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Abstract 

Bridged cyclodextrin dimers and trimers, in which respectively two and three hydrophobic 

cavities lie in close proximity, display much higher binding affinities and molecular selectivities 

than do parent cyclodextrins (CDs). By joining βCD units with links inserted at different 

positions (2-2', 3-2', 6-2' or 6-2'-6'') and interposing spacers of different lengths and shapes, 

multicavity structures can be synthesized that are precisely tailored to fit specific guest 

molecules. This enzyme-mimicking strategy can also be used to generate stable supramolecular 

adducts. A series of CD dimers and trimers was prepared in good yields by carrying out the 

critical synthetic steps under power ultrasound (US) or microwave (MW) irradiation. Starting 

from CD azide and acetylenic derivatives we exploited an efficient MW-promoted Huisgen 1,3-

dipolar cycloaddition in the presence of Cu(I) salts. The resulting bridged CD derivatives gave 

stable adducts with magnetic-resonance-imaging contrast agents (MRI CAs) containing 

gadolinium(III) chelates. These inclusion complexes were found to be 2 to 3 orders of magnitude 

more stable than those formed by βCD and to be endowed with high relaxivity values.  

 



Introduction  

 Cyclodextrins (CDs) find numerous important applications in chemical, biological and 

pharmaceutical technologies.1 Their employs range from analytical separations,2 food manufacturing,3 

enzyme mimics,4 as drug carriers,5 to the delivery of medical diagnostic agents.6 They are among the 

most widely used oligosaccharide hosts for drug complexation, because CD-encapsulated drugs 

usually have a better bioavailability, a longer half-life in the body, unhindered excretion and no extra 

toxicity.7   

Since the pioneer work by Tabushi8 and Harada9 much effort has been devoted to making CD dimers 

(bis-CDs) with a variety of functional tethers.10 Although syntheses and properties of homodimers 

linked through their primary11 or secondary12 faces are well documented, few heterodimers and trimers 

(tris-CDs)13 have been reported to date and not much is known about their binding properties. We 

described improved US- and MW-promoted protocols for β 

CD homodimerization through 6-6' and 2-2' ureido- and thioureido-bridges14 or alkenyl bridges built 

by cross-metathesis reactions in the presence of 2nd-generation Grubbs catalyst.15 Very recently we 

introduced a new, efficient synthetic protocol16 for preparing homo- and heterodimers of α-, β- and 

γCD. It was based on a MW-promoted17 Huisgen 1,3-dipolar cycloaddition18 of CD monoazides and 

CD monoacetylenes resulting in the formation of a 1,2,3-triazole bridge.19
  

Owing to problems of selectivity, efficiency and purification, monosubstitution and disubstitution 

of CDs still remain challenging targets. We found that non-conventional techniques (US or MW 

irradiation) could markedly improve several CD functionalizations, to great advantage in terms of 

yields and reaction times.20-22 

Mono-O-propargyl-CDs and monoazido-deoxy-CDs proved to be versatile building blocks for the 

construction of all types of homo- and heterodimers, whether joined ‘head-to-head’ or ‘head-to-tail’. 

Selective mono- and disubstitutions to provide azido derivatives could usually be achieved via 

monotosylation20 as described in our improved protocols that afforded the 3- and 6-monoazido as well 

as the 6,6'-diazido derivative.22 The latter is a suitable building block for preparing CD trimers. 

Mono-O-propargylation on the secondary face was not a straightforward procedure; protective groups 

had to be inserted at C-6 and strict operative conditions adhered to in order to minimize time-

consuming chromatographic purifications (Scheme 1). An alternative strategy for the synthesis of 

dimers employed a spacer molecule bearing two azido groups or two acetylenic moieties that reacted 

with suitably monosubstituted CDs (Scheme 2). 



The key step in the present synthetic protocol is the Huisgen 1,3-dipolar cycloaddition of azides and 

alkynes, that under catalysis with copper(I) salts react regioselectively to give 1,4-disubstituted 1,2,3-

triazoles. It is experimentally straightforward and widely applicable because it shows a high tolerance 

toward many functional groups and proceeds to completion in a large variety of solvents including 

aqueous t-butanol and DMF. The catalyst is usually prepared in situ by reduction of Cu(II) salts (that 

are less expensive and often purer than Cu(I) salts), usually with L-ascorbic acid or sodium L-

ascorbate. When this cycloaddition was carried out under MW irradiation, the reaction time was 

dramatically reduced.  

The other aim of the present work was to investigate our newly-synthesized, water-soluble CD 

multimers as host molecules for adducts containing Gd(III) chelates. The resulting complexes 

should find application as contrast agents (CAs) for MRI diagnostic medical investigations. As 

they have much larger molecular masses than the CAs themselves, they should be endowed wi th 

markedly higher relaxivities owing to their longer rotational correlation times and consequently 

generate better-contrasted images. 

 

Results and Discussion 

Our first goal was to prepare a library of CD dimers and trimers whose CD units would be joined 

‘head-to-head’ or ‘head-to-tail’ through a rigid, chemically stable spacer. The second goal was to 

investigate their ability to host in their supramolecular cavities, and thus firmly bind, CAs bearing 

suitable substituents (e.g. one or more cyclohexyl groups; see Figure 1).  

