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ABSTRACT 35 

Different control strategies against Botrytis cinerea have been tested in vineyards. The pesticide 36 

residues at harvest and the control efficacy of each strategy, have been determined. Two 37 

commercial vineyards – one “Barbera” and one “Moscato” – located in Piedmont (Northern Italy) 38 

were divided in seven plots and treated with different combinations of fungicides.  39 

The tested fungicides were based on pyrimethanil, fludioxonil + cyprodinil, iprodione, and boscalid, 40 

a new carboxamide compound. An integrated strategy including a chemical (pyrimethanil) and a 41 

biocontrol agent (Trichoderma spp. t2/4ph1) was also included. At harvest, the percentage of 42 
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bunches and berries attacked by B. cinerea and the concentration of the chemical fungicides were 43 

determined. All the pesticide residues at harvest were below the MRL (maximum residue level), 44 

except when two applications of pyrimethanil per season were applied. Boscalid was the most 45 

effective active ingredient against B. cinerea among the tested ones. Its efficacy, when its 46 

application was followed by a treatment with pyrimethanil, was similar to the efficacy shown by 47 

two treatments of pyrimethanil. This second strategy anyway is not feasible, due to the risks of 48 

resistance development in the pathogen and to the residue accumulation, as the analysis showed.  49 

 50 

Keywords:  boscalid, fungicide, grapevine, grey mould, residue, wine. 51 

 52 

INTRODUCTION 53 

In Italy, grapes represent the most widespread fruit crop (1.5 million tonnes of table grapes and 47.1 54 

millions hL of wine [1]). Botrytis cinerea Pers. Ex Fr. (teleomorph Botryotinia fuckeliana (de Bary) 55 

Whetzel), the causal agent of grey mould, causes severe losses on grapevine (Vitis vinifera L.), 56 

affecting wine quality. Control is achieved by integrating canopy and cluster management with 57 

fungicide treatments, generally applied twice per season, at touching of berries and veraison [2].  58 

Several families of synthetic chemicals are available for the control of B. cinerea. They include 59 

specific botryticides, such as dicarboximides which inhibit the lipid and membrane synthesis. For 60 

over 25 years, dicarboximides – chlozolinate, iprodione, procymidone and vinclozolin – have been 61 

the most popular class of specific fungicides against grey mould. Vinclozolin has been banned for 62 

toxicological safety reasons. The repeated use of this fungicide class has caused the development of 63 

strains of B. cinerea resistant to dicarboximides, prevalent in the Italian and French vineyards [3, 4]. 64 

During the last years, new molecules with specific action against B. cinerea, such as the 65 

anilinopyrimidines, including cyprodinil and pyrimethanil, the phenylpyrrole fludioxonil, the 66 

hydroxyanilide fenhexamid, and the carboxamide boscalid, have been introduced into the market. 67 

These active ingredients exploit novel mechanisms of action, allowing new strategies of 68 
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intervention against resistance. Excellent control was obtained with anilinopyrimidines, that inhibit 69 

the biosynthesis of methionine, affecting the cystathionine-β-lyase [5, 6] and block the excretion of 70 

hydrolytic enzymes involved in the pathogenic process [7]. The phenylpyrroles affect cell wall 71 

synthesis and cause the accumulation of glycerol in mycelial cells: their primary target sites are 72 

protein kinases involved in the regulation of polyol biosynthesis [8]. Fenhexamid is able to inhibit 73 

the sterol biosynthesis, belonging to the class III of sterol biosynthesis inhibitors [9]. The 74 

carboxamides block the energy production in the fungal cells, by inhibiting the succinate 75 

ubiquinone reductases containing sulphur [10]. 76 

In most grapevine growing areas, populations of B. cinerea resistant to benzimidazoles and/or 77 

dicarboximides are widespread [11], but their incidence is decreasing, thanks to the introduction of  78 

anilinopyrimidines and phenylpyrroles that provide good levels of disease control [12]. The 79 

availability of novel classes of compounds does not imply the total replacement of the older 80 

fungicides, but represents a new powerful tool for the growers. Against grey mould, two sprays per 81 

season are applied, and such strategy permits an effective alternation of dicarboximides, 82 

anilinopyrimidines, phenylpyrroles, hydroxyanilides and carboxamides. 83 

Consumers more and more request foodstuffs, including wine, with low levels of pesticide residues. 84 

