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A wave basin experiment has been performed in the MARINTEK laboratories, in
one of the largest existing three-dimensional wave tanks in the world. The aim of
the experiment is to investigate the effects of directional energy distribution on the
statistical properties of surface gravity waves. Different degrees of directionality have
been considered, starting from long-crested waves up to directional distributions with
a spread of ±30◦ at the spectral peak. Particular attention is given to the tails of
the distribution function of the surface elevation, wave heights and wave crests.
Comparison with a simplified model based on second-order theory is reported. The
results show that for long-crested, steep and narrow-banded waves, the second-order
theory underestimates the probability of occurrence of large waves. As directional
effects are included, the departure from second-order theory becomes less accentuated
and the surface elevation is characterized by weak deviations from Gaussian statistics.

1. Introduction
An important task in the study of surface gravity waves is the determination of the

probability density function of the surface elevation. The knowledge of the probability
of occurrence of large amplitude waves is essential for different engineering purposes
such as the prediction of wave forces and structural responses or the design of offshore
structures. A deep comprehension of the physical mechanisms of generation of such
waves is a first step towards the development of an operational methodology for
forecasting freak waves. Theoretically speaking, the analytical determination of the
probability density function is not an easy task: it is well known that surface gravity
waves obey nonlinear equations and, nowadays, a universal tool suitable for deriving
the probability distribution function of a nonlinear system has not been developed
yet. Fortunately, water waves are on average weakly nonlinear and solutions can be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301860949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


236 M. Onorato and others

generally written as power series, where the small parameter, in the case of deep water
waves, is the wave steepness ε. At the lowest order of approximation the water wave
problem is linear and the solution can be written as a superposition of sinusoidal
waves with random phases. The amplitudes of the wave components are related to the
energy distribution in frequency and angle, i.e. the wave spectrum. According to the
central limit theorem, the surface elevation is Normally distributed and the envelope
is distributed according to the Rayleigh distribution.

In nature, however, waves tend to behave differently; crests are higher and troughs
are shallower than predicted by linear theory. Higher order terms are then needed in
order to take these effects into account. The solution of the water wave problem to
second order in steepness was given by Hasselmann (1962) for arbitrary depth, and
in Longuet-Higgins (1963) for deep water. The solution is just a generalization of
the second-order Stokes expansion. The amplitudes of the second-order contribution
are proportional to the square of the amplitudes of the first-order solution. Note
that at this order of nonlinearity there is no evolution in time of the wave spectrum.
The second-order contribution affects the probability of wave crests but not of
wave heights. An analytical description of the probability density function of the
surface elevation resulting from the second-order description is not an easy task.
Nevertheless, under some further approximations, some results can be achieved. For
example, Tayfun (1980) derived a distribution for wave crests under the hypothesis of
unidirectional waves and narrow banded spectra (see also Tayfun & Fedele 2007, for
a description of different models). An interesting parametrization of the probability
density function for wave crests, which fits well the output of the simulations of the
second-order model and many experimental data, has been given by Forristall (2000).