The key synthetic step was the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition by which 

monoazido and monoacetylenic CD derivatives could be efficiently linked together through a 1,2,3-

triazole moiety. Our speedy MW-promoted protocol was characterized by short reaction times, good 

yields and easy work-up . 

We adopted two alternative strategies: the first was to directly react two CD derivatives bearing an 

azido and an alkyne group respectively; the second one used a bifunctional spacer - either 1,3-

bis(azidomethyl)benzene or 1,3-bis(propargyloxy)benzene - to join together two appropriate CD 

derivatives by generating two triazole bridges. Scheme 1 resumes the preparation of monopropargyl 

derivatives. 6-O-t-butyldimethylsilyl-CD,24 when reacted under reflux in anhydrous THF with a 

quasi-stoichiometric amount of propargyl bromide (1.1 eq) in the presence of lithium hydride, yielded 



the 2-monoalkynyl derivative and traces of the 3-alkylated product. When a moderate excess of 

bromoalkyne (3 eq)  was used instead, the dialkylated CD was isolated as major product.  

6-Monoazido-CD and 3-monoazido--, - and CD (5 and 10-12 respectively) were prepared as 

recently described by ourselves20,21 and so was 6A,6D-dideoxy-6A,6D-diazido-βCD (18), obtained by 

displacing with sodium azide under MW the primary (C-6) sulfonic ester group of 6A,D-capped-βCD. 

 

 

Scheme 1. Synthesis of monopropargyl CD derivatives. Reagents and conditions: a) TBDMSCl, imidazole, dry pyridine, stirring, rt., 8h 

b) LiH, dry THF/DMSO, propargyl bromide, rfx, 4h.  

Acetylenic and azido derivatives were subjected to cycloaddition in t-butanol/water (1:1) in the 

presence of CuSO4 and L-ascorbic acid under MW (90°C, 150 W).17 The same protocol was employed 

to obtain symmetric homodimers (4, 6) using either of the above-mentioned bifunctional cross-linkers, 

viz. 1,3-bis(azidomethyl)benzene (AMB) and 1,3-bis(propargyloxy) benzene (POB). AMB was used in 

our previous work to prepare cross-linked CD derivatives.24 
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Scheme 2. Synthesis of bis-CDs and tris-CDs via Huisgen cycloaddition. Reagents and conditions: a) CuSO4/ascorbic acid, t-BuOH/H2O 

(1:1), MW 85°C, 150 Wmax, 40 min; b) AcCl 2% in CH3OH/CH2Cl2 1:2. 

When we subjected 5 to cycloaddition with a 2-mono-O-propargyl-6-TBDMS-CD, we obtained 

respectively the asymmetric homodimer 8 in the case of CD derivative 2, and two asymmetric 

heterodimers (7, 9) in the case of α- or γCD derivatives (1, 3). As we aimed to compare the respective 

binding properties of such bis-CDs, joined by unlike faces, with those of a bis-CD that was joined by 

like faces, we carried out the cycloaddition on 3-monoazido-α, -or-γCD (11) and mono-O-alkylated-

CD (2). 



 

Scheme 3. Synthesis of dimers 7-15. Reagents and conditions: a) CuSO4/ascorbic acid, t-BuOH/H2O (1:1), MW 85°C, 150 Wmax, 40 

min; b) AcCl 2% in CH3OH/CH2Cl2 1:2 

We then attempted the synthesis of a tris-CD from dipropargylated derivatives (16) and 6-monoazido-

-CD (5), but found it more difficult than those of analogous bis-CDs. The operating conditions used 

for the latter, tended here to result in lower yields. Indeed, when carried out in t-butanol/water, the 

reaction stopped short at the dimer intermediate, that precipitated out of the medium; in fact one 

acetylenic group had quite failed to react. When the reaction however was repeated in DMF, the final 



product (17) was isolated in 68% yield. Because di-O-alkylation generated different positional 

isomers, the configuration of our tris-CD is unknown.  

On the other hand when 6A,6D-dideoxy-6A,6D-diazido-βCD (18) and mono-O-propargyl-6-

TBDMS--CD (2) were reacted in DMF, the product was identifiable as 6A,6D-bis((4-(6'-O-hepta-

TBDMS-βCD-2'-yl)-1H-1,2,3-triazol-1-yl)-6A,6D-dideoxy-βCD (19). 
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Scheme 4. Synthesis of trimers 17 and 19. Reagents and conditions: a) CuSO4/ascorbic acid, DMF, MW 85°C, 150 Wmax, 40 min; b) 

AcCl 2% in CH3OH/CH2Cl2 1:2 

Residual copper was removed from crude reaction mixtures by filtration through a silica column and 

crystallisation or, more efficiently, by chelation with diethylenetriamine-pentaacetic acid sodium salt. 

Protecting silyl groups were cleaved off 17 and 19in a few minutes under acidic conditions (2% acetyl 

chloride in methanol). The final products are shown in Scheme 4. 

