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Abstract

In this paper we propose a general model consisting of insects,

pests and spiders interacting in an agroecosystem included in a typical

homogeneous rural landscape, characterized by a continuous mosaic

of cultivated land and a few small patches of grasslands and small

woods bounding the fields. The model is general enough to show

all the phenomena observed in the agroecosystem. The role of the

spider population as a biological controller in the agroecosystem is

particularly emphasized. Human intervention by means of pesticide

spraying and its relationship with the biological pest controllers is also

accounted for.
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1 Introduction

Spiders have commonly been considered as polyphagous predators [2]. For
this reason it has been argued that spiders cannot be efficient in controlling
pests [4]. However in China, for example, these invertebrate predators have
been actively preserved in order to combat particular pests [24]. In addi-
tion it has been demonstrated in Israelian and European apple orchards that
they are able to significantly decrease insect damage to harvests, [11, 12].
Marc and Canard, [13] redefined the role of spiders in the agroecosystems,
specifying that taking into account their hunting strategies and location in
the vegetation they can be regarded as specialist predators. As a conse-
quence, not all species are useful against a particular pest, but preserving
their diversity could be important for controlling different pests. Analysis
of spider communities in vineyards [7] and in orchards [12] with regard to
their different hunting strategies, their biological cycle and their localiza-
tion in the environment, allows the definition of several functional groups.
This is shown to have an effect on the kind of prey consumed. For exam-
ple concerning tree-dwelling spiders living in orchards, nocturnal wander-
ing spiders, like Anyphaena accentuata (Anyphaenidae), Clubiona brevipes,
C. corticalis and C. leucaspis (Clubionidae) have been proved to be effec-
tive against non-flying Aphids and larvae of Lepidoptera; diurnal wandering
species like Ballus depressus (Salticidae) against non-flying Aphids and Ci-
cadellidae; ambush species like Philodromus aureolus (Philodromidae) and
Diaea dorsata (Thomisidae) against Hymenoptera and Lepidoptera (adults
and larvae). Webweavers have been proved to be effective against several
species of potential pests. Examples in this sense are provided by sheet web
species like Linyphiids against Cicadellidae, Diptera and Coleoptera, by orb
web species like Araneus diadematus, Araniella cucurbitina and Nuctenea

umbratica against winged aphids, Lepidoptera and small Hymenoptera [13].
Wandering spiders have been proved to play a very important role in control-
ling herbivore populations like Cicadellidae, Thysanoptera and Aphididae in
agricultural fields [8].

In this paper we consider a general agroecosystem included in a typical
homogeneous rural landscape. The land is characterized by a continuous mo-
saic of cultivated lands in which several small patches of grasslands and small
woods bounding the fields are the only elements that enhance diversity. The
context of Langa Astigiana, dominated by the vineyard agroecosystem or the
context of the Piedmontese flatland nearby the town of Cuneo (NW- Italy),
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dominated by fruit orchards, fits perfectly this situation. Arthropod commu-
nities (insects and spiders) living in the landscape are considered in the model
with a distinction among the insects (pests) living and damaging the agroe-
cosystems (for example vineyards or fruit orchards), and the insects living in
the agroecosystems but not damaging the cultivations. We focus moreover on
their general predators, namely the spiders, distinguished among wanderers
(moving actively in the land mosaic), and webweavers (mostly sit-and-wait
strategists). Finally, ballooning behaviour and its influence on population
dynamics is duly accounted for in the model. Ballooning is a unique method
of aeronautical dispersal adopted by spiders. In general terms it can be de-
fined as a passive sailing through the air by means of silken threads, occurring
in special weather conditions, especially when the air layer near the ground
is unstable and when wind speed is not exceeding 3 m/s [22]. This method
of dispersing explains the quick spiders recolonization of perturbed environ-
ments such as agroecosystems after pesticide application. Ballooning can be
performed over long or short distances, from a few meters to several hun-
dreds kilometers. It could be supposed that perturbations in agroecosystems
should induce ballooning, [14]. Weymann et al. [23] confirmed that severe
stress can increase ballooning to very high levels.

Mathematical modelling of the spider population in an agroecosystem
has been considered in [5], where specifically a model for spider dispersal
in a heterogeneous agricultural landscape is formulated and simulated. The
findings demonstrate that the landscape heterogeneity plays a crucial role
for survival and abundance of its populations. The inclusion of even a small
amount of grasslands, treated as refugia, dramatically increases the spider
population. Also the dispersal of the spiders through air transport and the
effect of pesticides on the spider population are investigated.

