents a clearer and sharper 

image (Fig. 1). For an easier comparison of the community profiles inside and outside the brulé, the 

soil samples collected outside the brulé were run on the gel before the corresponding soil samples 

collected inside the brulé. The DGGE profiles were compared, using the Quantity-one software, 

which led to a dendrogram (Fig. 2). Two clusters were formed: one by the samples inside the brulé, 

and the second one by the samples outside the brulé. The marker profiles clustered together, as 

expected. The Shannon index was calculated for all the nine truffle grounds (Table 1). The inside 

brulé values were significantly lower than the outside values (P-value = 0.0007). The Fisher α 

index, which is independent of the sample size, confirmed this result (Table S2). 
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Figure 1.  The denaturing gradient gel electrophoresis (DGGE) of 300 bp fungal internal transcribed spacer 

(ITS) regions from nine Tuber melanosporum truffle grounds. Lanes 2–10 represent the soil collected 

outside the brulé, while lanes 12–20 represent the soil collected inside the brulé. Lanes 1, 11 and 21, 

indicated by M, represent the markers. The position of the T. melanosporum fragment (also present in the 

marker pattern) is underlined. Lanes 9 and 19 correspond to the ‘La Bigouse’ truffle ground 2, whose bands 

(indicated with arrows) were sequenced. (gel 8% acrylamide; gradient from 15 to 55%). 
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Figure 2.   The dendrogram (UPGMA) generated from the denaturing gradient gel electrophoresis (DGGE) 

profiles. Profiles 2–10 refer to the samples collected outside of the brulé areas, while profiles 12–20 refer to 

the samples collected in the brulé areas. Numbers 1, 11 and 21 are the marker profiles. Numbers 9 and 19 are 

the profiles of truffle ground 2. 

An interesting band was observed, which in the run showed the same behavior as the T. 

melanosporum present in the marker. It had high intensity (meaning dominance) in all the samples 

corresponding to the soil collected inside the brulé (mean = 110 ± 24.44), but it was absent or had a 

low intensity in the profiles outside the brulé (mean = 25 ± 41.11). Analysis of its density showed a 

significant abundance inside compared with that outside the brulé (P-value = 0.00003). This band 

was sequenced from lines 19, 16 and 13 (Fig. 1), corresponding to the inside profiles of truffle 

grounds 2, 5 and 8. The sequences showed 100% similarity with Genebank T. melanosporum 

sequences. 

In order to obtain more information about the fungal taxa distribution, we focused on a single truffle 

ground and chose truffle ground 2 situated in ‘La Bigouse’ (Table 1). Ten and 15 bands, from inside 

and outside the brulé, respectively, were excised and sequenced (lanes 19 and 9, Fig. 1). Of all the 

sequences obtained, five out of 25 were identical in the two profiles, as expected, given that these 

bands ran in the same position in the gel. BLAST analysis showed a high similarity with sequences 

from Cylindrocarpon sp., Ceratobasidium sp., two species of Mortierella, and an uncultured 

member of Pyronemataceae. Another seven bands matched sequences belonging to Basidiomycota. 

Among these, five were found in the outside profile and corresponded to Tephrocybe sp., 

Schizophyllum commune, Inocybe splendens, Tricholoma sp. and Ceratobasidium sp.; only two 

were found inside the brulé (Rhizoctonia sp. and an uncultured Russulaceae). Another five 
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sequences were found among the Ascomycota outside the brulé, corresponding to uncultured 

Amphisphaeriaceae, Stachybotrys sp., Parepichloe sp. and two species of Peziza, while sequences 

corresponding to T. melanosporum, Spizellomyces sp. and Fusarium oxysporum were found inside 

the brulé. The remaining sequences outside the brulé belonged to Zygomycota and were represented 

by Mortierellales (data not shown). 

From a general comparison of the two areas, the number of Ascomycota remained stable at 40% in 

both areas, the number of Basidiomycota moved from 30% outside to 20% inside the brulé, while 

the number of Zygomycota increased from 20 to 30%. 

Molecular cloning of fungal rDNA ITS 

Molecular cloning was applied to truffle ground 2 in La Bigouse by sequencing the ITS region from 

samples collected inside and outside the brulé in two years (2006 and 2008). 

The number of clones sequenced from each area in both years, and the number of OTUs are shown 

in Fig. 3. In spite of the different percentages for the two years, the OTU number inside the brulé 

was consistently lower than that outside. For each year, the rarefaction curves of the inside brulé 

community show lower plots than the curves of the outside brulé community, indicating a lower 

richness inside than outside the brulé (Fig. S3). At the minimal number of 79 sequences, we found, 

respectively, 18 and 11 OTU less inside the brulé, in the first and second years. 
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Figure 3.   Numbers of clones, fungal sequences, operational taxonomic unit (OTU) and richness estimators 

Chao1 and ACE from each area (inside and outside the brulé) are given for the two years (2006 and 2008). 