We studied how our CD dimers and trimers interacted with suitably functionalized CAs for diagnostic 

Magnetic Resonance Imaging (MRI),25 e.g. the complexes shown in Figure 1. Ditopic guest molecules 

can be expected to bind to bis-CDs more strongly than monotopic ones. The efficacy of a Gd(III) 

chelate as CA for MRI is related to its relaxivity (r1p), that can be much enhanced by attaching it to a 



very large molecule such as a bis-CD.15 To minimize its toxicity, the resulting adduct should be non-

covalent rather than covalent in nature, a condition that can be satisfied if the Gd(III) chelate contains 

suitable hydrophobic groups that will behave as guests in the CD cavities. Relative binding parameters 

listed in Table 1 (association constants Ka, relaxivities Rb of the adducts and number of binding sites n) 

, were determined by the Proton Relaxivity Enhancement (PRE) method (see supporting information 

for relevant equations)26, which exploits the increase in relaxation rate of the paramagnetic complex 

that is determined by its binding to a macromolecular substrate. The binding parameters were obtained 

from two different kinds of titration: the first, in which a fixed concentration of the Gd-chelate was 

titrated with variable amounts of CD dimer/trimer (see example in Figure 2), allowed an accurate 

determination of Ka and Rb;  by the second, in which a fixed concentration of the CD dimer/trimer was 

titrated with the Gd-chelate (see example in Figure 3), we determined the number of equivalent, 

independent binding sites. In the latter, as the binding affinity was sufficiently high, the plot of the 

experimental data showed a breaking point corresponding to the substrate saturation. By fitting the 

experimental points with suitable PRE equations we obtained the number of binding sites on the CD 

dimer/trimer. While for the monotopic Gd-1 complex the number of binding sites was found to be 1 

for all the investigated CDs, for bi- and tri-topic Gd-2 and Gd-3 complexes the  number of binding 

sites on the CD dimer/trimer turned out to be fractional (0.5-0.7). Further support to these findings 

emerged when the data were displayed in the form of Scatchard Plots (Figure 4), where the intercept 

on the x axis yields the number of binding sites on the substrate.27 To explain this difference we 

hypothesized that, while in the case of a monotopic Gd-1 complex a simple 1:1 host-guest adduct was 

formed, in the case of ditopic and tritopic complexes three or four dimer molecules might be bridged 

through two or three Gd complexes (n= 2/3 and n=3/4 respectively) (Figure 7). 

 

Figure 1. Structures of Gd complexes used to prepare host-guest adducts. 
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Figure 2. Observed water-proton relaxation rates of 0.53 mM Gd-1 (), 0.37 mM Gd-2 () and 0.48 

mM Gd-3 () solutions as a function of dimer 4 concentration ( 20 MHz, 298K, pH = 7). 

 

Figure 3. Observed water-proton relaxation rates of a  0.75 mM Dimer 4 solution as a function of Gd-

2 concentration ( 20 MHz, 298K, pH = 7). 



 

Figure 4. Scatchard plots of data obtained from PRE titrations of: A) 0.75 mM Dimer 4 solution 

with Gd-2 and B) 0.375 mM dimer 4 solution with Gd-1. The graphs clearly point to n=0.7 and to 

n=1 for Gd-2 and Gd-1 respectively. 



 

From inspecting Table 1 we can clearly infer a relationship between binding parameters and structural 

features of the interacting compounds. For example, by comparing the interactions between dimer 4 

and Gd-1, Gd-2, and Gd-3 respectively (Fig. 2), we see that an increase in the number of hydrophobic 

cyclohexyl substituents determines an enhancement in the relaxivity of the adducts; on the other hand 

the affinity constant increases only when going from one to two substituents, whereas the addition of a 

third one does not influence it further. A closer investigation of parameters governing the relaxometric 

behaviour of the three CD-dimer adducts has been performed by analysing the relative NMRD 

(Nuclear Magnetic Resonance Dispersion) profiles.28 This approach accurately determines the 



reorientational correlation time (R)29 of each adduct, which is strictly related to its molecular 

dimensions. Figure 5 shows the NMRD profiles of the adducts of dimer 4 with Gd-1, Gd-2 and Gd-3. 

Data were analysed using the Solomon-Bloembergen-Morgan model,30 assuming (on the basis of what 

is observed with free complexes) one water molecule in the inner coordination sphere for each Gd(III) 

complex (q=1) and fixing the exchange lifetime (M) to 200 ns. Both the profile shapes and R values 

determined from the fitting of experimental results (Table 1) may be explained by the formation of 

supramolecular systems of increasing size as we go from Gd-1/dimer 4 to Gd-2/dimer 4 and Gd-

3/dimer 4 inclusion complexes.  

 

Table 1. 

 Gd-1 Gd-2 Gd-3 

Dimer 4 Ka = 4.6×103±130 M-1 

Rb = 12.4±0.20 mM-1s-1 

n=1 

 

NMRD: R = 356±12  ps 

       nss = 0 

-- 

Ka = 3.9×104±207  M-1 

Rb = 24.3±0.30  mM-1s-1 

n=0.66 

 

NMRD: R = 890±17 ps 

       nss = 6±1 

SS = 60 ps 
 

Ka = 4.1×104±250  M-1 

Rb = 27.2±0.25 mM-1s-1 

n=0.7 

 

NMRD: R = 930±23  ps 

       nss = 6±0.8 

SS = 60 ps 
-- 

Dimer 6 Ka = 5.9×103±85  M-1 

Rb = 11.5±0.45  mM-1s-1 

n=1 
-- 

Ka = 5.9×103±115  M-1 

Rb = 25.8±0.18  mM-1s-1 

n=0.66 
 

 