At third order in wave steepness, there is a substantial change in the description of
water waves: while bound modes are still present, resonances (or quasi-resonances)
are also possible and, as a consequence, wave amplitudes (free waves) may change
on a time scale of the order of 1/ε2 wave periods. Therefore, at third order the
probability density function of surface elevation may depend on the dynamics of the
waves. As a matter of fact, numerical simulations of the nonlinear Schrödinger
equation (Onorato et al. 2001) have shown that, for unidirectional waves, the
formation of extreme waves (the tail of the probability density function) depends
on the ratio between the wave steepness and the spectral bandwidth. This ratio
has been named in Janssen (2003) the Benjamin–Feir index, BFI (see also Alber
1978). Indeed, a mechanism which is responsible for the formation of extreme
waves is basically a generalization of the Benjamin–Feir instability (Benjamin &
Feir 1967) or modulational instability (Zakharov 1968), which formally applies
only to a Stokes wave and a small perturbation. The relevance of the third-order
nonlinearity on the occurrence of extreme waves in random spectra was already noted
in unidirectional numerical simulations of the Euler equations by Brandini (2001) and
Mori & Yasuda (2002) and suspected some years before by Trulsen & Dysthe (1997).
Experimentally speaking, there has been a number of papers in which the role of the
modulational instability on the statistical properties of long-crested surface gravity
waves was recognized (Stansberg 1992; Onorato et al. 2004, 2005, 2006b). Concerning
the determination of the probability density function of wave heights, Tayfun &
Lo (1990) (see also Mori & Janssen 2006) extended the Rayleigh distribution by
also including the contribution of the fourth-order moment (kurtosis); analytical
results were then compared favourably with experimental data given in Mori et al.
(2007). All the aforementioned results on third-order effects deal with long-crested
waves.
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Interestingly enough, already a few years earlier, using numerical simulations of
a modified Schrödinger equation (Dysthe equation, Dysthe 1979) in two horizontal
dimensions, Onorato, Osborne & Serio (2002a) noted that the number of extreme
wave events was reduced when the directional spreading of the initial spectrum
was increased. These results were then confirmed by Socquet-Juglard et al. (2005)
who also reported numerical results using a modified Dysthe equation. For short-
crested waves they found deviation from Gaussian statistics only due to bound
wave contributions, while free waves preserve Gaussian statistics despite third-order
nonlinear evolution. The statistics of the numerically simulated sea surface elevation
thus showed good agreement with the Tayfun (1980) distributions for directional
spectra while they also confirmed that, in the case of long-crested waves, the second-
order model underpredicted notably the probability of occurrence of extreme waves.
Indeed, they found that free waves do deviate from Gaussian statistics due to the
modulational instability process. A detailed analysis on the effect of directionality was
recently given by Gramstad & Trulsen (2007). They performed a large number of
simulations to reveal how the occurrence of freak waves in deep water depends on the
group and crest lengths for fixed steepness. They found that there is a sharp qualitative
transition between short- and long-crested seas, for a crest length of approximately
10 wavelengths. For short crest lengths the statistics of extreme waves deviates slightly
from Gaussian and their occurrence is independent of group length. As expected, for
long-crested lengths, the statistics of waves is strongly non-Gaussian.

A first experimental investigation on the effects of directionality on the fourth-order
moment of the surface elevation was already performed by Stansberg (1994). More
recent experimental results have been reported by Waseda (2006), who performed
wave tank experiments using directional JONSWAP spectra. He found that the
occurrence of extreme waves is significantly reduced when the directionality broadens.
His experiments were performed at the University of Tokyo in a facility 50 m long,
10 m wide and 5 m deep with a segmented plunger-type directional wavemaker
(32 plungers). Experimental results in a wave basin have also been performed
by Denissenko, Lukaschuk & Nazarenko (2007). The size of the tank used was
12 m × 6 m × 1.5 m with a wavemaker characterized by eight pistons. They performed
experiments using a continuous bi-chromatic forcing and letting the walls of the tank
reflect the waves in order to reach a quasi-isotropic case. Their conditions can be
considered as characterized by large directional spreading; their analysis showed that
the wave crests statistics was consistent with the Tayfun distribution.

In the present paper, our purpose is to study in detail the transition region between
the strongly non-Gaussian behaviour of the surface elevation that characterizes the
long-crested waves and the weakly non-Gaussian statistics that is typical of short-
crested seas. We want to confirm qualitatively, at least for the time being (a direct
comparison of the data with numerical simulation will follow in a different paper),
the numerical results obtained by Gramstad & Trulsen (2007) and the experimental
results obtained in a smaller scale experiment by Waseda (2006). Note that the width
of the tank used by Waseda (2006) is only 10 m and in principle the results could be
strongly affected by the reflection on lateral walls, especially when waves travel at a
large angle with respect to the main direction of propagation.

The present paper is organized as follows. In § 2 we describe the facilities that have
been used for the experiments. We want to stress here that the experiments have been
performed in one of the largest existing wave basin in the world, equipped with a
new multi-flap generator composed of 144 flaps. A description of the different wave
fields considered for the experiments is also given. The resulting statistical properties
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Figure 1. Wave basin and position of the wave gauges.

of the surface elevation, wave heights, wave crests are reported in § 3. A discussion of
the results and conclusions are then included in § 4.