The failures of the chemical method for the control of pests are well
documented in the literature. Basically they are mainly due to their adverse
effect on pests natural enemies, compounded by increasing development of
resistance by pests to pesticides. Furthermore, their adverse effects on human
health lead to the urgent need to develop new strategies in fighting pests.
The achievement of complete control on pest populations using just their
natural enemies represents an ideal goal. In general it represents the most
effective single approach to pest management. The application of current
ecological knowledge and technology has to be furthered in applied research,
by means of modelling and field experiments, to solve the pest problem. The
need of accurate simulations for the prediction of any long term effect of large
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scale pesticide has been particularly addressed in [4] and [5].
In the present study we also explore an agroecosystem composed of dif-

ferent field types and investigate the role of spiders as bio-controllers in such
landscape. Namely, we consider the woods nearby the fields as refugia for
the spiders, especially at the times when the fields are sprayed with insecti-
cide. A distinguishing feature of this model compared to [5] is avoidance of
using the diffusion equation as basic model, which is mathematically more
complex to handle than a simple dynamical system. Nevertheless, in spite
of not explicitly building space in the model, we are still able to include in
our description the dispersal of the spiders by ballooning. Another feature of
the present study consists in partitioning the prey among insects, harmless
from the farmer’s viewpoint, living in both woods and cultivated land, and
pests, whose habitat is only the latter, harmful to crops. As in [5], we also
take into account the human intervention through pesticides spraying.

In this paper we describe the development of a mathematical model for the
population dynamics of a natural biological controller, namely the spiders, in
a rural landscape characterized by a very low habitat diversity. This model
is used to examine the crucial role of spiders in controlling pest outbreaks,
taking into account the adverse effect of pesticides and the role of spider
ballooning as a key factor for spider population survival and related biological
control. As such then, this model merges into a larger one several other
simpler models, [3, 19, 20, 21], which we investigated separately. The aim is
the preparation of a more comprehensive simulation tool.

In [3] two prey, insects in the woods and parasites in the vineyards are
considered with wanderer spiders as their predators. The model is analyzed
under possible environmental fluctuations.

A four dimensional predator-prey model is studied in [19], with insects
living in woods and vineyards as the prey and the webweavers living in the
woods and the vineyards as their predator populations. The system accounts
for ballooning, this transport phenomenon being modeled without explicitly
using space in the governing equations, a feature we retain in the present
model as mentioned.

The three dimensional model consisting of prey in open fields, parasites
in vineyards and the wanderer spiders moving among these environments is
instead considered in [20]. In [21] again a similar model is investigated, in
which a satiation effect in the spiders diet is incorporated. Limit cycles are
observed for a certain range of parameter values.

Here we integrate all these models into a single larger one which takes into
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account the pests, the insects in the woods and vineyards distinguished as two
separate populations, the webweavers in the woods and the vineyards, again
as different populations, and the wanderer spiders. We study the combined
effect of all these interactions, aiming at a more comprehensive description of
the ecological situation to reveal the role of spiders as biological controllers
in such a complex ecosystem. Human interference is also analyzed, looking
at the effect of spraying on these populations. In the discussion we elabo-
rately compare the results of the present model with those of the previously
formulated models.

2 The general model

As mentioned in the Introduction, we consider a general agroecosystem in
which there are several players. The landscape is formed by two environ-
ments, a generally uniform one of cultivated land, and a marginal one con-
stituted by green grass patches and small woods bounding the fields. We
consider the insects whose habitat is mainly the latter, those who live in
the cultivated land and specifically identify the pests of the cultivations as
a class of their own. We moreover focus on their general predators, namely
the spiders, distinguished among wanderers, moving freely in search of food
between the two landscapes, and the statical webweavers, living essentially
in the place where they build their nests.

To be more specific, then let Ia(t) denote the insect population living
in the agroecosystems and Iw(t) denote the insect population living in the
woods. Let Sa(t) and Sw(t) denote the webweaver spider populations living
in the agroecosystems and woods respectively. W (t) denotes the wanderer
spider populations which can live and move both in the agroecosystems and
woods. Finally, let the harvest pest population be denoted by P (t). We
distinguish the insects living in the agroecosystems from the pests, since
the latter are considered a nuisance to the culture, while the former are an
alternative source of food for the spiders. From the farmer’s viewpoint, it is
the pests that need to be controlled.