Dimer 7 -- 

-- 
Ka = 1.4×104±97  M-1 

Rb = 21.7±0.31  mM-1s-1 

n=0.5 

-- 

Dimer 8 Ka = 1.1×104±112  M-1 

Rb = 10.8±0.2  mM-1s-1 

n=1 

Ka = 6.1×105±223  M-1 

Rb = 26.1±0.18  mM-1s-1 

n=0.66 

-- 

Dimer 9 Ka = 1.8×103±88  M-1 

Rb = 11.8±0.11  mM-1s-1 

n=1 
-- 

Ka = 3.0×103±103  M-1 

Rb = 27.2±0.26 mM-1s-1 

n=0.5 
 

-- 

Dimer 14 -- 

-- 
Ka = 1.8×104±90  M-1 

Rb = 24.3±0.43  mM-1s-1 

n=0.66 
 

-- 

Trimer 17 Ka = 1.4×104±95  M-1 

Rb = 12.8±0.14  mM-1s-1 

n=1 

 

NMRD: R = 390±88  ps 

       nss = 0 
-- 

Ka = 5.3×104±135  M-1 

Rb = 27±0.18  mM-1s-1 

n=0.7 

 

NMRD: R = 1±0.23  ns 

       nss = 5±1 

SS = 60 ps 
 

Ka = 6.1×103±112  M-1 

Rb = 35.6±0.26  mM-1s-1 

n=1 

 

NMRD: R = 2±0.34  ns 

       nss = 9±1.5 

SS = 60 ps 

Trimer 19 -- 

-- 
-- 

Ka = 1.9×104±113  M-1 

Rb = 24±0.9  mM-1s-1 

n=1 
 

-- 

Ka = Association constant, Rb= Adduct Relaxivity, n = number of binding sites on the dimer) determined by the relaxometric PRE method at 298K and 
neutral pH;  Reorientational correlation times (R), number of second sphere water molecules (nss) and second sphere correlation time (ss). 

 

Figure 5.  



 

1/T1 NMRD profiles of Gd-1/Dimer 4 (), Gd-2/Dimer 4  () and Gd-3/Dimer 4 () adducts, as determined at pH=7 and 298K. Solid 

curves through data points were calculated with parameters reported in Table 1. The fitting procedure was been performed by assuming: 

q (number of coordinated water molecules) = 1; r (distance between the GdIII dev’essere pedice ion and the protons of the coordinated 

water molecule)= 3.1Å; a (distance between the GdIII ion and the outer-sphere water proton nuclei = 3.8Å; D (solute–solvent diffusion 

coefficient) = 2.247×10-5 cm2 s-1; M (exchange lifetime of the inner-sphere water molecule) was fixed to the value previously obtained 

for the free complexes (200ns). 

  

Figure 6.  

 



1/T1 NMRD profiles of Gd-1/Trimer 17 (), Gd-2/Trimer 17 () and Gd-3/Trimer 17 () adducts, obtained at pH=7 and 298K. Solid 

curves through the data points were calculated with the parameters reported in Table 1. The fitting procedure was performed by 

assuming: q (number of coordinated water molecules)= 1; r (distance between the GdIII ion and the protons of the coordinated water 

molecule)= 3.1Å; a (distance between the GdIII ion and the outer-sphere water proton nuclei = 3.8Å; D (solute-solvent diffusion 

coefficient) = 2.247×10-5 cm2 s-1; M (exchange lifetime of the inner-sphere water molecule) was fixed to the value previously obtained 

for the free complexes (200ns). 

For adducts of dimer 4 with Gd-2 and Gd-3, quantitative analysis of the NMRD profiles was not 

satisfactory when the simple inner-outer-sphere model was used; thus we assumed that the water 

protons present in the chelate second-coordination sphere also contributed to observed relaxivities. 

This contribution may originate from clusters of water molecules entrapped within the supramolecular 

adducts. Such a behaviour is commonly encountered with adducts formed when a paramagnetic 

complex is non-covalently bound at the surface of a protein28 as well as with the supramolecular “host-

guest” adduct formed by poly-CD and Gd(III) complexes.31 

From the fitting of experimental data we estimated that 5-6 second-sphere water molecules are present 

per Gd(III) ion (see Table 1), at an average distance of 4 Å from each paramagnetic center. This 

second-sphere contribution was analysed on the basis of the Solomon-Bloembergen-Morgan model, 

suitably modified by introducing a generic correlation time (ss) which dealt with modulating the 

dipolar interactions (exchange and/or rotation) of the second-coordination-sphere water molecules. 

The ss values obtained from fitting the experimental NMRD profiles appear to be much shorter than 

R (Table 1), suggesting that they modulate the lifetimes of water molecules lying at the surface of the 

paramagnetic complex. Moreover, the mere contribution from the second coordination sphere does not 

suffice to explain the high relaxivity values of Gd-2/dimer 4 and Gd-3/dimer 4 adducts compared to 

the Gd-1/dimer 4 adduct. This considerable relaxivity enhancement gives strong support to the 

hypotesis that ditopic and tritopic complexes may act as bridges linking two or three dimer molecules, 

resulting in larger supramolecular adducts endowed with longer reorientational correlation times and 

consequently higher relaxivities (Fig. 7). 

 

Figure 7. Hypothetic interaction mode in Gd-1/, Gd-2/ and Gd-3/dimer adducts. 



 

 

Some further considerations may be appropriate regarding the association constants (Table 1) 

determined for the interactions of the Gd-2 complex with the other dimers here reported.  