2. The wave basin at MARINTEK
The experiments have been performed at the MARINTEK wave facilities in

Trondheim, Norway. Waves have been generated in a large rectangular wave basin.
The Ocean Laboratory (see figure 1), as the MARINTEK three-dimensional wave
tank is referred to, has dimensions 70 m × 50 m. The basin is equipped with a system
that is capable of changing the water depth: the bottom of the basin moves up or
down in order to achieve the desired uniform depth. The maximum depth is 10 m,
uniform throughout the basin. For the present experiment the water depth was fixed
at 3 m. The basin is fitted with two sets of wavemakers. Along the 50 m side there
is a double flap, hydraulically operated unit for generating long-crested, regular and
irregular waves. The second wavemaker (the one we have used for our present tests)
is fitted along the 70 m side of the basin. It consists of altogether 144 individually
computer-controlled flaps. This unit can generate short-crested seas within a wide
range of directional distributions of the wave energy. Regular and irregular waves,
with a desired angular and frequency distribution, can be generated. Each of the 144
flaps is 0.434 m wide and hinged at a depth of 1.02 m below the water surface. Each
flap is individually controlled. In order to reduce wave reflections, the wave basin is
equipped with an absorbing sloping beach at one side (opposite to the wavemaker);
reflections in amplitude have been estimated to be less than 5% after 30 min of
irregular waves of peak period of 1 s.

Wave measurements have been concentrated along the central axis of the basin
(see figure 1). Wave probes, which are held across the water surface by tripods laying
on the bottom, are at 5 m intervals; the surface elevation is recorded with a sampling
frequency of 80 Hz. At locations 5, 25 and 35 m from the wavemaker, besides the
single probe, two additional probes were deployed to allow the reconstruction of
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Experiment Tp (s) α γ Hs (m) kpHs/2 BFI

A 1.0 0.014 3.0 0.06 0.13 0.70
B 1.0 0.016 6.0 0.08 0.16 1.10

Table 1. Imposed parameters in the experiments.

directional properties. At 25 m from the wavemaker, moreover, an eight-gauge array,
which was arranged as a regular heptagon plus a central probe, was used to gather
more detailed directional spectra (see, for example, Young 1994, for a discussion on
the reconstruction of directional spectra from an n-gauge array).

2.1. The conditions at the wavemaker

In the present paper only irregular waves are described, even though a large number
of experiments with monochromatic waves have been performed in order to test the
facility. Complex Fourier amplitudes are generated, each with its modulus, randomly
chosen from a Rayleigh distribution around the ‘target’ spectrum. The phases are
randomly chosen from a uniform distribution between 0 and 2π. For the generation
of input wave spectra the JONSWAP formulation (see, e.g. Komen et al. 1994) has
been used to model the wave energy in the frequency domain:

F (ω) =
αg2

ω5
exp

[
− 5

4

(
ω

ωp

)−4]
γ exp (ω−ωp)2/2σ 2

j ω2
p . (2.1)

We have chosen to describe the wave field with a peak period Tp = 1 s, which
corresponds to a dominant wavelength of 1.56 m. We should mention that, considering
the water depth of 3 m, waves have been generated in finite water depth (kph ≈ 12.1),
but deep enough to include the modulational instability process (see, for example,
Janssen & Onorato 2007), at least for quasi–monochromatic waves. Two different
types of experiments A and B characterized by two values of the Phillips parameter
α and the peak enhancement factor γ have been considered then. The values of the
input (imposed) spectral parameters, the significant wave height, the wave steepness
and BFI of the two experiments A and B are summarized in table 1. Herein, the BFI is
calculated as the ratio of the wave steepness kpHs/2 to the spectral bandwidth �k/kp ,
where �k is a measure of the width of the spectrum estimated as the half–width at
the half–maximum (see Onorato et al. 2006b, for details). It should be mentioned that
in Socquet-Juglard et al. (2005) and Gramstad & Trulsen (2007) the BFI is

√
2 times

smaller than the one above defined because they estimate amplitudes as Hs/(2
√

2).
A cosN (θ − θm) function is then applied to model the energy in the directional

domain (see, for example, Hauser et al. 2005, for a review). In order to consider
different degrees of directional spreading, different values of the spreading coefficient
N have been used, ranging from fairly long-crested (large N) to short-crested (small N)
waves. The following values have been selected: N = 840, 200, 90, 50, 24. In figure 2 we
show the directional distribution from the analytical formula; in the same plot, just for
reference, we also include the sech2 parametrization described in Komen et al. (1994).
For comparison, we have performed a number of experiments to simulate unidirec-
tional waves too.

In order to have enough waves to perform a significant statistical analysis, four
realizations of the random sea surface from a given spectrum have been performed
by using different sets of random amplitudes and phases; for each test, 20 min of
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Figure 2. Analytical form of the directional distribution as a function of angle θ for
different values of the parameter N ; the sech2 distribution is included for comparison.

wave records were collected, including ramp-up time. For the present tests we have
analysed the signals after 3 min, thus there are 17 min left which we would use for
processing. In these tests, there is no second-order correction of input signals.

