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On Unequally Smooth Bivariate
Quadratic Spline Spaces

C. Dagnino, P. Lamberti and S. Remogna*

Abstract

In this paper we consider spaces of unequally smooth local bivariate
quadratic splines, defined on criss-cross triangulations of a rectangular
domain.

For such spaces we present some results on the dimension and on a
local basis.
Finally an application to B-spline surface generation is provided.

Keywords: bivariate spline approximation, unequally smooth bivariate
spline space, B-spline basis
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1 Introduction

Aim of this paper is the investigation of bivariate quadratic spline spaces
with less than maximum C! smoothness on criss-cross triangulations of a
rectangular domain, with particular reference to their dimension and to the
construction of a local basis. Indeed, in many practical applications, piece-
wise polynomial surfaces need to be connected by using different smoothness
degrees and, in literature, tensor product spline surfaces of such a kind have
already been investigated (see e.g. |1, 5]). In [2] the dimension and a B-spline
basis for the space of all quadratic C' splines on a criss-cross triangulation
are obtained. Since some supports of such B-splines are not completely con-
tained in the rectangular domain, in |7] a new B-spline basis for such space
is proposed, with all supports included in the domain.

*Department of Mathematics, University of Torino, via C. Alberto 10,
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The paper is organized as follows. In Section 2 we present some results
on the dimension of the unequally smooth spline space and on the construc-
tion of a B-spline basis with different types of smoothness. In Section 3 an
application to B-spline surface generation is presented.

2 Bases of unequally smooth bivariate quadratic
spline spaces

Let ©Q = [a,b] x [c, d] be a rectangle decomposed into (m + 1)(n+ 1) subrect-
angles by two partitions

E={&, i=0,...,m+1},
7_7:{7737 j:077n+1}7

of the segments [a,b] = [§o,{mia] and [c,d] = [10, Mav1], Tespectively. Let
Tmn be the criss-cross triangulation associated with the partition £ x ) of the
domain €.

Given two sets mé = {mS}™,, m" = {mj}i_,, with ms, mj = 1,2 for all
1, j, we set

M =3+ mi N:3+zn:m;7 (1)
. ~

and let @ = {u;};1_,, 0 = {v;}}__, be the nondecreasing sequences of knots,
obtained from & and 7 by the following two requirements:

(i) uo=u=us=¢ =a, b={Emt1 = up—2 = upn—1 = Upn,
V2 =vV_1 =Yy =T = ¢, d = Npt1 = UN_2 = UN_1 = UN;
(ii) for ¢ = 1,...,m, the number ¢ occurs exactly mf times in u and for
j =1,...,n, the number n; occurs exactly mg times in v.

For 0 S 1 S M —1 and 0 S] S N—l, we set h, = U; — WUj—1, k’j =V; —Vj—1
and h_y = hyy = k1 = ky = 0. In the whole paper we use the following
notations

] hit1 /1 hia

i+l = Fithizr %7 hiithy (2)
T — J+1 T, — J—1
Jj+1 kj+kj+17 J kj,1+kj :

When in (2) we have %, we set the corresponding value equal to zero.

On the triangulation 7,,,, we can consider the spline space of all functions
s, whose restriction to any triangular cell of T, is a polynomial in two vari-

ables of total degree two. The smoothness of s is related to the multiplicity




of knots in @ and  [4]. Indeed let m$ (m7) be the multiplicity of & (1;), then

mé

; (m]) + degree of smoothness for s crossing the line u = ¢ (v =n;)

J
= 2.

We call such space 85(T;,,,). We can prove [4] that

dim 85(Tpm) =8 —mn+m+n+ (2+n) Y mi+(2+m)> ml (3)

i=1 j=1
Now we denote by

Bun =A{Bij(u, 0)} o pexan: Kuv ={(0,)):0<i<M-1,0<5 < N_%})’
4
the collection of M - N quadratic B-splines defined in [4], that we know
to span 85(Tp,). In By we find different types of B-splines. There are
(M — 2)(N — 2) inner B-splines associated with the set of indices Ky =
{(4,§) : 1 <i <M —2,1<j< N — 2}, whose restrictions to the boundary
0N) of Q) are equal to zero.
To the latter, we add 2M + 2N — 4 boundary B-splines, associated with

Knew = {(i,0), (i, N —1),0 <i < M —1;(0,5), (M —1,§),0< j < N — 1},

whose restrictions to the boundary of € are univariate B-splines [7].