By comparing the binding properties of Gd-2 towards dimers 4 and 6, in which the two CD units are 

linked by the same spacer which is however fastened to different positions on the CD surfaces, we find 

that the association constant is one order of magnitude larger when the two CD units are joined by 

their larger faces.  

In the case of asymmetric heterodimers 7, 8 and 9 interacting with Gd-2, a markedly larger association 

constant was found when both CDs were . The binding affinity determined for this particular system 

was one order of magnitude larger than those found for all other systems. 

Moreover, when we compare the binding properties of Gd-2 toward a bis-CD joined by unlike faces 

(dimer 8) with those shown toward a bis-CD joined by like faces (dimer 14), we see that the affinity is 

one order of magnitude lower in the latter case. These differences in the affinity constant are certainly 

due to the different dimensions relative orientations and of the two CD cages. For this type of guest 

molecules, in which the interacting unit is cyclohexane, the best cavity size is offered by CD and the 

best orientation is presented by the dimer in which the CD units are joined by unlike faces. 

Finally we investigated the binding properties of the three complexes reported in Figure 5 with CD 

trimers 17 and 19. The strenght of interaction seems to remain in the same order of magnitude as found 

in the case of dimeric systems, but with Gd-3/trimer complexes relaxivity values turned out to be even 

higher. The NMRD profiles of Gd-1, Gd-2 and Gd-3 adducts with trimer 17 are reported in Figure 6. 

Their higher relaxivity values (compared to  those of dimeric adducts) are supported by longer R 

values resulting from the larger dimensions of these supramolecular systems.  

 

Conclusions 



A new approach to the preparation of CD dimers and trimers has been introduced. It employs CDs 

that are regioselectively monosubstituted with acetylenic and azido groups, or, alternatively, the 

same in association with disubstituted aromatic spacers bearing either reactive function. These 

versatile derivatives were subjected to a MW-promoted Huisgen cycloaddition that led to the 

formation of bis- and tris-CDs. Access to a library of CD dimers and trimers featuring different 

linkage positions on CD surfaces and cavities of different dimensions should enable us to better 

tune the interaction between the guest molecule (drug, diagnostic marker, etc.) and the CD carrier . 

Our study with medical diagnostic markers (MRI contrast agents) as guest molecules bore out this 

concept. Moreover stability constants and relaxivities found for the adducts of Gd(III) chelates 

with our CD multimers, especially trimers, recommend these supramolecular systems as promising 

candidates for MRI applications. 

Experimental 

General 

 

Materials and methods: Reactions were monitored by TLC on Merck 60 F254 (0.25 mm) plates, which 

were visualized by UV inspection and/or by heating after a spray with 5% H2SO4 in ethanol. Merck 

silica gel was used for column chromatography (CC). IR spectra were recorded with a Shimadzu FT-

IR 8001 spectrophotometer. Unless stated otherwise, NMR spectra were recorded with a Bruker 300 

Advance (300 MHz and 75 MHz for 1H and 13C, respectively) at 25°C; chemical shifts are calibrated 

to the residual proton and carbon resonances of the solvent: CDCl3 (H = 7.26, C = 77.0). Chemical 

shifts () are given in ppm, coupling constants (J) in Hz. MALDI-TOF MS spectra were recorded on a 

Bruker Reflex III spectrometer, ESI-mass spectra on a Waters Micromass ZQ equipped with ESI 

source. MW-promoted reactions were carried out in a professional oven from Microsynth - Milestone 

(Italy). Commercially available reagents and solvents were used without further purification unless 

otherwise noted. Native CDs were kindly provided by Wacker Chemie. Gd1-3 (Figure 1) were kindly 

provided by Bracco Imaging Spa (Italy). 

 

 

Synthesis  

 



2I-O-propargyl-6I-VIIO(t-butyldimethylsilyl)-βCD (2), 61-azido-61-deoxy-CD (5) and 3I-deoxy-3I-

altro-azido-α, -β and -γCD (10, 11, 12) and biphenyl-4,4′-disulfonyl-A,D-capped βCD were prepared 

following published procedures.20,22,32 O-propargyl derivatives of α- and γCD (1, 3) had not so far been 

described in the literature. 

2I-propargyl-6I,VII-O-TBDMS-αCD (1) 

6I-VII-O-TBDMS-CD (3 g, 1.8 mmol) and LiH (43 mg, 5.4 mmol) were dissolved in anhydrous THF 

(25 mL). The solution was heated 2 h under reflux. After it had cooled down to room temperature, 

80% propargyl bromide in toluene (292 μL, 2 mmol) dissolved in 2 mL of THF was added dropwise 

and the mixture was stirred overnight at room temperature. The reacted mixture was diluted with 

EtOAc, washed with 1M H2SO4 and brine, and finally dried (Na2SO4). The crude residue, purified by 

CC (CHCl3–acetone) yielded 1.35 g of derivative 1 (0.8 mmol, yield 44%). 

1 is a white powder; Rf = 0.43 (CHCl3/CH3OH 4:1); max(KBr)/cm-1 3420, 2930, 1473, 1361, 1084, 

1041 and 835; H(300 MHz; CDCl3) 4.5 (br s, 6H, 1-H), 4.04 (br d, J 9.4, 1H, 1'-H), 3.98 (br d, J 9.4, 

1H, 1'-H), 4.0-3.49 (m, 36H), 2.43 (br. s, 1H, 3'-H), 1.08 (s, 54H, t-but) and 0.05 (s, 36H, Si-CH3); m/z 

(ESI-MS) calcd. for [M+H]+ 1697.4, found 1697.3. 

