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Abstract

The Ornstein-Uhlenbeck process is presented with its main mathematical properties and with

original results on the first crossing times in case of two threshold barriers. The interpretation as

filtered white noise, its stationary spectrum, and Allan variance are also presented for easiness of

use in the time and frequency metrology field. An improved simulation scheme for the evaluation

of first passage times between two barriers is also introduced.

∗Electronic address: enrico.bibbona@unito.it
†Electronic address: gpanfilo@bipm.org
‡Electronic address: p.tavella@inrim.it

1

mailto:enrico.bibbona@unito.it
mailto:gpanfilo@bipm.org
mailto:p.tavella@inrim.it


I. INTRODUCTION

In time metrology and in particular in the evaluations of the atomic clock behavior, the

precision of measurements is often limited by the presence of noises. Typical experimentally

observed noises are white (phase or frequency) noises or an integration of white noise leading

to a Wiener process. The clock signal mathematical models available in the literature that

have been largely used in many different applications (see for example, Ref. [1–4]) generally

just partially imbed those types of noise (see Section VI for more details). Moreover the

concept of white noise is an idealization and suffers many drawbacks: from the strictly

mathematical viewpoint continuous white noise is a rather a pathological object and it does

not fulfill the usual definition of stochastic process. From the physical viewpoint white noise

do not even exist, and any practical realization appears to be “white” only on a limited

band of the frequency spectrum. We therefore say that the white noise is “filtered” either

by the measurement device, or by the physical process itself that generates the noise.

The aim of the present paper is to present an improved mathematical model for the white

noise that accounts for the filtering of high frequencies such as that obtained with an RC

first-order low pass filter. Such a filtering can be observed in the spectrum (provided that

the sampling rate is sufficiently high), in the Allan Variance and it brings a non-vanishing

correlation between subsequent recordings of the time series of measurements. Of course,

the lower is the cut-off frequency of the filter and the longer is the time when correlation

is important. The stochastic model we propose is the Ornstein-Uhlenbeck (OU) process. It

was historically introduced in order to provide a model for the velocities of the Brownian

motions of particles suspended in a fluid more realistic with respect to the one offered by

white noise (see for example Refs. [5, 6]).

The importance of a mathematical model for noises in metrology relies on the possibility

of evaluating the measurement system capabilities, to understand the impact for example

of an atomic clock in a more complex system, or to evaluate the propagation of noise inside

a physical device. In several applications it is important to evaluate the probability of the

system noise not to exceed a critical value. Suppose for example that at a given time you

synchronize a clock in such a way that its error with respect to some reference time is zero.

How long will the clock safely work before it accumulates an error that exceeds some given

threshold value? The answer of such a question can be given on the theoretical ground. In
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mathematics this problem is called first passage time of the process across two barriers. We

will exhibit new results on the mean and the variance of the first passage time for the OU

process between two barriers.

The paper is organized as follows. In Section II we recall the main properties of the

Ornstein-Uhlenbeck process. In Section III we look at its Spectrum, calculate its Allan

variance and we interpret a discrete sequence sampled from an OU process as the output

of a digital first order Infinite Impulse Response (IIR) low pass filter. In Section IV we

study the first passage time problem from a theoretical point of view. In Section V we

provide a very efficient technique to simulate first passage times for an Ornstein-Uhlenbeck

process and we compare the simulative results with the theoretical ones. On the whole we

provide the mathematical background for the use and evaluation of the OU process model

in application to atomic clock signals. In Section VI we briefly present possible applications.