Any B;; in By is given in Bernstein-Bézier form. Its support is obtained
from the one of the quadratic C* B-spline B;;, with octagonal support (Fig.
1) [2, 7], by conveniently setting h; and/or k; equal to zero in Fig. 1, when
there are double (or triple) knots in its support. The B;;’s BB-coefficients
different from zero are computed by using Table 1, evaluating the corre-
sponding ones related to the new support [3]. The symbol “O” denotes a zero
BB-coefficient.

Since u and v can have multiple knots, then the B;; smoothness changes
and the B-spline support changes as well, because the number of triangular
cells on which the function is nonzero is reduced. For example, in Fig. 2 we
propose: (a) the graph of a B-spline B;;, with the double knot v;_; = v;, (b)
its support with its BB-coefficients different from zero, computed by setting
k; = 0 in Fig. 1 and Table 1. Analogously in Figs. 3+6 we propose some
other multiple knot B-splines. In Figs. 2(b)+6(b) a thin line means that
the B-spline is C! across it, while a thick line means that the function is
continuous across it, but not C' and a dotted line means that the function
has a jump across it.

All B;;’s are non negative and form a partition of unity.
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Figure 1: Support of the C' B-spline B;;(u,v).
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Table 1: B-net of the C'! B-spline B;;(u,v).

Since #B v = M-N, from (3) and (1) it results that §B,x > dim 85(T)-

Therefore the set By is linearly dependent and we can prove [4] that the
number of linearly independent B-splines in B,y coincides with dim S5 (Ton)-
Then we can conclude that the algebraic span of By is all 85(Tun)-
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Figure 2: A double knot quadratic C° B-spline B;; with v;,_; = v; and its
support.
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Figure 3: A double knot quadratic C° B-spline B;; with w; o = u;_1, vj_1 =
v; and its support.
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Figure 4: A double knot quadratic C° B-spline B;; with w;_1 = u;, v;_1 = v,
and its support.
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Figure 5: A double knot quadratic C° B-spline B;; with v;_s = v;_1, v; =
vj4+1 and its support.

Figure 6: A triple knot quadratic B-spline B;; with w1 = w;, v_o = vj_1 =
v; and its support.



3 An application to surface generation

In this section we propose an application of the above obtained results to the
construction of unequally smooth quadratic B-spline surfaces.

An unequally smooth B-spline surface can be obtained by taking a bidi-
rectional net of control points P;;, two knot vectors # and v in the parametric
domain €, as in Section 2, and assuming the B;;’s (4) as blending functions.
It has the following form

S(u,v)= Y Py Bij(uv), (uv)eQ. (5)
(4,9)EXm N

Ui—1+U;

Here we assume (s;,t;) € € as the pre-image of P;;, with s; = ==

and t; = UL

We remark that in case of functional parametrization, S(u, v) is the spline
function defined by the well known bivariate Schoenberg-Marsden operator
(see e.g. [6, 9]), which is “variation diminishing” and reproduces bilinear
functions.

Since the B-splines in B,y are non negative and satisfy the property of
unity partition, the surface (5) has both the convex hull property and the
affine transformation invariance one.

Moreover S(u,v) has C' smoothness when both parameters 4 and v have
no double knots. When both/either @ and/or v have/has double knots, then
the surface is only continuous at such knots [8].

Finally, from the B-spline locality property, the surface interpolates both
the four points Poy, Par—10, Pon—1, Pa—1,n-1 and the control points P;; if
both u; and v; occur at least twice in u and v, respectively.

Ezample 1.
We consider a test surface, given by the following functional parametriza-
tion:

r=u

y=v )

z = f(u,v)
with ]

ulv if uv >0
flu,v) = { 0 elsewhere °

We assume Q = [~1,1] x [~1,1] as parameter domain and m = n = 5.
Moreover we set £ = {—1,—0.5,—0.25,0,0.25,0.5,1} and 7 = £&. We choose

m* = {1,1,2,1,1} and m" = ms. Therefore we have M = N = 9 and

u={-1,—-1,-1,-0.5,-0.25,0,0,0.25,0.5,1,1,1}, v =a.
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In this case P;; = f(s;,t;). The graph of the corresponding surface (5) is
reported in Fig. 7(a). It is obtained by evaluating S on a 55 x 55 uniform
rectangular grid of points in the domain Q. In Fig. 7(b) we present the
quadratic C* B-spline surface, obtained if all knots in % and @, inside , are
assumed simple.