Nonfungal and chimeric sequences were omitted. The ‘Venn’ diagram shows the percentages of overlap of 

the OTUs between the four internal transcribed spacer (ITS) clone libraries. 

Moreover, the rarefaction curves show no evidence of saturation, indicating that the number of 

sequences obtained for each cloning experiment did not capture the real richness of our soil 

samples. The richness of each sample population was estimated using the Chao1 and ACE 

nonparametric richness estimators. The data confirmed that our results were far from the expected 

richness of the soil sample and indicated a possible different composition of microbial communities 

in each sample (Fig. 3). 

In order to find OTUs that were common for the two years and the two areas, a set of 417 sequences 

(164 from the first year and 253 from the second year) was grouped into 185 OTUs. Most of the 

OTUs (84.9%) were found to be unique to the area and the year they were sampled in. Only a small 

portion of OTUs were found to be common to more than one library, while no OTU was shared by 

all four clone libraries (‘Venn diagram’, Fig. 3). 

The taxa composition of the fungal communities was determined (Table S3). The 2006 sampling 

showed that the few shared sequences between the two areas had high similarity with the fungal 

genera Fusarium and Mortierella. 

Considering the most represented taxa, the number of Ascomycota was almost unchanged for the 

two areas (37% in the brulé and 34% outside), the number of Zygomycota increased inside the brulé 

(from 5 to 32%) and the number of Basidiomycota sequences decreased (from 61 to 23%) 

(Figs 4a,b). The sequences belonging to Zygomycota consisted of a single genus, Mortierella, or 

were unclassified Zygomycetes. Pezizales and Hypocreales were the most represented orders 

among the Ascomycota. 
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Figure 4.  The taxa subdivision generated by the clone library from inside (a, c) and outside (b, d) the brulé 

sampled in 2006 and 2008, respectively, at La Bigouse. 

Among the Basidiomycota, the most represented groups outside the brulé were ECM fungi 

belonging to the Thelephorales and Agaricales orders. Specifically, Thelephorales were represented 

by Thelephoraceae (mainly Tomentella), whereas Agaricales were represented by Tricholomataceae 

(Tricholoma), Hymenogasteraceae (Hymenogaster), Inocybaceae (Inocybe), Strophariaceae 

(Naucoria) and Amanitaceae (Amanita) (Table S3). Among the Ascomycota, the ECM fungi 

outside the brulé belong exclusively to the Pyronemataceae (Pulvinula and unidentified taxa) and 

Tuberaceae (Tuber) of the Pezizales. Moving from outside to inside the brulé, the ECM fungi shift 

from 73 to 30%, whereas nonECM fungi (saprotrophic, parasitic, ericoid and arbuscular 

mycorrhizal fungi) move from 27 to 70%. The ratios of ECM : nonECM fungi are 2.7 outside and 

0.4 inside. 

Despite the different percentages in taxa composition obtained in the second year, the 

Basidiomycota sequences decreased inside the brulé, as shown in 2006 (Figs 4c,d). This taxon 

increased in sequences moving outside the brulé (from 2 to 18%) where, as in the first sampling, the 

most represented groups were ECM fungi belonging to the Thelephorales and Agaricales orders. 

Table S3 shows that Thelephorales are represented by tomentelloid fungi, whereas Agaricales are 

represented by Inocybaceae (Inocybe). Pyronemataceae (Pulvinula) and Tuberaceae (Tuber) are the 
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Ascomycota ECM fungi, which are present outside the brulé. As well as in 2006, the ECM fungi 

decrease, moving from outside to inside the brulé. They shift from 19 to 9%, whereas nonECM 

fungi shift from 81 to 91%. In this last group, 4% of ericoid (Helotiales) and 3% of arbuscular 

mycorrhizal fungi (Glomus and Scutellospora) are present outside, compared with 0.7% of 

arbuscular mycorrhizal fungi (Glomus) present inside the brulé. The ratios of ECM : nonECM fungi 

are 0.3 outside and 0.1 inside the brulé. The decrease of ECM fungi inside the brulé is in contrast to 

the expected dominance of the ECM Basidiomycota associated with Quercus in natural conditions 

(Richard et al., 2005; Ortega & Lorite, 2007). 

Another significant result of this investigation is that the sequences representing T. melanosporum 

were present in high numbers (16% in 2006 and 7% in 2008) inside the brulé, while only one 

sequence was found outside in the first cloning experiment, and none in 2008. 