II. THE ORNSTEIN-UHLENBECK PROCESS

The Wiener process Wt is the limit of a (discrete) random walk when the steps becomes

infinitesimally small and infinitely frequent. In the metrological literature it is often referred

to simply as the Random Walk noise. It was introduced as a first mathematical model of

the random movement of particles suspended in a fluid (Brownian motion, see for example

Ref. [7]). The velocity of a Brownian motion is hence modeled by its derivative that is

a continuous white noise. Due to its complicated mathematical description (it is not a

stochastic process in the usual sense) and to its physical inconsistencies a different model is

usually considered for the velocities of Brownian particles: the so called Ornstein-Uhlenbeck

process. The Ornstein-Uhlenbeck process Ut (with t ≥ 0) is the solution of the following

stochastic differential equation named after Langevin (see for example Ref. [8])

dUt =

(
−Ut
τ

+ µ

)
dt+ σdWt (1)

where Wt is a Wiener process, σ ≥ 0 is the diffusion coefficient, τ ≥ 0 is the time constant

and is µ the drift coefficient. To focus on the stochastic component, µ is set to zero for the

rest of the paper.

If we disregard the noise (σ = 0 in addition to µ = 0) equation (1) becomes the same as

the one that governs the discharge of a capacitor and the solution is the exponential decay
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Ut = u0e
−t/τ , where u0 is the starting point at time t = 0. The full solution for the stochastic

differential equation (see for example Ref. [9] for the derivation) is the sum

Ut = u0e
− t
τ + e−

t
τ σ

∫ t

0

e−
t
τ dWs (2)

of the deterministic behavior plus a stochastic term that is a martingale (and thence it

has a vanishing expectation, see [8]). If the process is observed at discrete equally spaced

times tn = nh, where h is the sampling time, the solution can be put into the following

iterative form

Utn = Utn−1e
−h
τ + Zn (3)

where Zn = σe−
tn
τ

∫ tn
tn−1

e−
s
τ dWs is a sequence of independent and identically distributed

normal random variables with

E(Zn) = 0

Var(Zn) =
σ2τ

2
(1− e−2h

τ ).

Let us apply such an iterative expression in order to interpret the role of the coefficients.

In Fig. 1 it is shown how the position Utn at each instant tn is related to the previous

position according to formula (3).

To avoid possible misunderstanding we warn the reader that we are now focusing on

the discrete trajectory of the process (the set of all red dots). The continuos blue line are

not part of the trajectory itself but they are plotted in order to illustrate the effect of the

deterministic behavior (the first addendum in formula (3), it gives the expectation of the

process) between any couple of points that is given by an exponential decay toward zero.

Moreover in each interval between two observations, the stochastic behavior accumulates

according to the second summand of formula (3) in independent and identically distributed

gaussian jumps of amplitude Zn (dashed vertical blue lines in the figure). The relative

importance between the two contributions depends upon the value of the parameter σ and

the ratio h
τ

between the discretization interval h and the time constant τ .

Let us consider the limit behaviors for fixed σ while h
τ

goes to infinity in a case and

to zero in the other. If the time constant τ of the exponential decay is very small with

respect to the discretization interval h then between any two observed points the decay

has already taken place and the independent gaussian jumps always start from zero. The
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process in this case reduces to a white noise. On the other hand, when h
τ
→∞ there is not

any deterministic decay between two points and the gaussian jumps are just the stationary

independent increments of the process, that reduces to a Wiener process (random walk

noise).

To enhance the comparison with the limit behaviors, in Fig. 2 we plot twenty trajectories

of a Wiener processes (red) and compare them with twenty Ornstein-Uhlenbeck processes

(blue) with the same σ. Trajectories of the Wiener process tend to spread up with time due

to its increasing variance, while those of the Ornstein-Uhlenbeck remain confined near the

origin. The distribution of the process Ut seems to remain stationary with t.

In Fig. 3 we plot a trajectory of a white noise and one of an Ornstein-Uhlenbeck with

the same variance. In the Ornstein-Uhlenbeck noise low frequency oscillations seem to be

dominant.

In the original works [5, 6] on the model for the velocity of a Brownian particle, the

term −Ut
τ

in equation (1) was interpreted as a viscous friction that slows down the motion

proportionally to its velocity. Its presence has two main effect: it keeps the process near the

origin and it is linked with the covariance of nearby points.