The alternation of different fungicides and the introduction of more efficient and less persistent 85 

compounds should contribute to the reduction of pesticide residues at harvest, permitting to improve 86 

of the quality of the grapes. According to an Italian Residue Monitoring Programme conducted by 87 

the Ministry of Agriculture on grape samples collected in the field, 7.9%, 6.5%, and 2.5% samples 88 

were irregular in 1996, 1998, and 1999 respectively [13]. Most of the irregular levels found were 89 

caused by poor compliance of the pre-harvest interval, especially after repeated treatments with the 90 

same active ingredients. 91 

Studies about the fate of the major pesticides used in vineyard have been reviewed by Cabras and 92 

Angioni [14]. Among the fungicides, pyrimethanil seemed the most persistent with residue levels 93 

constant up to harvest, whereas fluazinam, cyprodinil, mepanipyrim, azoxystrobin, and fludioxonil 94 
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showed higher disappearance rates (t1/2  were 4.3, 12, 12.8, 15.2, and 24 days, respectively). 95 

Pesticide residues in wine were always smaller than those on the grapes and in the must, except for 96 

those without a preferential partition between liquid and solid phase (azoxystrobin, dimethoate, and 97 

pyrimethanil) present in wine at the same concentration than on the grapes. 98 

The aim of this work was to test the effectiveness against grey mould of different fungicide control 99 

strategies on two experimental vineyards belonging to the cultivars “Barbera” and “Moscato”. The 100 

tested fungicides were boscalid (2-chloro-N-(4’-chlorobiphenyl-2-yl)-nicotinamide), a new 101 

carboxamide compound, cyprodinil (4-cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamine), 102 

fenhexamid (2’,3’-dichloro-4’-hydroxy-1-methylcyclohexanecarboxanilide), fludioxonil (4-(2,2-103 

difluoro-1,3-benzodioxol-4-yl)-pyrrole-3-carbonitrile), iprodione (3-(3,5-dichlorophenyl)-N-104 

isopropyl-2,4-dioxoimidazolidine-1-carboximide), and pyrimethanil N-(4,6-dimethylpyrimidin-2-105 

yl)aniline). An integrated control strategy including a chemical (pyrimethanil) and a biocontrol 106 

agent (Trichoderma spp. t2/4ph1) was also included. A second aim was to determine the residual 107 

concentration of the fungicides on the grapes at harvest, to understand if the treatment strategies 108 

were able to keep the residues within the MRLs (maximum residue levels). 109 

 110 

MATERIALS AND METHODS 111 

 112 

Experimental design 113 

Two experimental trials were carried out in two commercial vineyards located in Piedmont 114 

(Northern Italy): one planted with the white cultivar “Moscato” (Valdivilla, Asti Province) and the 115 

other one planted with the red cultivar “Barbera” (Vezza d’Alba, Cuneo Province). Every replicate 116 

plot was 10 m long and consisted of 10 vines each, with an untreated row marking the border 117 

between the plots. All the treatments were arranged in a randomized block design with four 118 

replicate plots per treatment. Six different disease strategies were performed in each vineyard, 119 

applying the fungicides at the rates and in the dates indicated in Table 1. Five treatment schemes 120 
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included two fungicide sprays at two phenological stages crucial for grey mould control during the 121 

cropping season: before bunch closure (B stage) and between veraison and preharvest interval (C 122 

stage). The integrated control scheme included a chemical treatment (pyrimethanil) and four 123 

biocontrol agent (Trichoderma spp. t2/4ph1) applications, at flowering (A stage), before bunch 124 

closure (B stage), at veraison (C stage) and three weeks before harvesting (D stage). The 125 

Trichoderma strain was a biocontrol agent isolated and studied by AGROINNOVA – University of 126 

Torino for its efficacy against B. cinerea on grapes [15]. The strain was produced in liquid 127 

hydrolyzed casein without shaking for 30 days at 26°C. The fungal mycelium was filtered and 128 

resuspended in water to 108 conidia mL-1. The fungicides and the biocontrol agent were applied by 129 

a motor knapsack sprayer, by using 400 l/ha of water. Four untreated plots were used as control. 130 