3. Experimental results
3.1. Significant wave height and wave spectra

Here, we describe some properties of the wave field such as the significant wave
height and the energy wave spectrum along the wave basin. In figure 3, we present the
significant wave height, calculated as four times the standard deviation σ as a function
of the distance from the wavemaker x divided by the wavelength corresponding to the
peak of the spectrum at the first probe L. It is evident that the wave energy slightly
oscillates as waves start propagating. The observed fluctuation are of the order of
5% and 7 % for experiments A and B, respectively. As the waves propagate towards
the end of the basin, the wave energy shows a decreasing trend. This reduction is
almost negligible for experiment A (<5 % of the value at the first probe), while it
is more significant for experiment B as it reaches 9 % of the significant wave height
at the first probe. We should mention that the present experiment was not designed
to study wave breaking and hence no quantitative measures of the wave breaking
are available. Nonetheless, we can confidently state that wave breaking was observed
more frequently in experiment B. This is therefore consistent with the observed loss
of energy, especially for large BFI (see also Onorato et al. 2006b).

In figures 4 and 5, we show the evolution of the frequency wave spectrum at three
different non-dimensional distances from the wavemaker: x/L =3.1; x/L =15.9;
x/L =28.7. Note that the frequency spectrum is measured as Fourier transform of
the recorded time series at one single probe and not as the integration over the
directions of a two-dimensional spectrum. Similarly to previous flume experiments
(Onorato et al. 2006b), we observed that in all cases the level of the tail of the
frequency spectrum is reduced as the waves propagate along the basin. Moreover, a
downshift of the spectral peak is visible at x/L = 28.7 regardless of the directional
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Figure 3. Significant wave height as a function of the non-dimensional distance from the
wavemaker: experiment A (�), experiment B (o).

properties of the wave field; this feature is especially evident for the experiment B
(figure 5). The finding is consistent with numerical simulations in Dysthe et al. (2003),
where a change of the spectrum is already observed on the scale of the Benjamin–Feir
instability (see also Onorato et al. 2002b). In some spectra, for large N , there is also
an indication of a second harmonic.

Also the directional properties of the wave spectrum are expected to change
as waves start propagating from the wavemaker. A qualitative description of the
directional distribution was obtained at locations where arrays of wave gauges were
deployed; the wavelet directional method (Donelan, Drennan & Magnusson 1996)
was used to this end. The selected method provides a rather good description of
wave directionality (see Donelan et al. 1996, for a detailed analysis of the method
and comparison with the maximum likelihood method). In figure 6, we present a few
examples of directional wave spectra as recorded near the wavemaker (x/L = 3.1)
and in the middle of the wave basin (x/L = 15.9) for initially long-crested (N = 840)
and short-crested (N = 24) wave fields. It is evident that the wave spectrum becomes
broader as waves evolve along the basin; changes in the directional distribution
were observed for all selected sea states. This result is qualitatively consistent with
numerical simulations of Schrödinger-type equations performed in Dysthe et al. (2003)
and Socquet-Juglard et al. (2005).

3.2. Higher order statistics: skewness and kurtosis

We now investigate some statistical properties of the surface elevation. In figures 7
and 8, we present the skewness and kurtosis as a function of the non-dimensional
distance from the wavemaker. Whereas the first describes the vertical asymmetry of
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Figure 4. Frequency wave spectra for experiment A: x/L = 3.1 (dash-dotted line);
x/L = 15.9 (dashed line); x/L = 28.7 (solid line).

the wave profile, the latter provides an indication about the presence of extreme waves
in the time series. For Gaussian (linear) processes, the skewness and kurtosis assume
the value of 0 and 3, respectively.