Let us summarize some properties of the process (2). It is Gaussian and its moments

are those reported below. For t → ∞ , moreover, the Ornstein-Uhlenbeck process admit a

stationary distribution that is again Gaussian and whose moments are also reported below.

E(Ut) = u0e
− t
τ t→∞ E(Ut) = 0

Var(Ut) =
σ2τ

2
(1− e−2h

τ ) t→∞ Var(Ut) =
σ2τ

2
(4)

Cov(Ut+h, Ut) =
σ2τ

2
e−

(2t+h)
τ

(
e

2t
τ − 1

)
(t ≥ s) t→∞ Cov(Ut+h, Ut) =

σ2τ

2
e−

h
t

The transition density of the Ornstein-Uhlenbeck process starting at epoch s from position

y and arriving in x at epoch t is the following

f(x, t|y, s) =
e
−

(x−ye−(t−s)/τ)
2

√
σ2τ(1−e−2(t−s)/τ )

π
√
σ2τ(1− e−2(t−s)/τ )

III. OU SPECTRUM, ALLAN VARIANCE AND A LOW PASS DIGITAL FILTER

The (two-sided) spectrum of the Ornstein-Uhlenbeck is defined for t → ∞ when the

process reaches the stationarity and it was find by the original authors themselves in Ref.[10].
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It can be derived as the Fourier transform of the correlation of its stationary distribution

and it is equal to

Sx(f) =
σ2τ 2

1 + 4π2τ 2f 2
. (5)

Apart from a normalization factor, it is a Lorentzian function that in log-log plot appears as

in Fig. 4. It is the same spectrum of a first order RC filter with a cut-off frequency fc = 1
2πτ

and this justifies our interpretation of such a stochastic process as a model for a filtered

white noise. For low frequencies, in fact, the spectrum is flat, however high frequencies are

cutted-off with slope −2. If the filter action is dominating the white noise spectrum (fc

very low), than the spectrum is almost given by 1/f 2 which corresponds to the spectrum of

a random walk (or Wiener) phase process. The OU process has the behavior of a Wiener

process (random walk on phase) for high frequencies (short observation times), while it is

very close to a white phase noise for low frequencies (long observation times).

Let us derive the Allan deviation σy(h) [11] of an OU process. The Allan deviation is

defined in terms of phase or normalized frequency deviations as follows. Let’s Xt be the

phase deviation of a clock and Ȳt the average frequency deviation with respect to a certain

reference clock. The following relationship holds Ȳt = Xt−Xt−h
h

where h is the “discretization

step” or the “observation interval”. In this paper we use h instead of the more familiar τ

used in time metrology for coherence with the OU literature. The Allan deviation is defined

as:

σ2
y(h) =

1

2
E
[(
Ȳt+h − Ȳt

)2]
or, in terms of phase data Xt, as

σ2
y(h) =

1

2h2
E
(
(Xt+h − 2Xt +Xt−h)

2
)
. (6)

Let’s consider that the phase deviation of a clock is affected by an OU process (already

in its stationary phase). We can substitute the asymptotic expression of the moments (4)

into equation (6) getting

σ2
y(h) =

1

2h2
E
(
U2
t+h + 4U2

t + U2
t−h − 4Ut+hUt − 4UtUt−h + 2Ut+hUt−h

)
=

1

2h2

(
6
σ2

2α
− 8

σ2

2α
e−αh + 2

σ2

2α
e−2αh

)
=

σ2

2αh2

(
3− 4e−αh + e−2αh

)
. (7)
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The function (7) is plotted in log-log scale in Fig. 5 . The Allan variance for very

long observation intervals (corresponding to low frequencies) has the same slope (h−2 for the

variance, h−1 for the Allan deviation) of a white phase noise, while for h→ 0 (correspondent

to short observation intervals and to high frequencies behavior) the slope is h−1 for the Allan

variance and h−1/2 for the Allan deviation as it is observed in the case of a random walk

(Wiener) phase noise corresponding to a white frequency noise.