 

2I-propargyl-6I,VII-O-TBDMS-γCD (3) 

6I-VII-O-TBDMS-γCD (3 g, 1.35 mmol) and LiH (30 mg, 3.75 mmol) were dissolved in anhydrous 

THF (25 mL) and the solution was heated 2 h under reflux. After it had cooled down to room 

temperature, 80% propargyl bromide in toluene (221 μL, 1.48 mmol), diluted in 2 mL of THF, was 

added dropwise and the mixture was stirred overnight at room temperature. The reacted mixture was 

diluted with EtOAc, washed with 1M H2SO4 and brine, and finally dried (Na2SO4). The crude residue, 

purified by CC (CHCl3-Acetone) yielded 1.57 g of derivative 3 (0.702 mmol, yield 52%). 

3 is a white powder; Rf = 0.25 (CHCl3/CH3OH 4:1); max(KBr)/cm-1 3420, 2930, 1471, 1362, 1086, 

1035 and 835; H(300 MHz; CDCl3) 5.1-4.9 (m, 8H, 1-H), 4.78 (br d, J 8.1, 2H, 1'-H), 4.11-3.40 (m, 

48H), 2.1 (br. s, 1H, 3'-H), 0.9 (s, 72H, t-but) and 0.05 (s, 48H, Si-CH3); m/z (MALDI-TOF MS) calcd. 

for [M+Na]+ 2270.120, found 2270.148. 

Di-O-propargyl-6I,VII-O-TBDMS-βCD (16). 

6I-VII-O-TBDMS-CD (3 g, 1.55 mmol) and LiH (37 mg, 4.6 mmol) were dissolved in anhydrous THF 

(12 mL). The solution was heated 2 h under reflux. After it had cooled down to room temperature, 

80% propargyl bromide in toluene (690 μL, 4.65 mmol), diluted in 2 mL of THF, was added dropwise 

and the mixture was stirred overnight at room temperature. The reacted mixture was diluted with 



EtOAc, washed with 1M H2SO4 and brine, and finally dried (Na2SO4). The crude residue, purified by 

CC (CHCl3-CH3OH 19:1, 9:1, 4:1) yielded 1.24 g of di-O-alkylated-CD (0.62 mmol, yield 40%). 

16 is a white powder; Rf = 0.26 (CHCl3/CH3OH 4:1); max(KBr)/cm-1 3420, 3325, 1473, 1254, 1086, 

1040 and 835; H(300 MHz; CDCl3) 4.9 (br s, 7H, 1-H), 4.5 (br q, J 16.8, 4H, 1'-H), 4.1-3.9 (m, 14H), 

3.8-3.5 (m, 28H), 2.4 (br. t, J 2.3, 2H, 3'-H), 0.88 (s, 63H, t-but) and 0.05 (s, 42H, Si-CH3); m/z 

(MALDI-TOF MS) calcd. for [M+Na]+ 2031.996, found 2032.322. 

 

6A,6D-diazido-6A,6D-dideoxy-βCD (18). 

The reaction was carried out under magnetic stirring in a professional MW oven, temperature 

being monitored with a fibre-optic thermometer. 500 mg (0.35 mmol) of biphenyl-4,4'-disulfonyl-

A,D-capped βCD and 66 mg (1.05 mmol) of sodium azide were dissolved in 5 ml of DMF. The 

mixture was irradiated with MW (120W) at 85°C for 40 min. The solvent was then partially 

evaporated and the product precipitated with 7 ml of water/acetone 1:10. 403 mg of pure 6 A,6D-

diazido-6A,6D-dideoxy-βCD were recovered (yield 96 %). Analytical data were in accordance with 

reported values.33 

 

General procedure for Cu-catalyzed Huisgen 1,3-dipolar cycloadditions  

In a 10 mL two-necked round-bottomed flask (equipped with an optical-fiber thermometer for 

reactions under MW) 1 mmol of the alkyl azide and 1 mmol of the acetylenic derivative were 

suspended in 5 mL of a t-BuOH/H2O 1:1  mixture. 0.6 mmol of CuSO4·5H2O and 1.2 mmol of L-

ascorbic acid were added. The mixture was irradiated with MW at constant temperature (90°C, 

max power 150 W) and the reaction monitored by TLC until complete conversion of the starting 

material was observed. Water (30 mL) was then added; the precipitate was filtered off and washed 

with a cold 40 mM solution of diethylenetriamine-pentaacetic acid sodium salt (20 mL) to remove 

copper, and finally with water. 

 

General procedure for deprotection.  

The crude product (1 mmol) was dissolved in CH2Cl2 (20 mL), a 2% solution of AcCl in MeOH 

(10 mL) was added and the mixture was stirred overnight at room temperature. Ether (50 mL) was 

then added; the precipitate was filtered, washed with ether (40 mL) and dried under vacuum.  

 

1,3-bis((4-(βCD-2'-yl-methyl)-1H-1,2,3-triazol-1-yl)methyl)benzene (4).  