 131 

Efficacy against Botrytis cinerea 132 

At harvest time (18 September 2006 for “Moscato” cultivar, and 2 October 2006 for “Barbera” 133 

cultivar), a survey on the incidence of Botrytis cinerea was performed, evaluating the percentage of 134 

grapes with symptoms and the percentage of berries attacked in every bunch. Samples of rotten 135 

bunches were brought to the laboratory to confirm the pathogen identification through plating on 136 

Potato Dextrose Agar (PDA; Merck) with 50 mg L-1 of streptomycin Merck. The Duncan’s 137 

Multiple Range Test was employed at P<0.05 for the analysis of the data and the SPSS-WIN 13.0 138 

program was used. 139 

 140 

Reagents 141 

All reagents were analytical or HPLC grade. The analytical standards of boscalid, cyprodinil, 142 

fenhexamid, fludioxonil, iprodione, and pyrimethanil were provided by Sigma-Aldrich (Milano, 143 

Italy). The Supelclean LC18 columns (Supelco, 1g, 6 mL) were provided by Sigma-Aldrich. 144 

 145 

Apparatus and operating conditions 146 
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Chromatographic analyses of sample extracts were performed with a Spectra System 2000 equipped 147 

with a SupelcoSil column TM LC-ABZ (25cm x 4.6mm; 5µm), and a Spectra Series UV 100 148 

detector. The mobile phase was water acidified to pH 3 with phosphoric acid (A) and acetonitrile 149 

(B). The composition of the mobile phase (% A: %B, V/V) and the detection wavelength were as 150 

follows: boscalid 50:50, 230 nm; cyprodinil and fludioxonil 58:42, 270 nm; fenhexamid 55:45, 230 151 

nm; iprodione 45:55, 240 nm; pyrimethanil 45:55, 270 nm. The retention times were as follows: 7.0 152 

min for boscalid, 4.7 min for cyprodinil, 7.6 min for fenhexamid, 6.2 min for fludioxonil, 2.7 min 153 

for iprodione, and 9.5 min for pyrimethanil. Typical chromatograms of the pesticides (analytical 154 

standards and samples) are illustrated in figure 1. 155 

 156 

Mass spectrometry analysis 157 

The identity of each peak was confirmed by LC-MS/MS using a Varian HPLC–MS/MS system 158 

consisted of a ProStar 410 autosampler, two ProStar 212 pumps, and a 310 MS triple quadrupole 159 

mass spectrometer equipped with an electrospray ionization source, the ESI-MS interface was 160 

operated in the positive mode at 200°C. The transitions used were m/z  343 → 140 for boscalid, m/z 161 

226 → 209 for cyprodinil, m/z 303 → 142 for fenehexamid, m/z 249 → 183 for fludioxonil, m/z 162 

331 → 163 for iprodione, and m/z 200 → 107 for pyrimethanil. 163 

 164 

Extraction procedure 165 

Each plot was separately harvested and the grapes – 1 Kg randomly per plot - were stored at -2’°C 166 

up to the determination of the fungicide residues. Each sample was defrosted at around 0°C for 12 167 

h, then homogenised with a food cutter (Princess 2080). 100 mL  of an acetone-methanol solution 168 

(50:50, V/V) were added to  25 g sub-sample in a 250 mL bottle. The suspension was shaken on a 169 

mechanical stirrer for 15 min, then centrifuged at 3000 rpm for 15 minutes. The extraction was 170 

repeated, after the removal of the supernatant, with 50 mL of extracting solution, 5 min stirring and 171 

5 min centrifugation. The two supernatants were filtrated on hydrophilic cotton and collected in a 172 
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250 mL volumetric flask. The solution was brought to volume with water. A 25 mL aliquot of this 173 

solution, diluted with 200 mL of water, was eluted on Supelclean LC18 columns, previously 174 

conditioned with 6 mL methanol, then with 6 mL water. The eluate was discarded and the column 175 

was eluted with 5 mL methanol, collected in a volumetric flask and analysed by LC.  176 