Traditionally, departures from the Gaussian statistics have been attributed to the
presence of bound waves. In order to give an estimate of the skewness and kurtosis,
we adopt the narrow-banded approximation of the second-order theory (Longuet-
Higgins 1963). Under such hypothesis, for deep water waves, the skewness (λ3) and
kurtosis (λ4) take the following form:

λ3 = 3kpσ, (3.1)

λ4 = 3 + 24(kpσ )2, (3.2)

where kp is the wavenumber at the spectral peak and σ is the standard deviation.
In figures 7 and 8, the values of the skewness and kurtosis along the wave basin are
presented as calculated by (3.1) and (3.2); kp and σ are estimated at each probe. We
mention that the second-order theory has been derived from the Euler equations as
a superposition of linear travelling wave solutions with random phases corrected to
second-order. Nonlinear four-wave resonant and quasi-resonant interactions are not
included; therefore, the spectrum does not change in time as the wave field evolves.
Equations (3.1) and (3.2) are usually a decent approximation of the third- and the
fourth-order moments of the second-order theory for long-crested waves; however, for
waves with directional spreading, they tend to overpredict the value of the skewness
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and kurtosis (see Forristall 2000; Toffoli, Onorato & Monbaliu 2006). This is basically
because in a directional spectrum the second harmonic is usually less pronounced
with respect to the long-crested case (see figures 4 and 5).

For long-crested waves (i.e. unidirectional), there is a relatively good agreement
between the measured skewness and (3.1), even though the latter tends to slightly
overestimate the observations. There is also the tendency for the skewness to diminish
as the wave field propagates along the basin. Although (3.1) shows a consistent
decreasing trend, it is not able to properly capture the reduction of skewness at the
end of the basin. As the initial directional spreading is enhanced the overestimation of
(3.1) becomes significant at each measurement station, especially for the experiment
involving steep waves (kpa = 0.16).

Unlike the skewness, the kurtosis is more influenced by the nonlinear dynamics
of free waves (see, for example, Janssen 2003; Onorato et al. 2004, 2005; Mori &
Janssen 2006), which is responsible for the formation of extreme events. In this
respect, for long-crested waves, the present experiments show that the kurtosis
significantly exceeds the second-order prediction (3.2) for both experiments. When
directional wave fields are considered, however, the effects related to free waves is
gradually reduced with the directional spreading coefficient N (i.e. broad directional
spreading). In particular, we observe that the contribution of free waves becomes
negligible for directional spreading N � 90, independently from the value of the
experiment. Therefore, the kurtosis results in good agreement with (3.2), which only
includes the contribution of bound waves. Qualitatively, these findings are similar
to previous laboratory experiments in a wave basin performed by Waseda (2006),
and numerical simulations of Schödinger-type equations (Onorato et al. 2002a;
Socquet-Juglard et al. 2005).

3.3. Probability density function of the surface elevation

In figures 9–11 we present the probability density function of the surface elevation
at different distances from the wavemaker, respectively, for long-crested waves, for
N = 200 and N = 24. For convenience, we scale the surface elevation by the standard
deviation σ of the concurrent time series. The experimental probability density
function is compared to the following second-order distribution (see Socquet-Juglard
et al. 2005):

p(η) =
1 − 7σ 2k2

p/8√
2π(1 + 3G + 2G2)

exp

(
− G2

2σ 2k2
p

)
, (3.3)

where

G =
√

1 + 2k2
pση − 1, (3.4)

which has been derived in Socquet-Juglard et al. (2005) as an approximation of the
Tayfun second-order distribution (see Tayfun 1980).

For all experiments, the experimental probability density function fits the Tayfun
distribution reasonably well at the first probe (x/L = 3.1). The effects related to bound
waves dominate the statistical properties of the wave field. As waves propagate along
the basin, nevertheless, the effects related to free waves develop. For long-crested
waves, this results in a significant deviation of the upper tail of the probability density
function from the Tayfun distribution. These deviations are evident after about 16
wavelengths for both experiments.

For more short-crested cases (N � 200), the coexistence of a number of wave
components with different directions of propagation results in a significant reduction
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Figure 9. Probability density function of the surface elevations for unidirectional waves:
normal distribution (dashed line); Equation (3.3) (solid line); laboratory experiments (+).
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Figure 10. Probability density function of the surface elevations with directional spreading
N = 200: normal distribution (dashed line); Equation (3.3) (solid line); laboratory experiments
(+).
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Figure 11. Probability density function of the surface elevations with directional spreading
N =24: normal distribution (dashed line); Equation (3.3) (solid line); laboratory experiments
(+).

of the effects of the modulational instability. As a consequence, the deviation of the
tail of the probability density function from the Tayfun distribution is reduced; high
crests are not more frequent than those in second-order predictions (cf. Socquet-
Juglard et al. 2005). Although the relevance of the effects related to the nonlinear
dynamics of free long-crested waves grows with the BFI (see, e.g. Onorato et al.
2006b), large directional spreading conditions seem to suppress these effects also for
large values of the BFI .