The assumptions leading to the six differential equations below (1) are
as follows: the first equation models insects living in the agroecosystems,
reproducing according to logistic growth, with carrying capacity K1. The
function F1 thus contains a first term denoting logistic growth, and two ad-
ditional terms with rates α and a1, due to predation by webweavers present
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in the cultivated land and wanderer spiders. The second equation models in-
sects living in the woods, also reproducing according to logistic growth, first
term of F2, predated again by webweavers and wanderer spiders, accounted
for by the last two terms, at rates respectively β and a2. The carrying capac-
ity in this case is instead denoted by K2, and assumed to be much smaller
than K1, in view of the large extension of their environment with respect to
the wood, as is the case in the typical landscape of the Langa Astigiana. The
third equation models the pest population, which is again growing in logistic
fashion. Here it is assumed that pests are present only in the agroecosystem,
as they are particularly harmful to this culture. Let the pests agroecosys-
tems carrying capacity be denoted by L and γ and a3 denote the predation
rates of the webweaver and wandering spiders. The function F3 contains
again a logistic term and additional predation terms of the relevant spiders
populations. The last three equations model the webweaver spider popula-
tions living in the agroecosystem and the wood respectively and lastly the
wandering spiders. The two ecosystems in this context could be considered
as separate entities, as the web spiders tend to live in the same place and we
partitioned the insects according to the environment in which they live, if
it were not for two particularities. The first is that wandering spiders freely
move across the two habitats in search for food. The second one is a phe-
nomenon occurring to the young spiders. Namely, they release a thread in
order to be carried away by the wind. This ballooning effect is also accounted
for in the two equations modelling the growth of the web-spiders population.
A fraction 0 < θ < 1 of the newborns is transported by the wind from its
location and lands in the neighboring places. Thus it may remain within
the agroecosystem or move to the woods and vice versa. The probability of
changing the habitat is assumed to be proportional to the surface of the two
patches [19], which in turn is measured by their respective carrying capaci-
ties. This migration effect is expressed by the last two terms of F4 and F5 in
(1), while the first three terms respectively express the gain of predation on
insects and prey, when the latter can occur, with conversion rates α′ and γ′ of
agroecosystem webweavers on the insects in the agroecosystems and on the
pest, and spiders mortalities δa and δw respectively. We also let β′ denote the
conversion rate of wood webweavers on the insects in the woods. Note that
the transport effect of the wind is instead clearly the same for both spider
groups, as there is no essential reason for assuming it to be different in the
woods than on open land. Note that the wind transport effect on insects is
disregarded, as we assume that they are able to fly and therefore willingly
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move toward the environment place that they prefer, i.e. eventually return
to it, [19]. Finally, in the last equation we consider the wandering spiders,
which are assumed to move and live anywhere among the two environments.
Thus they feed on both the agroecosystem and wood insects with a conver-
sion rate a′1 and a′2 respectively, first two terms of F6. The last terms indicate
predation on the pests with conversion rate a′3 and natural death rate of the
wandering spiders expressed by µ. Finally, note that all the parameters are
assumed to be nonnegative.

With the above assumptions, letting u = (Ia, Iw, P, Sa, Sw,W )T denote
the population vector, we can write the model in compact form as u̇ = F(u)
and explicitly as follows,

dIa

dt
= Ia

[
r1

(
1 −

Ia

K1

)
− αSa − a1W

]
≡ F1(u),

dIw

dt
= Iw

[
r2

(
1 −

Iw

K2

)
− βSw − a2W

]
≡ F2(u),

dP

dt
= P

[
q

(
1 −

P

L

)
− γSa − a3W

]
≡ F3(u), (1)

dSa

dt
= Sa

[
α′Ia + γ′P − δa − θK2

α′Ia + γ′P

K1 +K2

]
+
θK1β

′SwIw

K1 +K2

≡ F4(u),

dSw

dt
= Sw

[
β′Iw − δw − β′Iw

θK1

K1 +K2

]
+ SaθK2

α′Ia + γ′P

K1 +K2

≡ F5(u),

dW

dt
= W [a′1Ia + a′2Iw + a′3P − µ] ≡ F6(u).

Here for i = 1, 2, 3 we assume that

K1 >> K2, α ≥ α′, β ≥ β′, γ ≥ γ′, ai ≥ a′i.

3 Some analytical results

3.1 Boundedness of the trajectories

In order to begin to investigate the system behavior, let us define an auxiliary
variable which can be termed the environment total population

Z = Ia + Iw + P + Sa + Sw +W. (2)
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The time-derivative of (2) along the solutions of (1) is

dZ

dt
= r1Ia

(
1 −

Ia

K1

)
− αSaIa − a1WIa + r2Iw

(
1 −

Iw

K2

)
− βSwIw

−a2WIw + qP

(
1 −

P

L

)
− γSaP − a3WP + α′IaSa + γ′PSa

−δaSa + β′IwSw − δwSw + a′1IaW + a′2IwW + a′3PW − µW.

Taking η > 0 we get,

dZ

dt
+ ηZ ≤ r1Ia

(
1 −

Ia

K1

)
+ r2Iw

(
1 −

Iw

K2

)
+ qP

(
1 −

P

L

)

−δaSa − δwSw − µW + η (Ia + Iw + P + Sa + Sw +W ) .

Now if we choose η ≤ min(δa, δw, µ), then

dZ

dt
+ ηZ ≤

K1(r1 + η)2

4r1
+
K2(r2 + η)2

4r2
+
L(q + η)2

4q
,

where the quantities on the right hand side represent respectively the maxi-
mum values of the functions

ηIa + r1Ia

(
1 −

Ia

K1

)
, ηIw + r2Iw

(
1 −

Iw

K2

)
, ηP + qP

(
1 −

P

L

)
.