 177 

Recovery experiments 178 

In order to determine the recovery of the analytical procedure, samples of 25 g of grapes from an 179 

untreated vineyard were spiked with 1 mL acetone solutions of the fungicides at different 180 

concentrations. After solvent evaporation (about 30 min), the fungicide concentrations were 181 

measured according to the above described procedure. The percentage of recovery for each 182 

fungicide is indicated in table 2. 183 

 184 

RESULTS AND DISCUSSION 185 

One of the aims of the work was to compare the efficacy of boscalid, belonging to the newborn 186 

chemical group of carboxamides, with the effectiveness of other products registered on the market. 187 

By designing the disease control strategies, particular attention was paid to choose fungicides 188 

belonging to different chemical groups for the two treatments, in order to reduce the risk of 189 

pathogen resistance. To compare the effectiveness of boscalid with pyrimethanil, two treatments 190 

with such anilinopyrimidine were applied in treatment 4 (Table 1). 191 

The weather conditions during 2006 contributed to produce heavy attacks of grey mould: 68.2% of 192 

the bunches were rotted in the commercial vineyard of Moscato and 88.0% in the Barbera vineyard 193 

(table 3). During April, May and June, approximately 50 mm of rain felt – about a quarter of the 194 

average precipitation for the period. July was characterized by heavy rainfalls (such as 63.6 mm on 195 

July 4, 2006), spaced by hot and dry periods, so the Botrytis attacks, normally occurring from the 196 

veraison, were not present. Since the beginning of August and for all month long, continued and 197 
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low intensity rains favoured the attacks of B. cinerea. In September, heavy rainfalls (about 125 mm 198 

in 48 hours) caused the explosion of the disease. 199 

The white cultivar Moscato was chosen because of its susceptibility to B. cinerea. The cultivar 200 

Barbera was chosen as a representative one among the red varieties and for its importance in the 201 

Piedmont wine production. In presence of strong grey mould attacks, the best results on both 202 

varieties were obtained by treating with boscalid at phenological stage B and pyrimethanil at stage 203 

C, with pyrimethanil both at stages B and C, and with fenhexamid at stage B and a mixture of 204 

cyprodinil and fludioxonil at stage C (Table 3). Lower efficacy results were obtained by using a 205 

mixture of cyprodinil and fludioxonil at stage B and fenhexamid in C, or fenhexamid at stage B 206 

followed by iprodione in C. The results obtained by applying Trichoderma spp. t2/4ph1 at stages A, 207 

B and D and pyrimethanil at stage C were not statistically different from the untreated control, 208 

except for the number of bunches attacked in the Moscato vineyard. 209 

Differently from the past, when B. cinerea control mainly relied on the dicarboximides, new 210 

botryticides, belonging to the four different chemical groups (anilinopyrimidines, phenylpyrroles, 211 

hydroxyanilides and carboxamides) and based on four different modes of action, constitute effective 212 

options for grey mould control and anti-resistance management strategies [2].   213 

Boscalid was one of the most effective products among the chosen ones. Its efficacy when followed 214 

by a treatment with pyrimethanil (trial 1) was similar to the efficacy shown by two treatments of 215 

pyrimethanil (trial 4). This second strategy anyway presents some constraints, related to the risk of 216 

resistance development [12, 16, 17] and to the residue accumulation, as the analysis showed.  217 

The third strategy that permitted a high control of B. cinerea included a treatment with fenhexamid 218 

followed by a treatment by cyprodinil+fludioxonil (treatment 5). A normally used strategy, based 219 

first on a treatment with cyprodinil+fludioxonil and then one with fenhexamid (treatment 2), in 220 

order to exploit the preventive action of the anilinopyrimidines [18], showed to be less effective 221 

either on Moscato or on Barbera vineyards. 222 
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The efficacy data provided by the use of fenhexamid and iprodione were not satisfying, especially 223 

on the cultivar Barbera, probably for the high number of strains of B. cinerea resistant to 224 

dicarboximides [3]. Finally, the application of three treatments of a Trichoderma spp. was really 225 

ineffective against grey mould, even though in association with pyrimethanil (treatment 3).  226 