Another derivation for the same result can be obtained by the following relationship [11]

σ2
y(h) =

∫ ∞
0

2(2πf)2|H(f)|2Sx(f)

that links the two-sided spectrum Sx(f) of the phase noise to the Allan variance. The

function H(f) is the so called “transfer function” of the Allan variance and it has the

following squared modulus

|H(f)|2 =
2 sin4(πfh)

(πfh)2
.

For the Ornstein-Uhlenbeck process we then have

σ2
y(h) =

16σ2

h2

∫ ∞
0

2 sin4(πfh)

α2 + 4π2f 2
=

σ2

2αh

(
3− 4e−αh + e−2αh

)
.

Let us conclude this section with a further reading of equation (3). Such a formula can

be interpreted considering Zn as a white noise input to a digital first order Infinite Impulse

Response (IIR) filter whose output is the sequence Un of the discretized Ornstein-Uhlenbeck

process. In Fig. 6 we depicted the scheme of a general IIR filter that manipulates a white

discretized noise Xn providing a discrete output Yn according to the following formula

Yn = aYn−1 + bXn (8)

where a and b are suitable constants of the filter design that in our case take the following

values: a = e−
h
τ and b = 1. The transfer function of such a filter in the z-domain is the

following (see Ref.[12])

G(z) =
1

1− e−
h
τ z−1

and if we pose z = ei2πhf in order to come back to Fourier frequencies and take the

squared modulus we get
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|G(z)|2 =
1

2
(

1− 2e−
h
τ cos(2πhf) + e−2h

τ

) ,
that is the power spectrum of the digital filter in the range − 1

2h
< f < 1

2h
. In the same

range the plots of |G(z)|2 and that of Sx(f) from (5), normalized over their values in f = 0,

are almost indistinguishable.

The sequence Un of the discretized Ornstein-Uhlenbeck process can be thence interpreted

as the output of a first order low pass IIR digital filter applied to a white sequence and this

fact is a further confirmation of the validity of our model for a discretized sequence coming

from a low-pass filtered white noise.

IV. THE FIRST PASSAGE TIME PROBLEM

In this Section we consider the problem of the first passage time across two constant

absorbing boundaries for an Ornstein-Uhlenbeck process Ut.

Let Ut start at −S < u0 < L at time t = 0 and let T (u0,−S, L) be the first time such that

the process takes value beyond the interval (−S, L). The first passage time T (u0,−S, L) is

a random variable and the goal of this section is to find its mean and variance.

Let the survival probability Ps(u0, t) be the probability that the process starting in u0 has

not already crossed any of the thresholds at time t, or in other word that the first passage

time occurs later then time t.

If we interpret the process as the error of an atomic clock, the survival probability at

time t is the probability that the clock error has not yet exceeded a tolerable limit at epoch

t after synchronization.

Let us remark that the Ornstein-Uhlenbeck process admits a stationary distribution with

vanishing expectation which means that we are almost sure that after having escaped out-

side the barriers the process will quite soon go back near the origin. This behavior could

erroneously suggest that the crossing of the barriers is not a very important fact. However,

one can easily imagine applications where an exceedingly large error could not be tolerable

even if it persists for a short duration.

Many different techniques have been developed in the literature (see Ref. [13] for a review)

to find first passage time distributions, their moments and the survival probability density.

8



We choose here the method of the infinitesimal generator (see Ref. [8] for a more detailed

introduction) that reduces these problems to the solution of suitable partial differential

equations. To our knowledge the moments of the first passage time distribution for the OU

process across two barriers have not yet been studied besides in the unpublished master

thesis Ref. [14] that was advised by one of the present authors.