In order to establish the reliability of the present experimental results, we show
in figure 12 the error bars for the upper tail of the probability density function
for long-crested waves, for N = 200 and for N = 24. The error bars are computed
as ±p(η)/

√
Nb, where Nb is the number of events in each bin. Although the

confidence interval increases with the decrease of the probability levels, estimates of
the probability density functions are accurate for probability levels as low as 0.0001.

3.4. Wave height

Here we investigate the exceedance probability of the wave height calculated as
the zero-up and the zero-down crossing waves. The evolution of the experimental
distribution along the wave basin is presented in figures 13–15, respectively, for
long-crested waves, for N =200 and for N =24. The wave height is normalized
using significant wave height estimated as four times the standard deviation of the
concurrent time series. Furthermore, we expect that the second-order theory should
not affect the wave height distribution, which, according to linear theory, should be
very close to the Rayleigh distribution. The latter, therefore, is used as a reference
distribution.
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Figure 12. Upper tail of the probability density function of the surface elevations.
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Figure 13. Exceedance probability of the wave height for unidirectional sea states: Rayleigh
distribution (dashed line); laboratory experiments (×).

At the first probe (x/L = 3.1), the Rayleigh distribution describes relatively well
the experimental data down to probability levels of 0.001; for lower probabilities, the
Rayleigh distribution slightly overestimates the measurements (see Longuet-Higgins
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Figure 14. Exceedance probability of the wave height for directional sea states with direc-
tional spreading N = 200: Rayleigh distribution (dashed line); laboratory experiments (×).
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Figure 15. Exceedance probability of the wave height for directional sea states with
directional spreading N = 24: Rayleigh distribution (dashed line); laboratory experiments (×).
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1980 for a discussion). We recall, in this respect, that the wave field has been generated
at the wavemaker as a linear superposition of random waves. For unidirectional waves,
the modulational instability produces large wave heights, which modify the wave
height distribution already after about 16 wavelengths. As expected, this deviation is
more evident for experiment B. Previous flume experiments performed by Onorato
et al. (2006b) have shown that this departure starts at probability levels as low as 0.1.
For the present experiments, however, the deviation from the Rayleigh distribution
is observed at probability levels one order of magnitude lower (i.e. 0.01). This may
be related to the fact that, unlike in a narrow wave flume, long-crested waves do not
persist along the basin.

As the directional spreading is introduced at the wavemaker, it appears that the
Rayleigh distribution provides an appropriate description of the measured wave
heights. Here we emphasize that, even for a Gaussian wave field (but of finite
bandwidth), the wave height distribution is only approximately of the Rayleigh type.
The fact that the wave height distribution for the observed waves reduces to a
Rayleigh distribution does not imply that the wave field is fully Gaussian; it could
be the result of compensating deviations from non-Gaussian and finite-bandwidth
effects.

Although the time series were recorded with very high sampling frequency, the
number of individual waves available for the analysis was relatively low (about
8000 waves). Therefore, the distribution at low probability levels may be uncertain.
However, the analysis of the 95 % confidence interval performed with bootstrap
methods (see, for example Emery & Thomson 2001) showed that the estimate of the
wave height distribution is accurate at probability levels as low as 0.001.

3.5. Wave crest

We now consider the statistical distribution of wave crests, which are defined as the
highest elevation of each individual wave with respect to the mean water level. For the
crest amplitude, the second-order interactions should participate to the deviation from
Gaussian statistics. Under the hypothesis of deep water and narrow-banded waves,
Tayfun (1980) has derived a second-order wave crest distribution. The exceedance
probability assumes the following form:

S(C > η) = exp

[
− 8

H 2
s k2

p

(
√

1 + 2kpη − 1)2
]

, (3.5)

where C is the crest height and kp is the wavenumber of the dominant wavelength.
In figures 16–18, the second-order wave crest distribution is compared with the
laboratory experiments.

At probes nearby the wavemaker (x/L = 3.1), the second-order theory provides
a good estimate of the experimental data. As waves propagates along the basin,
the effects related to the nonlinear dynamics of free waves dominate the statistical
properties of the wave crests leading to a substantial deviation from the Tayfun
distribution (3.5), provided waves are long crested (see also Onorato et al. 2006b).
Towards the end of the basin, nevertheless, the crest amplitude attenuates and so the
deviation from second-order theory. Similar results were also obtained numerically
by Socquet-Juglard et al. (2005). As mentioned for the wave height distribution, also
the estimate of the wave crest distribution results to be rather accurate for probability
levels as low as 0.001 (within 95 % confidence interval).