The data of efficacy were compared with the residue analysis in the grapes harvested from different 227 

plots, to guarantee the possibility of practically using the designed strategies in vineyard, keeping 228 

the level of fungicide residues below the maximum residue level. 229 

The maximum residue level (MRL) on grapes and the pre-harvest interval for each fungicide, 230 

according to the European regulation [19] are as follows: 5 mg Kg-1 and 21 days for cyprodinil, 5 mg 231 

Kg-1  and 7 days for fenhexamid, 2 mg Kg-1 and 21 days for fludioxonil, 10 mg Kg-1 and 28 days for 232 

iprodione, and 3 mg Kg-1 and 21 days for pyrimethanil. Grapes were harvested respectively 35 days 233 

and 58 days after the last fungicide application in the Valdivilla and Vezza vineyards, therefore 234 

largely beyond the pre-harvest intervals. Since boscalid is a newly registered fungicide, the 235 

European MRL is 5 mg Kg-1 but a worldwide harmonization is still not achieved [20]: MRLs on 236 

grapes are higher in Japan and other countries (10 mg Kg-1). 237 

The residual concentrations of the tested fungicides at harvest are reported in table 3. The 238 

concentration of boscalid was lower than 0.30 mg Kg-1 in grapes of both vineyards. To our 239 

knowledge, no data concerning boscalid residues in grapes have been published. Chen et al. [21] 240 

measured the dissipation rate of boscalid on cucumbers treated with a commercial WG BASF 241 

formulation at 0.50 and 0.83 Kg a.i/ha, observing a rapid dissipation of the a.i, leading to residues 242 

lower than 0.2 mg Kg-1 after 6 days.  243 

The concentration at harvest of the other fungicides tested were lower than the MRL in all the 244 

treatments, except in the treatment 4 where two subsequent treatments with Scala provoked an 245 

accumulation of pyrimethanil with residual concentrations higher than the MRL (3 mg Kg-1) in the 246 

grapes collected from both vineyards. Such result is in contrast with previous findings reported by 247 

Rabølle et al. [22] on strawberries where 0.15 mg Kg-1 pyrimethanil were found after 42 and 29 days 248 
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from the treatments. When a single treatment was performed, the pyrimethanil concentration varied 249 

from 0.24 mg Kg-1 (trial 3, 65 DAT) to 1.37 mg Kg-1 (trial 1, 58 DAT). These results suggest that, 250 

although the same formulation and application rate were used, the dissipation rate of pyrimethanil 251 

varied among the trials. This is in agreement with the discrepancy between the results of Cabras et 252 

al. [23] who found 1.11 mg Kg-1 pyrimethanil on grapes at 28 DAT and those of Angioni et al. [24] 253 

who found  0.45 mg Kg-1 in similar conditions. In an experiment conducted on agar plates, Vaughan 254 

et al. [25] observed that the metabolic activity of the actively growing mycelium of Botrytis cinerea 255 

provoked the mobility of pyrimethanil within the agar medium. An interaction between the 256 

development of B. cinerea and the disappearance of pyrimethanil seems to be confirmed by our data 257 

since the lowest concentrations of residues (trial 3) corresponds to the highest percentage of 258 

bunches with grey mould. The potential persistence of pyrimethanil on grapes is of concern since it 259 

has been reported that the fungicide passes into the wine during wine-making [23]. 260 

Both cyprodinil and fludioxonil treatments leaded to a final level of residues much lower than the 261 

MRLs in all the trials. The highest concentrations were 0.56 mg Kg-1 of fludioxonil and 0.42 mg 262 

Kg-1 cyprodinil (trial 5, moscato, 35 DAT). The low persistence of these two compounds on grapes 263 

was attested by Marin et al. [26] who report no detectable levels of fludioxonil and 0.030 mg Kg-1 264 

cyprodinil 21 days after treatment. In contrast, higher residual concentrations of 1.03 mg Kg-1 265 

cyprodinil and 0.78 mg Kg-1 fludioxonil were found by Cabras et al. [23] at 28 DAT. 266 

Also the residues of fenhexamid were largely below the MRL (5 mg Kg-1) in all the trials. The 267 

highest value was 0.56 mg Kg-1 (trial 3, 35 DAT). This result is in agreement with that of Cabras et 268 

al. [27] who found 0.80 mg Kg-1 21 DAT while the residual concentration measured by Rabølle et al. 269 