To any one dimensional diffusion process Xt solution of a stochastic differential equation

of the form

dXt = µ(Xt)dt+ σ(Xt)dWt

we can associate the following differential operator

Lt =
1

2
σ2(Xt)

∂2

∂x2
+ µ(Xt)

∂

∂x
(9)

called the infinitesimal generator of the diffusion. Kolmogorov forward equation for the

transition density f(x, s|y, t) can be written as Ltf = ∂f
∂t

and if one can solve this differential

equation the transition density is obtained. The survival probability Ps(u0, t) between two

constant boundary at −S and L, moreover, has to be a solution of the following partial

differential equation with boundary conditions:

LtPs(u0, t) =
∂

∂t
Ps(u0, t)

P (u0, 0) = 1(−S,L)

P (−S, t) = 0

P (L, t) = 0

(10)

where the derivatives with respect to x in (9) have to be understood as derivatives with

respect to the initial position u0.

This equation, however, is not easy to be solved analytically for the Ornstein-Uhlenbeck

process, thus we move to the easier problem of finding the moments of the first passage time.

The expectation value as a function of the initial point u0 is denoted by m(u0) =

E[T (u0,−S, L)] and it can be obtained by solving the following partial differential equa-

tion:


Ltm(u0) = −1

m(−S) = 0

m(L) = 0

(11)
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that for an Ornstein-Uhlenbeck process reduces to


σ2

2

∂2m

∂u0
2
− x

τ

∂m

∂u0

= −1

m(−S) = 0

m(L) = 0

Separation of variables allows to find the following solution

m(u0) =
2

σ


∫ L

−S
e
−z2
σ2τ dz −

∫ L
−S

(∫ z
−S e

u2

σ2τ du

)
e
−z2
σ2τ dz∫ L

−S e
z2

σ2τ dz

∫ u0

−S
e
z2

σ2τ dz+

+

∫ u0

−S

(∫ z

−S
e
u2

σ2τ du

)
e
−z2
σ2τ dz −

∫ u0

−S
e
u2

σ2τ du

∫ u0

−S
e
−z2
σ2τ dz

}
. (12)

In the metrological application we assume that the threshold values for the tolerability

of the synchronization error are symmetric and take S = L. Once we fix the parameters of

the process, numerical integration provides the evaluation of the expected value.

Let us generalise this result to higher order moments mn(u0). We have to solve iteratively

the following partial differential equations:

σ2

2

∂2mn

∂u0
2
− x

τ

∂mn

∂u0

= −1 (13)

with the same boundary conditions considered in (11).

the following solutions may be obtained by separation of variables

mn(u0) =
νn(L)∫ L
−S e

u2

σ2τ du

∫ u0

−S
e
u2

σ2τ du+ νn(u0).

The function νn(x) is defined by

νn(u0) =
2n

σ2

(∫ u0

−S
mn−1(u)e−

u2

σ2τ

∫ u

−S
e
z2

σ2τ dzdu−
∫ u0

−S
e
u2

σ2τ du

∫ u0

−S
mn−1(u)e−

u2

σ2τ du

)
In particular we can give an analytical expression for the variance of the first passage

time between two constant barriers as follows

Var [T (u0,−S, L)] = m2(u0)−m(u0)
2. (14)

Numerical integration provides the values of such an expression once we fix the values of

the parameters. In the next Section a comparison between the analytical expressions of
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expectation and variance of the first passage time between two symmetric thresholds and

their simulative counterparts is discussed.

V. SIMULATION OF FIRST PASSAGE TIMES BETWEEN TWO BARRIERS

A simulation method for the paths of an Ornstein-Uhlenbeck process is easily derived

by the iterative formula (3). Each point Un is in fact calculated (see again Fig. 1) by

considering the deterministic exponential decay Un−1e
−h
τ from the previous point (h is the

discretization interval) and adding to it a realization of a normal random variable Zn with

zero mean and variance equal to σ2τ
2

(1 − e−2h
τ ). The random variables Zn are independent

and they can be simulated by standard techniques.