Finally, the right-hand side of the above expression is thus bounded by a
suitable constant ℓ > 0, so that

dZ

dt
+ ηZ ≤ ℓ.

From this differential inequality we obtain

0 < Z(Ia(t), Iw(t), P (t), Sa(t), Sw(t),W (t)) <
ℓ

η
(1 − e−ηt)

+Z(Ia(0), Iw(0), P (0), Sa(0), Sw(0),W (0))e−ηt.

Thus as t → ∞, we have 0 < Z < ℓ
η
. Hence, all the solutions of (1) with

initial values in R6
0,+ are bounded in R6

0,+. This result is not surprising as it
constitutes a rather general feature of biological models.
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3.2 Equilibria and their stability

Before analyzing the system’s equilibrium points, we first write down the
general structure of the Jacobian of the system (1) at an arbitrary point
(Ia, Iw, P, Sa, Sw,W ).

J ≡




J11 0 0 −αIa 0 −a1Ia
0 J22 0 0 −βIw −a2Iw
0 0 J33 −γP 0 −a3P

α′SaD2 A2Sw γ′SaD2 J44 A2Iw 0
A1Sa β′SwD1 A3Sa A1Ia + A3P J55 0
a′1W a′2W a′3W 0 0 J66



, (3)

where J11 = r1 −
2r1Ia

K1

− αSa − a1W , J22 = r2 −
2r2Iw

K2

− βSw − a2W , J33 =

q − 2qP

L
− γSa − a3W , J44 = (α′Ia + γ′P )D2 − δa, J55 = β′IwD1 − δw, J66 =

a′1Ia + a′2Iw + a′3P − µ, and

D1 =

(
1 − θ

K1

K1 +K2

)
> 0, D2 =

(
1 − θ

K2

K1 +K2

)
> 0,

A1 = θα′
K2

K1 +K2

, A2 = θβ′
K1

K1 +K2

, A3 = θγ′
K2

K1 +K2

.

Our first result shows that for the system (1), total extinction is not
possible. Indeed the eigenvalues of the Jacobian (3) at the origin are r1, r2,
q, −δa, −δw, −µ, so that the origin is always an unstable equilibrium.

There are a few other boundary equilibria, where one or more popula-
tions are extinct. They in general share the same stability property of the
origin. More specifically, all the following equilibria are unstable, as the Jaco-
bian evaluated at (K1, 0, 0, 0, 0, 0), (0, K2, 0, 0, 0, 0), (0, 0, L, 0, 0, 0), has two
positive eigenvalues, while evaluated at (K1, K2, 0, 0, 0, 0), (K1, 0, L, 0, 0, 0),
(0, K2, L, 0, 0, 0) has one positive eigenvalue. Thus all above equilibria must
be disregarded, as the system can never approach them.

Instead the equilibrium point (K1, K2, L, 0, 0, 0) is conditionally stable,
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since its Jacobian (3) reduces to

J1 ≡




−r1 0 0 −αK1 0 −a1K1

0 −r2 0 0 −βK2 −a2K2

0 0 −q −γK3 0 −a3K3

0 0 0 (α′K1 + γ′L)D2 − δa A2K2 0
0 0 0 A1K1 + A3L β′K2D1 − δw 0
0 0 0 0 0 J̄66



,

(4)
with J̄66 = a′1K1 + a′2K2 + a′3L−µ. The eigenvalues of (4) are −r1, −r2, −q,
J̄66 and the roots of the quadratic equation,

λ2 − {(α′K1 + γ′L)D2 + β′K2D1 − δa − δw}λ+ (α′K1 + γ′L)β′K2D1D2

+δaδw − (α′K1 + γ′L)D2δw − β′K2D1δa − A1A2K1K2 − A2A3K2L = 0. (5)

From Descarte’s rule of sign equation (5) has roots with negative real parts
if the following conditions hold,

(α′K1 + γ′L)D2 + β′K2D1 < δa + δw, (6)

(α′K1 + γ′L)β′K2D1D2 + δaδw > (α′K1 + γ′L)D2δw + β′K2D1δa

+A1A2K1K2 + A2A3K2L.

Thus, the equilibrium (K1, K2, L, 0, 0, 0) is locally asymptotically stable if
µ > a′1K1 + a′2K2 + a′3L and the conditions (6) are satisfied.

In such case the spiders disappear from the environment, an undesirable
result, considering their potential role in controlling the pest.

Remark 1. Note that if the death rates of the spider populations are
above a certain critical value then the insect populations and the pest pop-
ulation reach their carrying capacity, while the spider population is washed
away from the system. Thus to prevent the outbreak of the pest popula-
tion and the disappearance of the spider population, the death rates of the
spider populations must be kept below a certain critical value. In this con-
text spraying could have adverse effects on the spiders as well, and can thus
negatively affect the system, raising the spiders mortality.