[22] on strawberries was lower (0.041 mg Kg-1), although the crop was treated twice. 270 

The residual concentration of iprodione was between 2.01 and 4.23 mg Kg-1, therefore below the 271 

MRL (10 mg Kg-1), but about one order of magnitude higher than the other tested fungicides except 272 

pyrimethanil. The behaviour of iprodione in plants is largely documented in literature, in particular 273 

in a review of Cabras et al. [28] concerning the fate of pesticides from vine to wine. The residues 274 
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reported in grapes varied between 0.46 and 8.3 mg Kg-1 depending on the application conditions. 275 

Recent studies confirmed the high persistency of iprodione on the treated fruits: Cabras et al. [29] 276 

found 1.09 mg Kg-1 on apricots 21 DAT and  Stensvand and Christiansen [30] 2.2 mg Kg-1 in green-277 

house grown strawberries. 278 

At the moment, the MRL are fixed for single active ingredient but there is concern about the 279 

possible synergic effect on the human health due to the presence of residues of different fungicides 280 

on the same sample. In Italy, part of the large distribution is promoting high quality products with 281 

residues levels not higher than 30% of the MLR and also the cumulative residues start to be 282 

considered, by adopting the empirical equation: Cumulative index = (Ri/MRLi)x100. (Ri = residual 283 

concentration of pesticide i). To exclude any risk for the consumer health, the cumulative index 284 

should be lower than 100. In this experiment, the cumulative index was lower than 100 for all the 285 

treatments except for treatment 5, because of the high concentration of pyrimethanil already 286 

discussed.  287 

 288 

CONCLUSION 289 

Except in the case of two subsequent treatments with pyrimethanil, the chemical control of B. 290 

cinerea with the tested fungicides should not be dangerous for the human health, taking in 291 

consideration the residual concentrations found. The efficacy data provided by the use of 292 

fenxhexamid or iprodione were not satisfying, and the application of a formulation based on the 293 

biocontrol agent Trichoderma spp. t 2/4ph1 was ineffective against grey mould, even in association 294 

with pyrimethanil. The new carboxamide compound boscalid was more effective against grey 295 

mould than the other treatments. 296 

 297 
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Table 1. Experimental design of the trials carried out during 2006 to evaluate the efficacy of 416 

different control strategies against Botrytis cinerea in two vineyards of Moscato and Barbera 417 

varieties. 418 

 419 
Treatment Active ingredient (%) Commercial 

formulate 
Application 
rate  
(g a.i. 100 l-1) 

Application date (days 
between treatment and 
harvest). 
cv. Moscato cv. Barbera 

1 Boscalid (50.0%) 
Pyrimethanil (37.4%) 

Cactus 
Scala 
 

60 
74.8 

08-07 (65d) 
08-08 (35d) 

12-07 (98d) 
23-08 (58d) 

2 Cyprodinil (37.5%) + 
fludioxonil (25.0%) 
Fenhexamid (50.0%) 

Switch 
 
Teldor 
 

30 + 20 
 

75 

08-07 (65d) 
 
08-08 (35d) 

12-07 (98d) 
 
23-08 (58d) 

3 Trichoderma spp. t2/4ph1 
Pyrimethanil (37.4%) 
Trichoderma spp. t2/4ph1 
Trichoderma spp. t2/4ph1 

 
Scala 
 
 

 
74.8 

13-06 
08-07 (65d) 
31-07 
22-08 

17-06 
12-07 (98d) 
05-08 
28-08 

4 Pyrimethanil (37.4%) 
Pyrimethanil (37.4%) 

Scala 
Scala 
 

74.8 
74.8 

08-07 (65d) 
08-08 (35d) 

12-07 (98d) 
23-08 (58d) 

5 Fenhexamid (50.0%) 
Cyprodinil (37.5%) + 
fludioxonil (25.0%) 

Teldor 
Switch 
 
 

75 
30+20 

08-07 (65d) 
08-08 (35d) 

12-07 (98d) 
23-08 (58d) 