Tuber melanosporum polymorphism 

All of the 24 T. melanosporum sequences found in the two years produced unambiguous 

chromatograms, which showed some variations in the single nucleotides. When these sequences 

were compared with the 13 haplotypes of T. melanosporum described in previous papers (Murat 

et al., 2004;Riccioni et al., 2008), 13 sequences obtained in the first and second years were 

referable to a single ubiquitous haplotype (haplotype I); nine potential new haplotypes were 

observed; none of the other 12 haplotypes described in previous papers was detected. 

Discussion 

Two molecular techniques – DGGE and molecular cloning – were used. The first one, which 

generates community profiles, was applied to all sites; the second, which must be analyzed 

exclusively by sequencing, was applied to one site only. While DGGE offered a general scenario of 

the two areas, as well as the possibility of sequencing a few bands, molecular cloning led to the 

identification of the fungal taxa. Both these techniques demonstrate that T. melanosporum is the 

dominant fungus inside the brulé and its dominance, directly or indirectly, has a great impact on the 

fungal populations; moreover, they show a lower richness inside the brulé. This data was confirmed 

2 yr later by molecular cloning, suggesting that, notwithstanding that the brulé is a dynamic area, its 

lower fungal richness is a trademark of this area. 

DGGE profiles provide a general view of fungal biodiversity in truffle grounds 

Denaturing gradient gel electrophoresis enabled us to obtain a comprehensive overview of the 

fungal communities thriving in nine T. melanosporum truffle grounds and to reveal important 

differences between the fungal communities living inside and outside the brulé. The lower number 

of bands observed in the profiles of soil collected inside the brulé allowed us to hypothesize a lower 

degree of biodiversity in this area. Two biodiversity indices confirmed this hypothesis, suggesting 

that fungal communities are affected in the brulé in which they show decreased biodiversity. 

The DGGE band profiles unambiguously identified bands corresponding to T. melanosporum, and 

allowed us to monitor its presence/absence in all the soil samples. The abundance of T. 

melanosporum inside the brulé could be linked to the brulé formation and, however, bears witness 

to its relationship with the brulé itself. This result is not surprising since T. melanosporum fruiting 

bodies are usually collected in the brulé (Sourzat, 1997; Suz et al., 2005). 
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Since the number of sequenced bands from La Bigouse truffle ground 2 was low (25) in comparison 

to the number of fungal species potentially present in the soil, the DGGE technique only indicated 

the most represented group of sequences, suggesting some dynamics: moving from outside to inside 

the brulé, the number of Ascomycota did not change, while the number of Basidiomycota decreased 

and the Zygomycota increased. Since the DGGE profiles from truffle ground 2 grouped in the 

dendrogram together with those generated from the other sites, we suggest that the community 

shown by this truffle ground could be representative of all the investigated truffle grounds. The 

result from the DGGE sequencing was confirmed, however, when the molecular cloning was 

applied in 2006 to the same soil of La Bigouse, as far as the taxa composition is concerned. 

However, most of the sequences turned out to be analysis-specific. This can be explained by the use 

of two different couples of primers and by the absence of saturation. 

La Bigouse: a blow-up of fungi living in a productive truffle ground 

The cloning experiments applied to truffle ground 2 showed that only a few sequences were present 

in both areas and in both sampling years. The fact that the number of sequences obtained for each 

cloning experiment did not mirror the real richness of the soil samples could be a further source of 

the heterogeneity found. Nevertheless, the rarefaction curves consistently showed a lower richness 

inside the brulé than outside. These data demonstrate that fungal communities are affected in the 

brulé, which leads to a decreased biodiversity. This scenario comes from an investigation in a single 

truffle ground at two different times. Interestingly, the same scenario was revealed by DGGE in 

nine truffle grounds, proving that sample size did not affect this result. One hypothesis is that the 

lower diversity may be related to the dominance of Tuber, which could have affected the fungal 

community richness, but an inverse casual link cannot be excluded. 

Considering the fungal composition, some important traits were also confirmed in the second 

experiment. First, T. melanosporum sequences were almost exclusively present inside the brulé and 

most Basidiomycota were exclusively present outside the brulé. Interestingly, the Basidiomycota 

detected outside the brulé in both years were mainly ECM fungi. 

On this basis, T. melanosporum presence inside the brulé was correlated to a reduction in ECM 

fungi, suggesting that its mycelium may have an inhibitory effect on ECM biodiversity. A 

comparable situation has been described by Lian et al. (2006): they revealed that beneath the fairy 

rings of Tricholoma matsutake shiro – a solid and tight white aggregate of mycelia and mycorrhizas 

linked to Tricholoma basidiomas below the litter layer – the ECM community was dominated by 

this fungus. Only a few other ECM fungal species with low abundance have been detected on root 

tips of pine trees. 