The pest-free equilibrium point is ((Ia2
, Iw2

, 0, Sa2
, Sw2

,W2). Its Jacobian
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(3) becomes

J2 ≡




−
r1Ia2

K1

0 0 −αIa2
0 −a1Ia2

0 −
r2Iw2

K2

0 0 −βIw2
−a2Iw2

0 0 J̃33 0 0 0

α′Sa2
D2 A2Sw2

γ′Sa2
D2 J̃44 A2Iw2

0

A1Sa2
β′Sw2

D1 A3Sa2
A1Ia2

J̃55 0

a′1W2 a′2W2 a′3W2 0 0 J̃66




, (7)

with J̃33 = q − γSa2
− a3W2, J̃44 = α′Ia2

D2 − δa, J̃55 = β′Iw2
D1 − δw,

J̃66 = a′1Ia2
+ a′2Iw2

− µ.
The coexistence equilibrium (I∗a , I

∗

w, P
∗, S∗

a, S
∗

w,W
∗) at which the whole

ecosystem thrives has the following Jacobian, obtained again from some sim-
plifications of (3)

J3 ≡




− r1I∗a
K1

0 0 −αI∗a 0 −a1I
∗

a

0 − r2I∗w
K2

0 0 −βI∗w −a2I
∗

w

0 0 − qP ∗

L
−γP ∗ 0 −a3P

∗

α′D2S
∗

a A2S
∗

w γ′D2S
∗

a −B1S
∗

w B1 0
A1S

∗

a β′D1S
∗

w A3S
∗

a B2 −B2S
∗

a 0
a′1W

∗ a′2W
∗ a′3W

∗ 0 0 0




, (8)

where
B1 = A2I

∗

w, B2 = A1I
∗

a + A3P
∗.

We attempt to localize the eigenvalues of these matrices using the Bauer-
Fike theorem, see [1] p. 592. Considering the former, one eigenvalue comes

from J̃33. The remaining 5 × 5 matrix Ĵ2 is then split via Ĵ2 = M + U

where M and U respectively contain the strict lower and upper triangular
parts of Ĵ2, and where the diagonal of M has the components −

r1Ia2

K1

, −
r2Iw2

K2

,

−δa, −δw, −µ. If λ denotes a generic eigenvalue of Ĵ2 and λj is the closest
eigenvalue of M , we thus obtain in some matrix norm the estimate

|λ− λj| ≤ ‖P‖‖P−1‖‖U‖ ≡ σ,

where P is the matrix of the eigenvectors of M . Since λj < 0 for all j by
construction, it follows λ ≤ σ + λj, so that by requiring

min{
r1Ia2

K1

,
r2Iw2

K2

, δa, δw, µ} > σ (9)
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we find λ < 0 so that stability of the pest-free equilibrium would be guaran-
teed. The expression of σ is very complicated, and difficult to examine any
further. However some biological interpretation can nevertheless be obtained,
as (9) states that in order to achieve stability, “large enough” mortalities
would be necessary, in addition to the requirement of the explicit eigenvalue
to be negative, i.e. a “low enough” pest birthrate, namely

q < γSa2
+ a3W2. (10)

Note that similar, perhaps cruder, estimates could be obtained also via the
Gershgorin theorem, [1] p. 588, but leading anyway to conclusions that do
not differ too much from the above ones.

Remark 2. We stress the fact that from the condition (10), to render the
system pest-free it is necessary to keep the specific growth rate of the pest
population below a certain critical value, although by itself this is certainly
not sufficient, as also all the other eigenvalues would need to have negative
real parts. If q is large enough instead, the pest-free equilibrium becomes
unstable, i.e. it will never be possible to eliminate the pests from the system
while at the same time preserving the rest of the ecosystem.

For the interior equilibrium the analysis is more difficult, as explicit eigen-
values do not exist and since J66 = 0. A similar splitting as above can be
used, where now the matrices M and U will be 6×6. The diagonal of M now
contains the elements −

r1Ia2

K1

, −
r2Iw2

K2

, − qP ∗

L
, −B1S

∗

w, −B2S
∗

a, −H, for some
H > 0 and U6,6 = H. This constant will now appear also in some compo-
nents of P and P−1 and linearly in U . We do not report these expressions in
view of their complexity. Thus σ will depend on H. By choosing a suitable
matrix norm it might be possible to make ‖P‖ and ‖P−1‖ independent of
H. Then, taking H small, in the norm of U it will be dominated by other
components, so that σ will finally not depend on H. Then the previous esti-
mates for the eigenvalues of J2 would apply also to this case, leading to very
similar conclusions.

Remark 3. These considerations seem to indicate thus that high mor-
talities apparently are needed to make these equilibria stable, together with
large B1, B2 and in turn of A1, A2, A3. The latter can simultaneously be
achieved by a large θ, so that a high rate ballooning will also help the stability
of the coexistence equilibrium.