6 Fenhexamid (50.0%) 
Iprodione (50.0%) 

Teldor 
Rovral 

75 
75 

08-07 (65d) 
08-08 (65d) 

12-07 (98d) 
23-08 (58d) 

7 (control)      
 420 
 421 
 422 
 423 
 424 
 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
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Table 2. Percentage of  recovery  of the pesticides from spiked grape samples 434 
 435 
 436 
 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

              Fungicide 
Fortification 
level mg Kg-1 

% Recovery ± RSD 
(3 replicates) 

 
boscalid 

 
 

1.2 
0.7 
0.2 

89 ± 3 
87 ± 2 
87 ± 3 

 
cyprodinil 

 
 

1.0 
0.5 
0.1 

86 ± 2 
85 ± 2 
87 ± 2 

 
fenhexamid 

 
 

1.2 
0.7 
0.1 

89 ±  4 
85 ± 3 
90 ± 4 

 
fludioxonil  

 
 

1.0 
0,6 
0.1 

92 ± 2 
93 ± 3 
92 ± 2 

 
iprodione  

 
 

1.0 
0.6 
0.1 

92 ± 4 
86 ± 3 
87 ± 3 

 
pyrimethanil 

 
 

1.0 
0.5 
0.1 

86 ±  3 
89 ± 2 
90 ± 3 
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Table 3  . Botrytis cinerea attacks on bunches and berries (%) and residues of the botryticides used at harvest in the trials carried out during 2006 in 460 

two vineyards of Moscato and Barbera varieties. 461 

 462 

Treatment Variety 

Percentage of 
bunches attacked 
by Botrytis cinerea 

Percentage of 
berries attacked 
by Botrytis 
cinerea 

Fungicide concentration at harvest (mg kg-1 ± S.D.) 

Boscalid Cyprodinil Fenhexamid Fludioxonil Iprodione Pyrimethanil 

1 Moscato *22.9 a *2.4 a 0.30 ± 0.15    1.26 ± 0.28  
Barbera 30.3 a 7.3 a 0.26 ± 0.18    1.37 ± 0.14  

2 Moscato 32.9 b 7.0 ab  0.17 ± 0.01 0.56 ± 0.19   0.17 ± 0.01  
Barbera 68.0 b 20.9 ab  0.20 ± 0.01 0.45 ± 0.07  0.16 ± 0.01  

3 Moscato 51.5 c 9.3 bc      0.24±  0.04  
Barbera 81.3 b 22.9 ab      0.47 ± 0.10  

4 Moscato 18.7 a 3.1 a      5.80 ± 1.50 
Barbera 35.3 a 3.8 a      3.81 ± 0.79  

5 Moscato 23.1 a 5.7 ab  0.42 ± 0.24 0.41 ± 0.24  0.56 ± 0.02  
Barbera 34.0 a 6.8 a  0.37 ± 0.22 0.28 ± 0,04 0.44 ± 0.02  

6 Moscato 29.5 ab 5.7 ab   0.21 ± 0.02  4.23 ± 0.36  
Barbera 57.0 ab 27.3 ab   0.18 ± 0.02  2.21 ± 0.31 

7 Moscato 68.2 d 14.7 c       
Barbera 88.0 b 48.4 b             

 463 
*Values followed by the same letter within the same cultivar are not statistically different by Duncan’s Multiple Range Test (P < 0,05). 464 

 465 
 466 
 467 
 468 
 469 
 470 
 471 
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FIGURE CAPTIONS 472 
 473 
Figure 1. Typical chromatograms (A): boscalid (analytical standard at 1.1 mg Kg-1, sample of 474 
Barbera from trial 1), (B): cyprodinil (analytical standard at 0.5 mg Kg-1, sample of Barbera from 475 
trial 2), (C): fenexhamid (analytical standard at 0.96 mg Kg-1, sample of Barbera from trial 9), (D): 476 
fludioxonil (analytical standard at 0.5 mg Kg-1, sample of Barbera from trial 7), (E): iprodione 477 
(analytical standard at 1.0 mg Kg-1, sample of Moscato from trial 6), (F): pyrimethanil (analytical 478 
standard at 0.5 mg Kg-1, sample of Moscato from trial 4).479 
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