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Abstract The cerebellar circuits comprise a limited number
of neuronal phenotypes embedded in a defined cytoarchi-
tecture and generated according to specific spatio-temporal
patterns. The local GABAergic network is composed of
several interneuron phenotypes that play essential roles in
information processing by modulating the activity of
cerebellar cortical inputs and outputs. A major issue in the
study of cerebellar development is to understand the
mechanisms that underlie the generation of different inter-
neuron classes and regulate their placement in the cerebellar
architecture and integration in the cortico-nuclear network.
Recent findings indicate that the variety of cerebellar
interneurons derives from a single population of multipotent
progenitors whose fate choices are determined by instructive
environmental information. Such a strategy, which is unique
for the cerebellum along the neuraxis, allows great flexibility
in the control of the quality and quantity of GABAergic
interneurons that are produced, thus facilitating the adaptive
shaping of the cerebellar network to specific functional
demands.
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Introduction

All cerebellar neurons derive from two germinative neuro-
epithelia with distinct developmental potentialities. Gluta-
matergic lineages—projection neurons of the deep nuclei
(DCN), unipolar brush cells, and granule cells—derive
from Math-1-expressing progenitors that emigrate from the
rostral rhombic lip (RL) and undergo subsequent waves of
differentiation [1–6]. GABAergic phenotypes—Purkinje
cells (PCs), nucleo-olivary neurons, and the different
classes of inhibitory interneurons—are produced by pan-
creas transcription factor 1-a (Ptf1-a) positive precursors of
the ventricular zone (VZ; [7, 8]). Starting from such
spatially segregated germinal layers, the different cerebellar
phenotypes are generated according to precise temporal
schedules. Projection neurons (DCN neurons and PCs) are
born at the onset of cerebellar neurogenesis, while all
excitatory and inhibitory interneurons are sequentially
produced during late embryonic and early postnatal life
[9–12]. An impressive increase of the total cell number
occurs during this period [13], so that the adult cerebellum
takes up about 10% of the cerebral volume but holds more
than 50% of the neurons.

GABAergic interneurons comprise about half of the
cerebellar neuronal phenotypes. Each class of inhibitory
interneurons is characterized by distinctive morphological
and neurochemical features (Table 1), a precise position in
the cerebellar architecture, and highly specific connections
[14–19]. Given such a phenotypic complexity and diversi-
fication, a major open question concerns the mechanisms
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underlying the acquisition of interneuron identities and,
particularly, the relative contribution of cell-intrinsic prop-
erties and environmental cues.

Where Are Cerebellar Interneurons Coming From?

The origin of cerebellar inhibitory interneurons has been
controversial for a long time. Until a few years ago, it was
accepted that deep nuclei and granular layer (GL) interneur-
ons derived from the VZ, whereas molecular layer (ML)
interneurons were supposed to come from the external
granular layer (EGL), the only germinal layer that is active
during postnatal development [14, 20]. Quail-chick chimeras
and transplantation experiments [21–23], together with
developmental studies on mutant mice [24], unequivocally
demonstrated that EGL cells exclusively give rise to granule
cells and suggested that at least a fraction of the ML
interneurons actually derive from the VZ [21, 25].

Cell proliferation in the VZ ceases at birth, but dividing
progenitors, initially identified as glial precursors [9, 26],
persist in the prospective white matter (WM) during
postnatal development. Zhang and Goldman [27] labeled
such cells by retroviral injections and showed that they also
generate GABAergic interneurons. Clonal analyses sug-
gested that neuronal, astrocytic, and oligodendrocytic
lineages are largely separated during postnatal development
[28, 29], while cortical interneurons share lineage relation-
ships with other VZ-derived neurons, such as PCs and
DCN neurons [30, 31].

A conclusive contribution to this point was provided by
Hoshino and colleagues [7], who used genetic fate mapping
analysis to reveal that all cerebellar GABAergic phenotypes
derive from VZ progenitors expressing Ptf1-a. Interestingly,
recent observations suggest that this transcription factor is
required to specify GABAergic identities but also to
suppress the glutamatergic differentiation program [32].