However, as seen, to derive more precise analytic conclusions on the sta-
bility from (7) and (8) for both equilibria is in general very difficult. We
therefore will further investigate their stability numerically.
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4 Numerical simulations

With the realistic set of parameter values given in Table 1, in Fig 1 the
system is observed to be stable around the coexisting steady state

E∗ = (11.24, 19.32, 13.6, 78.64, 2.97, 118.2).

The main objective of the present study is to make the system free from
the pest population. It is observed analytically that the death rates play an
important role for the extinction thresholds. Halley et al. [5] observed that
high mobility of spiders allows them to escape temporary lethal events by
dispersing into refugia. So, in numerical simulations the focus will also be on
these two factors, i.e, spider dispersal through ballooning and the presence
of woods, on the dynamics of our system. For this, the parameters like µ,
the death rate of the wanderers, θ the portion of webweaver that disperse
through air, and K2, the carrying capacity for the insects living in the woods,
are varied, keeping the other parameters fixed as given in Table 1. Decreas-
ing µ to 0.05, with other parameter values fixed, it is observed that the pest
population is washed away from the system, see Fig. 2. Thus decrease in the
death rate of the wanderer spiders makes the system pest-free, a remarkable
consequence. Next decreasing the death rates of the webweavers, it is ob-
served that there is a decrease in the pest population, but it remains in the
system (result not reported here). Thus, in conclusion wanderers are more
effective in making the system pest-free than the webweavers. The result is
very realistic specially if the pest are represented by ground insects, unable
to fly.

With θ = 0, retaining the other parameters fixed, i.e., in the absence
of the ballooning phenomenon it is observed that the webweavers living in
the woods disappear from the ecosystem, Fig. 3. Moreover comparing the
values obtained for θ = 0 with the values at E∗, there is an increase in the
webweavers living in the agroecosystem (83.32 kg ha−1) but there is also
an increase in the pest population (14.6 kg ha−1). Thus ballooning helps
in maintaining the population of the webweavers living in the woods, which
in turn helps in controlling the pest population. Thus the migration of the
newborns by external means plays an important role in the coexistence of all
the species and helps spiders to act as a bio-controller.

Finally, increasing the value of K2 to 70, with other parameter values
fixed, the system becomes pest-free, see Fig. 4. Thus we observe that the
woods play an important role in maintaining the stability of the ecosystem,
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even when the growth rate of the pest population increases. Thus our result
supports the observation of Halley et al. [5], that the dispersal of spiders and
the presence of woods plays a crucial role in the dynamics of the system.

Note that by allowing the parameter values to range in wider intervals,
perhaps outside those observed in field measurements, namely

r1 = 1.417, K1 = 700, α = 0.526, a1 = 0.03, r2 = 1, K2 = 1.35,

β = 0.65, a2 = 0.1, q = 1.2, L = 300, γ = 0.4, a3 = 0.05,

α′ = 0.5, γ′ = 0.38, δa = 0.07, β′ = 0.6, δw = 0.3, a′1 = 0.02,

a′2 = 0.09, a′3 = 0.03, µ = 0.07, θ = 0.35.

and taking as initial value (0.0519, 0.7318, 0.0448, 2.6895, 0.0092, 4.5118), we
observe bifurcations of the coexistence equilibrium, see Fig. 7.

5 Spraying effect

The spray of insecticide is here modelled by a mortality-like function, active
at particular instants in time, but whose effects last in time. Let

ψ(ti) =

{
0, ti > t

e−ρ(t−ti), ti ≤ t,

i = 1, 2, ..., N , be the spraying instants.
Then model (1) gets modified as follows

dIa

dt
= F1 − nuΣN

i=1ψ(ti),
dIw

dt
= F2 − n(1 − u)ΣN

i=1ψ(ti), (11)

dP

dt
= F3 −NuΣN

i=1ψ(ti),
dSa

dt
= F4 −muΣN

i=1ψ(ti),

dSw

dt
= F5 −m(1 − u)ΣN

i=1ψ(ti),
dW

dt
= F6 −mΣN

i=1ψ(ti).

The meaning of the new parameters is the following one: u denotes the por-
tion of insecticide sprayed directly on the agroecosystems, (1−u) the portion
instead that is accidentally dispersed in the woods, n and N its effective-
ness against the insects and the pests respectively, with the assumption that
N > n, and finally m represents the effectiveness against the spiders.
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Here note that the right hand side of the equation (11) is now discontin-
uous, but to model “istantaneous” processes like the spraying of the insecti-
cides we have to use the semi-continuous model. A similar semi-continuous
model was already used to observe the effects of insecticide spraying in some
of our previous works, see [3, 21].