First passage times between two symmetric thresholds S and −S can be evaluated, as a

first approximation, stopping the simulation the first time that Un is greater than S or smaller

than −S and considering the first passage time T as T = nh, where h is the discretization

interval. A short discretization interval is required to obtain reasonable results. In our case

we took h = 10−4s.

In particular we evaluated the mean and the variance of the first passage time simulating

105 trajectories starting at u0 = 0 with OU parameters τ = 1s and σ = 1.5. Different

symmetric thresholds S and −S have been imposed (S = 0.3 0.5 0.7 0.8 1 1.2).

Results are presented in Fig. 7 and Fig. 8 where they are compared with the theoretical

values obtained by numerical integration of the formulae (12) and (14). Despite the very

short discretization interval, the first passage time evaluated from simulations appears to be

always overestimated. This effect can be explained as follows: the process is continuos in

time while we are observing it just at discrete intervals. There is a non-vanishing probability

that a passage occurs between two points that are both below the threshold (see Fig. 9).

These hidden passages cannot be observed by this method and the simulation continues also

if a crossing may be occurred. The estimated first passage time is thence longer than the

true value.

However in [15] a method was developed in the case of a single threshold S in order to

take into account hidden passages in the simulations. The idea is simple and we summarize

it without entering computational details. For an Ornstein-Uhlenbeck process with fixed

values Un−1 = un−1 and Un = un at times tn−1 and tn the probability Ph of an hidden
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passage between the two fixed points solves an integral equation that was firstly derived in

Ref. [16]. In [15] an algorithm based on a computationally efficient approximation of this

probability for small discretization steps was presented that allows to simulate with high

precisions the statistics of first passage times taking into accounts the actual probability of

hidden crossings. Let us describe the algorithm. At each simulation step one start from

the given value un−1 below the threshold. Then Un is generated according to the iterative

formula (3). If it happens to be below the threshold, instead of simply going on with the

next point, one evaluate the probability Ph of an hidden crossing between our two points.

Then one generates a realization a of a uniform random variable on the interval [0, 1]. If

a ≥ Ph then one proceeds as if no crossing has taken place and go on with the next point.

Otherwise one stops and takes T = nh as the first passage time for the considered trajectory.

This technique was proved to be very efficient in the evaluation of first passage times across

a single threshold.

To adapt the method to the case of two symmetric barriers we used an approximation by

considering the crossing of the lower and of the upper barrier as two independent processes

and just summing up the two separate crossing probabilities. Even if this method is not

completely rigorous, when the two barriers are far from each other and the time step is

small, the approximation give very good results as we are going to illustrate.

The results of the mean and the variance of the first passage time corrected by this

method are plotted in Fig. 10 and Fig. 11 and again compared with theoretical values. The

agreement is very good and the validity of the approximations is confirmed.

VI. POSSIBLE APPLICATIONS

The range of possible applications of the Ornstein-Uhlenbeck model is very wide and

it embraces every branch of metrology where white noise plays a role. As already stated

every white noise necessarily comes with a filtering and the Ornstein-Uhlenbeck process is

expected to fit such a kind of data.

To restrict the focus on time metrology and on atomic clocks we refer to the available

mathematical models of the atomic clock behavior (cf. Refs. [1–4]). Atomic clocks are

typically affected by the following five classes of noise:

• white phase modulation (WPM)
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• flicker phase modulation (FPM)

• white frequency modulation (WFM), which produces a random walk on phase

(RWPM)

• flicker frequency modulation (FFM)

• random walk frequency modulation (RWFM).