Figure 7: S with double (@) and simple (b) knots at {3 = 73 = 0.

We remark how the presence of double knots allows to well simulate a
discontinuity of the first partial derivatives across the lines v = 0 and v = 0.

Ezxample 2.
We want to reconstruct the spinning top in Fig. 8 by a non uniform

quadratic B-spline surface (5).

Figure 8: A spinning top.

In order to do it we consider the following control points

POO = PlO = P20 = P30 = P40 = P50 = (07 07 0)7

Py = (07 %7 %)7 Py = (%7 %7 %)7 Py = (%7 _%7 %)7
P3i=(-3.—3,3) Pu=(-3373), Pa="Po,
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— 3 7 3 3 7 3 3 7
P02 - (07317 ﬁg)v . P12 - (1731735 77 P22 (47 R ﬁ)v
Py =(-5.-7.15), Pe=(-7,91), Ps2 =P,
13 5 13 13 5 _ (13 13 5
P03 - (0711?7 6)173 5 P13 - (Eigl_i:gg 57) P23 - (Ev 10 6)7
Pss = (=55, —15:5): Ps=(—1.15) Pss=Pos,
P04 - (Oa ]-7 1)a P14 = (]-7 1a ]-)7 P24 - (]-7 ]-7 1)a
P34 = (_17 _17 1)a P44 = (_1a ]-7 1) P54 - P047
Pos = (071%7 1)17 Py = (%71%711)7 Pas (%7 %7 1)7
Ps;s = (—5,—3.1), Pis=(—3,5,1) Pss =Py,
Py = (Oa %7 1)a P = (éa %7 1)a P (éa éa ]-)7
P36 - (_%a _%a ]-)7 P46 = (_%a %7 1) P56 - POﬁa
— 1 3 _ (1 1 3 1 1 3
Por = (071§7 5)17 5 Pi7 = (§71§71§>§ Py (gv g 5)7
P37:(_§7—§7§)7 P47:(—§7§7§) P57 = Por,
Py = (Oa %72)a Pis = (éa é72)a Pog (éa %a2)>
P38 - (_%a _%a 2)7 P48 = (_%a %72) P58 - POSa

Poy = P19 = Pyy = P3g = Pyg = P59 = (0,0, 2),
defining the control net in Fig. 9. Here M = 6 and N = 10.

1.8+
16

1.4+
12+

0895
06~
04
02

Figure 9: The control net corresponding to {Pj;} i j)exe 10-

Then, to well model our object, we assume u = {0,0,0,1,2,3,4,4,4} and
v =1{0,0,0,1,2,3,3,4,4,5,6,6,6}. The graph of the B-spline surface of type
(5) is reported in Fig. 10(a), while in Fig. 10(b) the corresponding criss-cross
triangulation of the parameter domain is given.
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Figure 10: The surface S(u,v) with double knots in © and its parameter
domain.

In Fig. 11 we present the quadratic C'* B-spline surface based on the same
control points and obtained if all knots in w and o, inside €2, are assumed
simple, i.e.

i=1{0,0,0,1,2,3,4,4,4}, o =1{0,0,0,1,2,3,4,5,6,7,8,8,8}.
In Fig. 12(a) and (b) the effects of multiple knots are emphasized. We

Tee"e'e " e"0e" 0" 0" " 00

Y
o
o
0

Figure 11: The surface S(u,v) with simple knots inside 2 and its parameter
domain.

remark that in such a way we can better model the real object.

The construction of the B-spline basis and the B-spline surfaces has been
realized by Matlab codes.
4 Conclusions

In this paper we have presented some results on the dimension of the un-
equally smooth spline space 85(7T,,,) and on the construction of a B-spline
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(a) (b)
Figure 12: In (a) zoom of Fig. 10(a) and in (b) zoom of Fig. 11(a).

basis with different types of smoothness.

We plan to use these results in the construction of blending functions for
multiple knot NURBS surfaces with a criss-cross triangulation as parameter
domain. Moreover such results could be also applied in reverse-engineering
techniques, by using surfaces based on spline operators reproducing higher
degree polynomial spaces [6, 9].
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