The reaction was carried out with 2I-O-propargyl-6I-VII-O-TBDMS-CD (2) (500 mg, 0.25 mmol) and 

1,3-bis(azidomethyl) benzene (AMB, 23 mg, 0.12 mmol). The reacted mixture was diluted with 

EtOAc, washed with H2O and brine and finally dried (Na2SO4). The crude product, when purified by 

CC (CHCl3/CH3OH = 19:1, 9:1, 4:1), yielded 370 mg of 6I-VIITBDMS β-β dimer (0.09 mmol, yield 

75%) as a white powder. Rf = 0.43 (CHCl3/CH3OH 4:1) and 0.56 (EtOAc/MeOH/H2O =40:7:5); 

max(KBr)/cm-1 3422, 1473, 1389, 1254, 1086, 1040 and 835; δH(300 MHz; CDCl3) 7.9 (s, 2H, 5-H 

triazole), 7.4 (m, 1H, 5-H), 7.35-7.3 (m, 3H, 2-H, 4-H, 6-H), 5.53 (s, 4H, -N-CH2-Ph), 4.9 (m, 18H, 1'-

H, overlapped 4 H, triazole-CH2-O), 4.09-3.9 (m, 28H), 3.7-3.4 (m, 56H), 0.88 (s, 126H, t-but), 0.05 

(s, 84H, Si-CH3); δC(75 MHz; CDCl3) 145.1 (C-4 triazole), 135.8 (C-1,3), 130.1 (C-5), 128.8, 128.2, 

128.0 (C-2,C-4,C-6), 124.2 (C-5 triazole), 102.7 (C-1'), 82.1 (C-4'), 73.8, 73.4, 73.2 (C-2',C-3',C-5'), 

65.3 (C triazole -CH2-O), 62.1 (C-6'), 54.7 (C N-CH2-Ph), 26.4 (C-Me3), 18.7 (C-Me3), -4.0, -4.2 (Si-

Me2); m/z (MALDI-TOF MS) calcd. for [M+Na]+ 4153.053, found 4152.388. 370 mg of 6I-VIITBDMS 

β-β dimer (0.09 mmol) were deprotected to obtain 180 mg of β-β dimer 4 (180 mg, 0.07 mmol, yield 

80%). 

4 is a white powder. Rf = 0.51 (CH3CN/H2O 2:1); max(KBr)/cm-1 3435, 1490, 1399, 1257, 1090, 1050 

and 852; H(300 MHz; D2O) 7.9 (s, 2H, 5-H triazole), 7.3 (t, J 7.9, 1H, 5-H), 7.2 (d, 2H,  J 7.9, 4,6-H), 

7.1 (s, 1H, 2-H), 5.53 (s, 4H, -N-CH2-Ph), 4.9 (m, 14H, 1'-H), 4,7 (m, 4H, triazole-CH2-O), 3.9-3.7 (m, 

56H), 3.6-3.4 (m, 24H), 3.4 (dd, J 9.9 and 3.6, 2H, 2'-H), 3.2 (t, J 9.9, 2H, 4'-H);C(75 MHz; D2O) 

144.2 (C-4 triazole); 136.1 (C-1,C-3), 130.4, 128.7, 128.6, 127.9 (C-2,C-4,C-5,C-6), 126.0 (C-5 

triazole), 102.2 (C-1'), 81.8 (C-4'), 73.8, 73.4, 73.2 (C-2',C-3',C-5'), 65.3 (C triazole-CH2-O), 60.6 (C-

6'), 54.1 (N-CH2-Ph); m/z (MALDI-TOF MS) calcd. for [M+Na]+ 2555.842, found 2556.074. 

 

1,3-bis((1-(6'-deoxy-βCD-6'-yl)-1H-1,2,3-triazol-4-yl)methoxy)benzene (6).  

The reaction was carried out with 61-azido-61-deoxy-CD (5) (400 mg, 0.34 mmol) and 1,3-

bis(propargyloxy)benzene (POB) (23 mg, 0.12 mmol). Acetone (30 ml) was added to the reacted 

mixture and the precipitate was filtered off. The solid was recrystallised from water/acetone 1:2 and 

215 mg of pure dimer 6 were recovered (0.084 mmol, yield 70%).  

Analytical data were in accordance with reported values.34 

6 is a white powder. Rf = 0.2 (CH3CN/H2O 2:1); max(KBr)/cm-1 3422, 1640, 1389, 1254, 1040 and 

835; H(300 MHz; D2O) 7.7 (s, 2 H, 5-H triazole), 7.2 (t, J 6.8, 1H, 5-H), 7.1 (s, 1 H, 2-H), 6.8 (d,  J 

6.8, 1H, 4-H), 6.6 (d, J 6.8, 1H, 6-H), 5.3-4.8 (m, 18H, 1'-H overlapped 4 H, triazole-CH2-O), 4.0-3.0 

(m, 80H), 3.0 (m, 2H), 2.9 (m, 2H); m/z (ESI-MS) calcd. for [M+Na2]
2+ = 1253,4, found 1253.7.  



2-(O-Di-(1-(6'-deoxy-βCD-6'-yl)-1H-1,2,3-triazol-4-yl)methyl)-βCD (17).  