While WFM and RWFM are already embraced in the known models (cf. [3, 4]) WPM

is not and the Ornstein-Uhlenbeck process is a good candidate to model such a noise (that

necessarily is somewhere filtered). A secondary application could be to WFM. In fact WFM

noise was previously modeled as a random walk on the phase (its integral), however the white

frequency noise is again not perfectly white and maybe an Ornstein-Uhlenbeck process (or

its integral if seen on the phase) could better fit the data. This second application however

requires more work as some of the expressions here presented are specifically related to a

filtered white noise on the phase. The clock model can be thence enhanced by considering an

Ornstein-Uhlenbeck contribution to the already modeled noises. The addition of a further

component to the model may bring a non-trivial complication and some analytical results

would not be available any more. Let us however remark that the simulation scheme here

presented could be directly used to simulate the further component of the noise.

The OU process is somehow similar to a Wiener process but with a constraining force that

keeps it close to zero. In this perspective it can also be seen as a model for a constrained clock,

for example a steered frequency standard whose time or frequency offset would naturally

evolve according to a Wiener process but which is constrained by a steering action to remain

close to a predefined value. The interpretation of the OU as the output of a low pass filter

according to the equations given in Sec. III is another hint for applications. Developing the

equation (8) with the given values of the coefficients we can interpret the OU process as the

result of an exponentially weighted moving average of past data, in time and frequency. An

average of this kind is used for the prediction of future values or for interpolating missing

data. The OU process would be a good model for such estimated values.

We want moreover to observe that in the metrological literature (see for example [17, 18])

filtered white noise can often be found and it is usually dealt with starting from its power

spectrum or its autocorrelation function. The modeling through a OU process and the
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analytical results we have presented here could be of advantages also in those cases.

VII. CONCLUSIONS

This paper presents the mathematical properties of the Ornstein-Uhlenbeck process in-

cluding results on the first crossing time between two barries, the spectrum, the Allan

variance and an improved simulation scheme for the statistics of first crossing times between

two barriers. The OU process may be interpreted as a white noise filtered by a Lorenzian

filter, therefore this process is deemed useful for modeling atomic clock behaviour and to

understand how it may affect more complex systems.
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Figure 1: A discretized trajectory (red dots) of an Ornstein-Uhlenbeck process is plotted according

to the iterative formula (3). Each point is related to the previous one by a deterministic decay

towards the origin (continuos blue line, not part of the trajectory) added to the stochastic behavior

that accumulates during the discretization intervals bringing i.i.d. gaussian jumps having zero mean

and constant variance at each step.
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Figure 2: Trajectories of an Ornstein-Uhlenbeck (in blue) are compared with trajectories of a

Wiener process (in red). The former admit a stationary distribution, while the variance of the

latter is increasing with time.
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Figure 3: A trajectory of an Ornstein-Uhlenbeck (in blue) is compared with one of a white noise

(in red) with the same variance. In the former low frequency oscillations are dominant.
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Figure 4: The spectrum of stationary Ornstein-Uhlenbeck (cf. equation (5) process is plotted in

log-log scale.
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Figure 5: The Allan variance of the frequency a phase Ornstein-Uhlenbeck process (cf. equation

(7) is plotted in log-log scale.
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Figure 6: The scheme of a low-pass first-order lIR digital filter.
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Figure 7: The mean first passage times between two symmetric barriers at −S and S are computed

for different values of S. The initial position is taken as u0 = 0. Theoretical values are compared

with those arising from simulations. First passage times are overestimated from standard simula-

tions due to the presence of hidden passages.
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Figure 8: The variances of the first passage times between two symmetric barriers at −S and S

are computed for different values of S. The initial position is taken as u0 = 0. Theoretical values

are compared with those arising from simulations. The variances of the first passage times are

overestimated from standard simulations due to the presence of hidden passages.
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Figure 9: The process is continuos but we observe it at discrete intervals. Hidden passages may

occur between two observations.
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Figure 10: The improved method for the simulations of first passages between two symmetric

thresholds provides estimated values for the first passage times that are in very close agreement

with the theoretical predictions.
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Figure 11: The improved method for the simulations of first passages between two symmetric

barriers provides estimated values for the variance of the first passage times that are in very close

agreement with the theoretical predictions.
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