The numerical simulation reported in Fig. 1 is related to Fig. 5 when
spraying is administered, with constants n = 0.01, N = 0.04, m = 0.008,
u = 0.9 and ρ = 0.1. The interspraying time was taken to be 20 week−1, since
the range given in Halley et al. [5] is 15-30 week−1. The impact of spraying
is immediately evident, as the agroecosystem pests are wiped out, but so
are also the spiders, although the spraying effectiveness level on the latter is
extremely low, see Fig. 5. The spiders living in the woods take more time for
extinction than those living in the agroecosystem. The insects living in the
woods escape the spraying effect. Thus the woods present in the system play
an important role for the survival of the bio-controller specially when the
system is affected by spraying. This is in agreement with the observations
of Halley et al. [5] who concluded that the landscape heterogeneity increases
survival and abundance of the species.

It is observed that during the spraying the predation rate of the spiders
decreases [16]. Thus next decrease the predation rates with α = 0.001, a1 =
0.0025, β = 0.00015, a2 = 0.001, γ = 0.001, a3 = 0.002 with other param-
eter values as in Fig. 5, and observe that the webweavers go to extinction
while the spiders remain in the system, see Fig. 6. This result is also accord-
ing to the finding of Halley et al. [5] who observe that spraying reduces the
spider population and may lead to their extinction. This is a disaster from
the farmer’s point of view, see Fig. 6.

6 Discussion

We have presented a very general model to describe the possible interactions
among the most relevant populations present in an agroecosystem. The
model is moderately complex, being made by six such populations, account-
ing for different spider and insect populations living in a agroecosystem and
in the surrounding woods. Our investigation mainly focuses on the role of
spiders as bio-controllers and on the importance of landscape heterogeneity
for the survival and abundance of these bio-controllers. We incorporated the
ballooning effect of the spiders in the model description. We also investigated
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the effect of spraying of pesticides on the system. Some of these studies were
also performed by Halley et al. [5], but using different mathematical tools,
namely diffusion equations, and without considering environment pests and
insects.

We determined the system’s equilibria and performed the stability analy-
sis of most of them. For the intractable ones, we turned to numerical simula-
tions, to assess their stability for some parameter ranges. It is interesting to
compare the nature of the equilibrium points of the present paper with the
previous works. The first results of this investigation show that all the solu-
tions of the system are bounded and total extinction will never occur. Also,
the equilibria with one or two prey populations and no spider populations
are all unstable. That is, in the absence of the spiders it will never happen
that one or two prey populations alone remain in the system. We observe
the same result in [3, 19, 20, 21]. On the other hand, all the three insects
populations survive in the ecosystem in absence of spiders, if the death rate
of the latter is higher than a certain critical value. In such case indeed the
spider-free equilibrium point is stable, i.e. as mentioned, spiders are wiped
out and the insects and the pests reach their carrying capacities. The role
of spiders in controlling the pest population is thus confirmed. We observe
a similar result in [3, 19], but in [20, 21] this kind of equilibrium does not
exist. Also, if the specific growth rate of the pest population is below another
certain critical value then the system can be made pest-free by the presence
of the spider population. This is according to the results of [3, 20, 21], where
we observe that the vineyard insects-free equilibrium is stable if the specific
growth rate of the vineyard insects is below a certain critical value. Extinc-
tion criteria in the system are very important to establish. Recall indeed
that one of the aims of these studies is to render the system pest-free with-
out harming the other ecosystem components, in particular the extinction
of the other population should be prevented. Halley et al. [5] also investi-
gated the extinction and found that the extinction thresholds often depend
on the carrying capacity. Our simulations show that stability of extinction
equilibrium points also depends on the carrying capacity, in agreement also
with the findings of [3, 20, 21]. There, the vineyard insects-free equilibrium
is observed to be stable if the specific growth rate of the vineyard insects lies
below a certain critical value.

Our numerical simulations are aimed at analyzing the effects of the dif-
ferent model parameters on the solutions. They substantiate the theoretical
result that the system can be made pest-free by a decrease in the death rate
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of the wanderer spiders. On the other hand external influences like sudden
weather instabilities may alter the ecosystem populations, increasing death
rates of spider populations, [10, 14]. Also the wind-induced migration of
the newborns plays a relevant role for the coexistence of all the species in
the ecosystem. This is a very important factor together with the presence
of refugia such as woods for the survival of the bio-controllers. At times of
emergency like spraying of insecticides, since these green patches are spared
from insecticide, they can harbor spiders fleeing from the sprayed cultures
and therefore save them from local extinction.