The reaction was carried out in DMF with di-2I-O-propargyl-6I-VII-O-TBDMS-CD (2) (414 mg, 0.2 

mmol) and 61-azido-61-deoxy-CD (5) (525 mg, 0.45 mmol). Acetone (30 ml) was added to the 

reacted mixture, the precipitate was filtered off, washed with a cold 40 mM solution of 

diethylenetriamine-pentaacetic acid sodium salt (20 mL) to remove copper, and finally with water. The 

6I-VIITBDMS β-β trimer is a white powder (618 mg, 0.14 mmol, yield 68%). max(KBr)/cm-1 3422, 

1474, 1364, 1254, 1082, 1038 and 835; H(300 MHz; DMSO-d6) 8.0 (s, 2H, 5-H triazole), 5.1-4.6 (m, 

25H, 1-H overlapped 4 H, triazole-CH2-O), 3.8-3,2 (m, overlapped with H2O), 0.88 (s, 63H, t-but), 

0.04 (s, 42H, Si-CH3); m/z (MALDI-TOF MS) calcd. for [M+Na]+ 4350.749, found 4350.952. Starting 

with 6I-VIITBDMS β-β trimer (618 mg, 0.143 mmol), we obtained trimer 17 (290 mg, 0.082 mmol, 

yield 58%) as a white powder. Rf = 0.06 (CH3CN/H2O 2:1); max(KBr)/cm-1 3422, 1465, 1380, 1270, 

1095, and 850; H(300 MHz; D2O) 8.0 (s, 1H, 5-H triazole), 5.2-4.9 (m, 25H, 1'-H overlapped 4 H 

triazole-CH2-O), 4.1 (br t, J 7.5, 2H), 3.9-3.2 (m, 120H), 3.1 (m, 2H), 2.8 (m, 2H); C(75 MHz; D2O) 

144.3 (C-4 triazole) 127.3 (C-5 triazole), 102.3-101.8 (C-1'), 81.7-81.5 (C-4'), 73.5-73.0 (C-5'), 72.4-

71.8 (C-2',C-3'), 69.8 (C triazole-CH2-O), 61.3-60.5 (C-6'); m/z (ESI-MS) m/z (MALDI-TOF MS) 

calcd. for [M+Na]+ 3552.144, found 3552.523. 

 

6A,6D-bis((4-(6'-βCD-2'-yl)-1H-1,2,3-triazol-1-yl)-6A,6D-dideoxy-βCD (18).  

The reaction was carried  out with 6A,6D-dideoxy-6A,6D-diazido-βCD (12) (80 mg, 0.067 mmol) and 

2I-O-propargyl-6I-VII-O-TBDMS-CD (2) (264 mg, 0.135 mmol). The solvent was then  partially 

evaporated and the reacted mixture was diluted with CHCl3, washed with H2O (3 x 20 ml), dried 

(Na2SO4) and evaporated to dryness. The crude product, purified by CC (CHCl3/CH3OH = , 9:1, 4:1), 

yielded the desired 6I-VIITBDMS β-β trimer (252 mg, 0.049 mmol, 73%) as a white powder. 

max(KBr)/cm-1 3422, 1475, 1389, 1263, 1090, 1038 and 835; H(300 MHz; DMSO-d6) 7.99 (1 H, s, 5-

H triazole), 6.0-5.5 (OH, m); 5.0-4.5 (25 H, m, 1-H overlapped 4 H, triazole-CH2-O), 4.20-3.15 (126 

H, m), 0.8 (s, 126 H, t-but), 0.01 (s, 84 H, Si-CH3); m/z (MALDI-TOF MS) calcd. for [M+Na]+ 

5149.4, found 5149.4. Starting from 6I-VIITBDMS β-β trimer (150 mg, 0.029 mmol), the mixture, 

stirred overnight at room temperature, yielded tris-CD 18 (68 mg, 0.02 mmol, yield 68%) as a white 

powder. max(KBr)/cm-1 3412, 1477, 1390, 1255, 1085, 1038 and 835; H(300 MHz; D2O) 8.2 (s, 1H, 

5-H triazole), 5.3-4.4 (m, 25H, 1-H overlapped 4 H triazole-CH2-O), 4.0-3.5 (126 H, m), 2.8 (m, 

2H);C(75 MHz; D2O) 143.7, (C-4 triazole), 127.4 (C-5 triazole), , 102.2-101.7 (C-1'), 81.9-81.4 (C-



4'), 73.4 (C-5’) 72.3-71.8 (C-2',C-3'), 66.2 (C triazole-CH2-O), 60.6-59.3 (C6') m/z (MALDI-TOF MS) 

calcd. for [M+Na]+ 3552.144 found 3552.417. 

 

Water proton relaxivity measurements 

Longitudinal water-proton relaxation rates were measured by a Stelar Spinmaster spectrometer 

(Mede, PV- Italy) operating at 0.47 T, by means of the standard inversion-recovery technique (16 

experiments, 2 scans). Typical 90° pulse width was 7.5 s and the reproducibility of the T1 data 

was 0.5%. Temperature was controlled (0.1°C) with a Stelar VTC-91 air-flow heater equipped 

with a copper-constantan thermocouple. The proton 1/T1 NMRD profiles were measured over a 

continuum of magnetic field strength ranging from 0.00024 to 0.47 T (corresponding to 0.01-20 

MHz proton Larmor Frequency) on a Stelar field-cycling relaxometer. This works under complete 

computer control with an absolute uncertainty in 1/T1 of 1%. Data points from 0.47 T (20 MHz) 

to 1.7 T (70 MHz) were collected on a Stelar Spinmaster spectrometer  
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