As the directional distribution is increased (waves become more short crested), the
deviation from the second-order theory is reduced. For large directional spreading
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Figure 16. Exceedance probability of the wave crest for unidirectional sea states: Rayleigh
distribution (dashed line); Equation (3.5) (solid line); laboratory experiments (×).
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Figure 17. Exceedance probability of the wave crest for directional sea states with directional
spreading N =200: Rayleigh distribution (dashed line); Equation (3.5) (solid line); laboratory
experiments (×).
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Figure 18. Exceedance probability of the wave crest for directional sea states with directional
spreading N = 24: Rayleigh distribution (dashed line); Equation (3.5) (solid line); laboratory
experiments (×).

(3.5) well approximates the experimental data. In such sea states, therefore, the effects
related to bound waves (second-order theory) dominate the statistical properties of
the crest amplitude (cf. Socquet-Juglard et al. 2005).

4. Discussion and conclusions
In the previous sections, we have presented a detailed analysis of some of

the statistical properties of the surface elevation. The skewness, the kurtosis, the
probability density function for surface elevation, for wave heights and for wave
crests have been presented as a function of the distance from the wavemaker for
experiments A and B, for different directional spreadings, ranging from long- to
short-crested wave fields. In order to summarize the results, here we present some key
figures, which highlight the relevance of the directional distribution on wave statistics.
For convenience, we shall concentrate on the most nonlinear case considered, i.e.
experiment B.

In figure 19, we present the kurtosis as a function of the distance from the
wavemaker for different values of the spreading coefficient N . For narrow directional
distribution, as waves propagate along the basin, the kurtosis increases, deviating
from Gaussian statistics; it grows for about 15–20 wavelengths (middle of the basin),
where it reaches its maximum. It is evident that departures from Gaussian statistics
are particularly significant if waves are fairly long crested. For more short-crested
conditions (small N), extreme waves occur less often. Therefore, after an initial growth,
the kurtosis reaches values which do not exceed the second-order prediction. This
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Figure 19. Kurtosis as a function of distance from the wavemaker for different values of N
for experiment B.
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Figure 20. Maxima of kurtosis as a function of N for experiment B.

is clearly summarized in figure 20, where the maximum values of the kurtosis are
shown as a function of the directional spreading. It is clear that the maximum of the
kurtosis grows with N , i.e. it increases as waves become long crested.

In figure 21 we show the probability density functions of the surface elevation
estimated from the time series recorded at the probe where the kurtosis reaches
its maximum and compare them for different values of N . This figure shows two
important results: (i) for quasi-long-crested waves, the appearance of extreme waves
can be underestimated by about one order of magnitude if second-order theory is
considered; (ii) for large directional distribution, the probability of occurrence of
extremes is well described by second-order theory.

The appearance of deviations from second-order theory is possibly due to the
modulational instability process which is a quasi-resonant process that takes place
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Figure 21. Probability density function of the surface elevation at the probe of maximum
kurtosis for experiment B.

around the peak of the spectrum. At this point a short digression on the directional
dependence of the energy spectrum for ocean waves is needed to better understand
the relevance of the aforementioned results. If ocean spectra are always broad banded,
i.e. characterized by small N , the results here obtained for large N are interesting
on their own but probably are not very relevant for ocean waves. Thus, a main
question that must be answered is the following: what is the directional distribution
of the energy spectrum around the spectral peak? Before entering this discussion, we
recall here that the directional properties of the surface elevation are usually achieved
with in-situ measurements using pitch and roll buoys or array of sensors. Young
(1994) studied in detail different parametrizations of directional spectra available
in the literature. In figure 2 of his paper he compares the three different available
parametrizations of the directional spreading (Mitsuyasu et al. 1975; Hasselmann,
Dunckel & Ewing 1980; Donelan, Hamilton & Hui 1985); the figure clearly shows
that there is not a decent agreement between the three of them. He also considered
two different methods that are usually adopted to recover the directional information:
the Fourier Expansion Method and the Maximum Likelihood Method. After selecting
a nominal (input) spectrum, he numerically simulated the output of a pitch and roll
buoy (or an array composed by three gauges). He then used the aforementioned
methods to estimate the directional properties of the wave spectrum. He concluded
that (Young 1994, p. 288): ‘Both analysis techniques produce directional spreading
which is too broad and significantly underestimate the magnitude of the narrow
directional distribution’. We notice that the nominal spectrum that he considered in
his analysis is not so narrow, thus we expect that the effect could become even more
pronounced for narrow spectra. According to Young (1994), an improvement of the
accuracy of the estimation of the directional spectrum can be achieved only if the
number of sensor is increased. Nonetheless, even with an array of seven gauges, his
results show that the energy at the peak of the spectrum is underestimated by 30 %.
In Donelan et al. (1996) a method based on the wavelet transform for estimating
the directional wave spectrum has been developed. The method seems promising and
capable of reproducing accurately the width in angle of the spectrum at the peak
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frequency; nevertheless, to our knowledge, no parametrization of the directional wave
spectrum has been attempted using such method.