With the exception of T. melanosporum, only a few Ascomycota sequences belonging to ECM 

fungi were found, most of them outside the brulé. Among these, other Tuber species, for instance T. 

rufum which was identified in both years, were exclusively found outside the brulé. This molecular 

result confirms the finding of other Tuber species rather than T. melanosporum outside the brulé, 

and that there is a dynamic and temporal evolution of different species of truffles along the 

development of the brulé (Serra et al., 2007). Some other sequences, corresponding to Pulvinula 

constellatio, were identified among the Ascomycota ECM fungi. This fungus was found to be a 

colonizer of Tuber-contaminated plants in in vitro conditions (Amicucci et al., 2001). Interestingly, 

P. constellatio was not detected inside the investigated brulé, suggesting that, in natural conditions, 

T. melanosporum is able to exclude competing fungi and to establish plant colonization without 

disturbance. 
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Only a few studies have investigated fungal microbial communities that thrive in T. melanosporum 

truffle grounds (Luppi-Mosca, 1972; Luppi & Fontana, 1977). As these studies were based on 

traditional cultural-based methods, they only identified cultivable microorganisms, which are often 

saprotrophic, such as Penicillium spp., Aspergillus spp., Fusarium spp. and Mortierella spp. These 

genera, which are very frequent in traditional isolation practice, were also detected in our libraries, 

but without any predominance. Our study has therefore overcome the limits of cultural-based 

methods and, for the first time, has provided an overview of the fungal communities connected to 

the brulé. 

Tuber melanosporum haplotypes in soil reveal its real genetic variability 

Our investigation has also produced a second unexpected result. T. melanosporum ITS sequences, 

which turned out to be extensively represented in samples collected inside the brulé, presented a 

high SNP biodiversity. Among the 23 sequences obtained in our study, we observed nine different 

haplotypes, instead of the 13 haplotypes found by the previous authors from a total of 353 samples. 

In order to try to explain the unexpected ITS SNP biodiversity observed here, we should consider 

that all the sequences obtained here come directly from soil, where the most represented form is 

mycelium or spores, whereas the regions analyzed by the previous authors were from fruiting 

bodies. Truffle fruiting bodies are made up of gleba, which has a maternal origin, and asci including 

spores. As spores in the gleba are not disrupted by the usual nucleic acid extraction protocol applied 

to fruiting bodies (Paolocci et al., 2006), the haplotypes found in fruiting bodies are predominantly 

limited to those of maternal origin. We suggest that the free spores present in soil samples are more 

easily destroyed during the DNA extraction from soil, and thus our access to haplotypes not yet 

encountered, including potential male haplotypes, is increased. On this basis, it can be stated that 

soil is indeed an unexplored source of variability. Unfortunately, unlikely the hypogeous 

Rhizopogon (Bruns et al., 2009), data on the spore bank origin and dispersion are not available for 

the genus Tuber, preventing us from explaining the additional diversity encountered in the soil. 

Although we cannot exclude the possibility of PCR/cloning artifacts, the high diversity observed in 

our study appears even more surprising if we consider that all the sequences in our research come 

from a single, well-producing brulé. Furthermore, it is interesting to note that different haplotypes 

were found in the first- and the second-year experiments. These differences suggest an important 

dynamism in the T. melanosporum population, which is probably linked to the different stages of 

the Tuber life cycle. Even though it cannot be excluded that these haplotypes were present inside 

fruiting bodies that had not been collected, the minor biodiversity observed in sequences from 

fruiting body collections confirms that T. melanosporum might use sexual reproduction as a 

common strategy and suggests that only some haplotypes probably reach fruit-body formation. The 

capacity to form an ascocarp might depend on the mating types encountered. This finding offers us 

an explanation of unproductive artificial truffle grounds. The T. melanosporum genome sequencing 

that is currently in progress (Tuber Genome Consortium) has recently revealed mating-type genes 

(Murat & Martin, 2008). This discovery, in the near future, will be a valid tool that could support 

our hypothesis. 

Conclusion 

A differential abundance of T. melanosporum has been demonstrated through the use of DGGE of 

two well-defined areas in nine truffle grounds. Tuber melanosporum has proved to be the dominant 

ECM fungus in the brulé, where the truffle is generally collected and nine haplotypes have been 

identified. As a consequence, it can be stated that the development of the brulé is correlated with T. 

melanosporum. ECM fungi, other than T. melanosporum, decreased in the brulé where nonECM 

fungi increased; as a result, the ratios of ECM : nonECM fungi were different in the two areas. 
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