Dividing progenitors for GABAergic interneurons in the
cerebellar parenchyma can be identified by the expression
of Pax-2 [33, 34]. A discrete cluster of Pax-2-positive cells
can be detected in the medial aspect of the E12 mouse
cerebellar anlage. Thereafter, these cells spread throughout
the prospective WM and eventually settle in the deep nuclei

and cortical layers. After P16, when the genesis of
interneurons ceases, Pax-2 transcripts are only expressed
in Golgi neurons [33]. Therefore, the current view is that
inhibitory interneurons originate from Ptf1-a-expressing VZ
progenitors, which are the common ancestors for all
cerebellar GABAergic types. Interneuron progenitors de-
laminate from the germinal layer during early embryonic
development and continue to divide into the overlying
cerebellar tissue. Thus, similar to granule cell precursors
which originate from the RL and form a secondary
neuroepithelium (the EGL), interneuron precursors stem
from the VZ but continue their developmental process in
the prospective WM.

Temporal Axis of Interneuron Neurogenesis:
An Inside–Out Model

Classical studies based on 3H-tymidine labeling demon-
strated that cortical interneurons are produced according to
a precise progression, first in the GL and then in the ML,
basket cells preceding stellate cells [9, 10]. Neurogenesis in
the DCN was originally thought to be completed between
E13 and E15 in the rat [10, 11, 35]. However, recent
birthdating analysis showed that, while projection neurons
(including both glutamatergic neurons and GABAergic
nucleo-olivary neurons) are generated within this period,
inhibitory interneurons are produced during a longer time
window extended to early postnatal life [19]. On the whole,
the different classes of GABAergic interneurons are
generated during largely overlapping developmental periods
according to an inside–out sequence, starting from the deep
nuclei to the granular and molecular layers (Fig. 1).

Taking advantage of transgenic Pax-2-green fluorescent
protein (GFP) mice [36], it has been estimated that the
number of GABAergic interneuron precursors increases
during development to a total of some 905,000±77,000
cells. The peak is around P5, and the production of 75% of
all inhibitory interneurons occurs prior to P7 [34]. Between
P0 and P3, the numerical increase of interneuron precursors
is due to the proliferation of a Pax-2-negative precursor
population, whereas beyond this age, the mechanisms
regulating the amplification of interneuron progenitors

Table 1 Distribution of markers for cerebellar GABAergic interneurons in adult rodents

Calretinin Neurogranin MGluR2 Pax-2 Parvalbumin Rorα Neu-N References

DCN − + + − − − − − − − − − − + + + + [17–19]
Golgi + + + + + + + + + + + + + + − − − − − − [17, 19, 33, 34, 77–81]
Lugaro + + + − − − + + − − − − − − − − [17, 77, 80–82]
Basket − − − − − − − − + + + + + + / − − [16, 17, 83]
Stellate − − − − − − − − + + + + + + / − − [16, 17, 83]

Bold mouse, regular rat, + + frequent, + less frequent, − absent, / unknown
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remain to be clarified, and it is possible that the number of
precursor may be also determined by the proliferation of
Pax-2-positive cells [34].

BrdU incorporation experiments show that dividing Pax-2
positive cells are exclusively localized in the prospective WM
[19, 33]. However, after pulse administration of this
nucleotide analogue in GAD67-GFP transgenic mice, in
which all GABAergic neurons are fluorescent, the reporter
gene is detectable in WM cells only 2 days after the last
mitosis [37]. Together, these observations indicate that newly
born interneurons remain in the prospective WM for a
certain time after their terminal division. These postmitotic
cells also show protracted expression of the cell cycle marker
Ki-67 that persists during the ensuing migratory phases [34].
It has been proposed that this peculiar behavior reflects a
quiescent phase of inhibitory interneuron development
before the final acquisition of the mature phenotype [34].

Beyond Space and Time: Derivation of Interneurons
from a Single Pool of Multipotent Progenitors

Different strategies can be envisaged to regulate the genera-
tion of the variety of cerebellar inhibitory interneurons. It may
be possible that Pax-2-positive interneuron progenitors
actually comprise distinct subsets of fate-restricted precursors,
each destined to a specific identity. Nevertheless, the clonal
relationship linking Golgi, basket, and stellate cells [30, 31]
suggests that all inhibitory interneurons share a common
ancestor. Then, it is possible that the sequence of interneuron
generation is obtained by progressively restricting in space

and time the developmental potentiality of initially multi-
potent progenitors. Such a mechanism is functioning during
cerebellar neurogenesis, since postnatal precursors are unable
to adopt projection neuron identities, even when exposed to
the embryonic environment [38–40]. Alternatively, however,
interneuron progenitors may retain full potentialities
throughout development and make their phenotypic choices
in response to extrinsic cues.