Concerning remote-sensing methods, Hwang et al. (2000) have used airborne
scanning lidar measurements of wavenumber spectra of ocean surface waves to
investigate their directional properties. Although, the resolution in angle increases
with wavenumbers, it is 10◦ at the peak of the spectrum; unfortunately, this resolution
is still poor for detecting accurately the width of the spectrum at the peak. Therefore,
it is reasonable to assume that no confident results on the directional distribution
of energy at the peak are available. Hence, it cannot be excluded a priori that
some natural conditions could exist in which the directional distribution is much
smaller than estimated from experimental data. This condition is clearly a candidate
for extreme waves. In this respect, new research is called for. It should also be
emphasized that the results herein discussed only concern single-peaked wave spectra.
The case of two peaks (for example the interaction of swell and wind sea) still has to
be addressed properly in terms of the modulational instability (for a first preliminary
work see Onorato, Osborne & Serio 2006a). This is also a subject that should be
investigated further.

It should also be mentioned here that the effect of wind has not been considered in
the present experimental investigation. Surely, the wind is relevant in order to sustain
the peak of the spectrum but its direct effect on the formation of extreme waves and
on the modulational instability in random waves is an issue to be explored. For linear
focusing, some experiments have been performed in a wave flume by Kharif et al.
(2008). Their results suggest that extreme wave events may be sustained longer by
the air flow separation occurring on the leeward side of the steep crests.

To conclude, we have presented a very detailed description of the statistical
properties of surface gravity waves in different conditions of nonlinearity and
directional spreading. Apart from the very recent work of Waseda (2006), we are
not aware of any other study in which the probability density function of the
surface elevation has been investigated with special attention to the role of the
angular distribution. The modulational instability process, which is one of the main
mechanisms of formation of extreme waves in deep water random long-crested waves,
seems to be quenched when short-crested waves are considered. We believe that, after
many years of numerical and theoretical research, this represents an important step
towards the understanding of the physics of extreme waves. At the moment, the
lack of an accurate estimation of the peak angular spectral energy distribution for
different sea state conditions represents a gap to be filled up soon. We do not expect
the directional distribution to be very different from what is already known by now,
nonetheless the peak of the spectrum does not seem to be well resolved in any
experiment we are aware of. We suspect that, as there exists an enhancement factor
(the γ in the JONSWAP spectrum) for the frequency spectrum, there could also exist
a similar factor in the angular part of the spectrum. If we accept the idea that the γ is
the result of a resonance in the generation mechanism, why would the wind generate
a narrow spectrum in frequency at the peak and a broad one in angle? It should also
be mentioned that recently a direct connection between the breaking phenomena and
the modulational instability has been discussed in Song & Banner (2002), therefore we
believe that the present results may also represent a first step towards the development
of a new dissipation source term in the energy balance equation.

We are aware of the fact that waves in the basin are generated artificially and
that their evolution is related to the rather special boundary conditions. However,
in nature, strong wind, rapid changes in the wind, currents and refraction could
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in principle reproduce the condition of a narrow spectrum also in angle. If such
conditions are in nature reproduced, then it could be possible to associate a value of
the kurtosis to each spectrum, and from it, using the approach described in Mori &
Janssen (2006), an estimation of the probability of extreme wave could be associated.

The experimental work was supported by the European Community’s Sixth Frame-
work Programme through the grant to the budget of the Integrated Infrastructure
Initiative HYDROLAB III, Contract no. 022441 (RII3). We thank D. Resio, N. Mori
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