As discussed in the Introduction some instances of the present general
picture have already appeared in the literature. These works also take into
account the effect of spraying of insecticides in such systems. For example
in [19] an ecosystem in which webweaver spiders may be transported by the
wind from agroecosystems into the surrounding woods and vice versa has
been considered. The effect of human activities in the ecosystem, by con-
sidering insecticide spraying was built into the model, as well as in the case
of wanderer spiders, [20]. The effects of the insecticide were assumed to be
instantaneous and the conclusions indicated that the populations could re-
cover after spraying if the atmospheric and environmental conditions were
not too much adverse. In practice the effect of the insecticide tend to last
in time so that an exponential decay was then assumed in [21], as more re-
alistic, and retained in the present model. Here also the human intervention
through spraying has been simulated. Many field studies show that the use
of chemicals decreases the diversity and density of spiders and correspond-
ingly an outbreak of nuisance insects, [6, 4, 10]. Our simulation also supports
the above result. If the insecticide is used at moderate concentrations and
sprayed very frequently, there is a high chance for the spider populations to
get extinct. We observe indeed that even spraying very low effective pes-
ticides has a damaging effect on the spider populations as well as on the
pests, as already remarked in [21]. The reduction in the predation rate due
to spraying effects causes extinction of the webweavers, while pests survive
in the ecosystem. This is in agreement with field studies, [5]. These re-
marks clearly show that the spraying of chemicals has a direct effect on the
biodiversity of the agroecosystems and of the surrounding woods, the role
of insecticides having been considered in detail by Halley et al. [5]. They
present a table showing the intensity of the toxicities and the timings and
frequency of application. Their final results are very similar to our conclu-
sions.
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Since the use of chemicals has in general been shown to have negative
effect on the coexistence of the different species, an alternative ecofriendlier
way to control the pest is provided by the use of spiders. This strategy would
also help to maintain the diversity of the agroecosystem. Our theoretical
analysis is then in agreement with field studies indicating the positive role
spiders play as biological controllers in rice fields and fruit orchards, [13, 15,
17], in which the method of spider augmentation led up to 60% reduction of
pesticide use [10] without harming the final production.
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Figure 1: The coexistence steady state is locally asymptotically stable.
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Figure 2: The pest population is washed away while all other populations
coexist in the system. This is obtained for µ = 0.05, with the same other
parameter values as given in Table 1.
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Figure 3: The webweavers living in the agroecosystem become extinct from
the system for θ = 0, i.e. in absence of ballooning. The other parameter
values are the same as in Table 1.
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Figure 4: The pest population becomes extinct for K2 = 70, while other
parameter values retain the values of Table 1. All other populations coexist
in the system.
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Figure 5: The model with spraying effects: with an interspraying time of 20,
the spider population in the agroecosystem goes to extinction together with
the pest population. The parameter values are those of Table 1.
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Figure 6: Spraying effects with smaller predation rates and other parameter
values are the same as in Fig. 5. In this case the spiders disappear while the
pests thrive.
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Figure 7: All the populations coexist oscillating in the system for the hypo-
thetical parameter values r1 = 1.417, K1 = 700, α = 0.526, a1 = 0.03, r2 =
1, K2 = 1.35, β = 0.65, a2 = 0.1, q = 1.2, L = 300, γ = 0.4, a3 = 0.05, α′ =
0.5, γ′ = 0.38, δa = 0.07, β′ = 0.6, δw = 0.3, a′1 = 0.02, a′2 = 0.09, a′3 =
0.03, µ = 0.07, θ = 0.35.
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Table 1: The fixed set of parameter values, mostly taken from different avail-
able literature. Unit of populations are given by kg ha−1 and time t is weeks.

Parameters Values given Values considered Unit
in the literature in our simulations

r1 Generally less than 1.417 week−1

growth rate of the pests
K1 – 400 kg ha−1

α 0.002-0.02 [16] 0.01 ha kg−1 week−1

a1 0.002-0.02 [16] 0.005 ha kg−1 week−1

r2 Generally less than 1 week−1

growth rate of the pests
K2 According to model 30 kg ha−1

assumption, K2 << K1

β 0.00038-0.00055 [16] 0.0005 ha kg−1 week−1

a2 approximately 0.002 [16] 0.003 ha kg−1 week−1

q 1.063-2.077 [9] 1.53 week−1

L Generally greater than the 600 kg ha−1

carrying capacity of insects
γ – 0.01 ha kg−1 week−1

a3 – 0.006 ha kg−1 week−1

α′ approximately 33% of α [18] 0.0033 ha kg−1 week−1

γ′ approximately 33% of γ [18] 0.0033 ha kg−1 week−1

δa 0.02-0.11 [5] 0.08 week−1

β′ approximately 33% of β [18] 0.0002 ha kg−1 week−1

δw 0.02-0.11 [5] 0.055 week−1

a′1 approximately 33% of a1 [18] 0.0017 ha kg−1 week−1

a′2 approximately 33% of a2 [18] 0.0009 ha kg−1 week−1

a′3 approximately 33% of a3 [18] 0.002 ha kg−1 week−1

µ 0.02-0.11 [5] 0.064 week−1

θ not a constant [5] 0.35 –
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