Heterotopic/heterochronic transplantation of interneuron
progenitors is the most suitable approach to distinguish
between these possibilities. At birth, when all interneuron
categories are being generated, proliferating progenitors are
located both in the periventricular region and in the
subcortical WM. To ask whether these represent spatially
segregated pools of fate-restricted precursors, periventricular
or cortical cells, isolated from β-actin GFP transgenic
animals, were transplanted to cerebella of different ages,
from embryonic life to adulthood [19]. The result of this
experiment shows that both donor populations share the
same developmental potentialities: regardless of their
origin, they yield the same interneuron repertoires, which
are strictly dependent on the host age and engraftment site.

To assess whether interneuron progenitors show lineage
restriction in time, embryonic or postnatal progenitors were
grafted to different-aged hosts [19]. The results are again
clear-cut. Both embryonic and postnatal progenitors main-
tain full multipotency and generate interneuron types
appropriate for the developmental stage of the recipient.
Even P7 cortical progenitors, which are normally fated
solely to the stellate cell phenotype [10], generate the
complete repertoire of nuclear and cortical interneurons
when exposed to embryonic environment but only adopt
ML phenotypes in isochronic recipients [19]. Therefore, all
GABAergic interneuron categories are generated by a
common pool of multipotent precursors. These cells
maintain their full competence up to late developmental
stages and develop specific phenotypic traits in response to
environmental instructive signals.

Intrinsic Versus Extrinsic Regulation of Interneuron
Identities

To achieve full understanding of the processes underlying
the generation of the variety of cerebellar interneurons, it is
necessary to identify the nature and the mechanisms of
action of the instructive cues that influence the fate of
multipotent precursors. Clonal analysis of progenitor
lineages may provide useful information on the time and
place where the naive cell makes its final choice [41]. In
addition, it is important to precisely define when the
specification machinery is active in the precursors, as their
sensitivity towards external signals may vary during the cell

Fig. 1. Inside–out sequence of cerebellar GABAergic interneuron
neurogenesis. VZ-derived inhibitory interneuron precursors give rise
to DCN interneurons mainly during embryonic life, while during
postnatal development, they migrate through the prospective WM,
generating cortical interneuron phenotypes (first in the GL, then in the
ML). VZ ventricular zone, DCN deep cerebellar nuclei, WM white
matter, IGL internal granular layer, PCL Purkinje cell layer, ML
molecular layer
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cycle or according to the developmental stage [42–45]. In
vitro essays demonstrated that the acquisition of appropriate
identities by cerebellar interneuron progenitors does not
depend on the precise timing of their last mitosis and on the
completion of a predetermined number of divisions [46].
However, the responsiveness of these precursors to extrinsic
signals changes during the cell cycle, as cells that are in the S
phase at the moment of cultivation poorly survive or fail to
differentiate.

In spite of these considerations, the identity of the
signals that determine interneuron differentiation remains
obscure. Considering the available information, two points
appear particularly relevant: (1) interneuron progenitors
exclusively proliferate in the prospective WM; and (2) the
Pax-2-positive cells remain in the WM for a rather long
time after their terminal division. These observations
suggest that the specification of multipotent progenitors
occurs in the prospective WM, where the newly generated
interneuron also undergoes a process of maturation before
moving towards its final destination. This scenario implies
that the fate choices of interneuron progenitors are imposed
by spatio-temporally patterned signals that act on the WM
cells. Such signals might come either from the WM milieu
itself or from neighboring structures.

The cell composition and microenvironment of the
prospective cerebellar WM are scarcely known. In addition
to afferent and efferent cortical axons, it contains newly
born neurons and glia, the relative progenitors, and likely,
some stem cells with broader potentialities [47, 48]. The
relationships and interactions between local WM elements
may be important to regulate the balance between prolifer-
ation and differentiation, as demonstrated for the EGL [49].
Indeed, dissociation and plating induce almost immediate

differentiation of interneuron progenitors [46], suggesting
that local cell–cell interactions regulate their cycling prop-
erties. In addition, expression analysis in the postnatal
cerebellum indicates that patterned expression of hyaluronan
[50] or of different types of cadherins [51] regulate the
sorting and migration of GABAergic interneurons.

Although local variations and/or temporal evolution of
the cellular/molecular composition of the prospective WM
could be sufficient to regulate the production of interneurons
at precise times and places, it is conceivable that signals issued
from neighboring cell populations contribute to this process
(Fig. 2). According to this view, during late embryonic
development, DCN neurons may induce progenitors in the
periventricular zone to acquire the phenotype of nuclear
interneurons. At the same time, precursors in the subcortical
WM differentiate into GL interneurons under the influence
of the neighboring Purkinje cell plate. After birth, granule
cells that progressively populate the nascent internal granular
layer are in a good position for switching the fate of WM
progenitors to ML interneuron phenotypes. Indeed, follow-
ing heterotopic transplantation of granule cells in the deep
parenchyma of postnatal cerebella, host interneurons that
remain intermingled with donor cells acquire the phenotype
of basket/stellate cells, suggesting that grafted granule cells
can dictate the fate choices of nearby host progenitors [19].
In addition, there is evidence that granule cells influence the
survival of ML interneurons [5, 52] and regulate their
migration and cortical placement through Netrin1 signaling
[53]. Although these hypotheses still wait for sound
experimental evidence, it is likely that specification of
interneurons is determined by the interplay between local
interactions in the WM environment and spatio-temporally
patterned signals coming from nearby developing structures.

Fig. 2. Extrinsic influences from
neighboring cells on the specifi-
cation of GABAergic interneuron
precursors. The cartoon proposes
the hypothesis that neuron popu-
lations that are adjacent to the
prospective white matter influence
the fate choices of interneuron
precursors. During late embryonic
development, Purkinje cells in the
Purkinje cell plate would induce
the differentiation of granular
layer interneurons. After birth,
maturing granule cells would
boost the proliferation of WM
precursors, elicit their migration to
the molecular layer, and induce
their differentiation into basket
and stellate cells. PCP Purkinje
cell plate, WM white matter, IGL,
internal granular layer, PCL
Purkinje cell layer, ML molecular
layer, EGL external granular layer
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In addition, the contribution of more general regulatory cues,
such as hormones [54] or activity-dependent mechanisms
[55], should not be disregarded.

Concluding Remarks: A Peculiar Neurogenic Strategy

Cerebellar GABAergic interneurons are generated through
a highly peculiar strategy, different from the one applied for
other cerebellar types or for inhibitory interneurons in other
regions of the neuraxis. RL-derived glutamatergic pheno-
types originate from discrete pools of fate-restricted
progenitors [1, 4–6, 56]. On the other hand, the genesis of
GABAergic neurons in the VZ progresses in two steps [56].
Projection neurons are generated locally at the onset of
neurogenesis. In addition, dividing progenitors delaminate
into the overlying parenchyma, where they will become
inhibitory interneurons [27, 33, 34]. Most importantly, the
latter precursors maintain the ability for generating the full
spectrum of interneuron phenotypes up to the latest
developmental stages, and their fate choices are entirely
dependent on environmental instructive information [19].

This mechanism is unique also when the origin of
GABAergic interneurons at different central nervous system
(CNS) levels is considered. Similar to other sites, in the
cerebellum, projection neurons are generated first, and local
interneurons follow. In addition, transcription factors relevant
for the specification of cerebellar GABAergic types, such as
Ptf1-a or Pax-2, also participate to the same processes in other
CNS regions [7, 8, 32, 57–60]. Nevertheless, a common
theme in the genesis of interneurons along the neuraxis is
that different phenotypes are generated from distinct subsets
of fate-committed progenitors. For instance, interneurons of
the spinal cord derive from eight genetically distinct
progenitor pools distributed in the dorsal domain [61]. In
the cerebral cortex, different interneuron categories originate
from defined subsets of subpallial progenitors, whose
developmental potentialities depend on their location [62–
64] and on the time of their generation [45, 65, 66]. Finally,
the production of olfactory bulb interneurons is sustained by
separate progenitor pools, restricted in space [67–70] and
time [71–73]. Thus, while the most common strategy to
generate the variety of CNS interneurons relies on dedicated
precursors that differentiate according to cell-intrinsic pro-
grams, those of the cerebellum are produced by naive
progenitors under the influence of extrinsic instructive cues.

The significance for this unique feature of cerebellar
neurogenesis remains unclear. It can be speculated that its
long duration is not compatible with a neurogenic mecha-
nism in which types and numbers of interneurons are
largely predetermined by the developmental potentialities
of fate-restricted precursor pools. Rather, the dramatic
increase of neuronal number that occurs postnatally

requires a more flexible mechanism, able to dynamically
regulate the production of inhibitory elements to be inserted
in the maturing circuitries. This could be obtained by
modulating the proliferation rate and fate choices of a
single population of multipotent progenitors. Considering
the relevance of inhibition for shaping neural networks and
preventing a range of developmental disorders [74–76],
such a strategy may offer great advantages to adjust the
properties of cerebellar circuits to specific developmental
constraints or environmental demands.
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