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ABSTRACT 

 
We calculate the ex-post portfolio performance for an investor who diversifies among 

stocks, bonds, REITS and cash. Simulations are performed for two alternative asset 

allocation frameworks – classical and Bayesian - and for scenarios involving two 

different samples and six different investment horizons. Interestingly, the ex-post 

welfare cost of restricting portfolio choices to traditional financial assets only is found 

to be positive in all scenarios for a Bayesian investor. On the contrary, substitution of 

E-REITS for stocks in optimal portfolios turns out to reduce ex-post portfolio 

performance over the nineties for a Classical investor.  
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 2 

 

Several papers argue that the diversification gains from enlarging the asset menu to securitized real estate 

are large, given its imperfect correlation with traditional assets.
1
 These studies usually consider the 

in-sample, ex-ante performance of optimal portfolios, and are therefore retrospective in nature. However, 

the  inclusion of any asset can only increase the ratio of expected return to volatility of the optimal 

portfolio. This is an implication of the mean variance model, and is true - ex-ante - for any additional 

asset that is less than perfectly correlated with the existing ones. Ex-post, an additional asset may actually 

worsen  portfolio performance. For instance, the risk return trade-off may happen to be worse over the 

out-of-sample period than in the sample used for ex-ante calculations. This may happen in a single 

(out-of) sample of finite length because of the occurrence of large negative shocks to returns -i.e., bad 

luck. Alternatively, the model used to estimate expected returns and volatilities may be ill-specified and 

therefore break down when tested out-of-sample. 

Against this background, this paper assesses the ex-post gains accruing to risk-averse investors deriving 

from the inclusion of US real estate vehicles (REITS) in portfolios composed of US stocks, bonds and 

cash. Such gains are averaged over 120 portfolio allocations, and are computed with the following 

recursive estimation and portfolio selection scheme. We first use data from January 1972 up to 

December 1994 to estimate and forecast means, variances, and covariances of returns on all asset classes 

and solve for optimal portfolio weights. This exercise is repeated the following month, using data up to 

January 1995 to compute afresh forecasts of return moments and select portfolio weights. Iterating this 

recursive scheme until the end of our sample (November 2004) generates a sequence of 120 realized 

portfolio returns from which Sharpe ratios, realized utility, and certainty equivalent returns of optimal 

portfolios are computed. Our evaluation of the role of real estate thus averages times of good and bad 

                                                 
1
 See Seiler, Webb and Myer [1999] and Feldman [2003], among others, the imperfect correlation with 

other assets. This view is not shared by Giorgiev, Gupta and Kunkel [2003], who find negligible increases in 

Sharpe ratios over the period 1990-2002. 
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performance for this asset class.  

It is well known that parameter estimation errors affect the ex-post performance of mean-variance 

portfolios [Bawa, Brown and Klein [1979], Jobson, Korkie and Ratti [1979] and Jorion, [1985]]. 

Typically, optimal portfolio shares are too sensitive to small changes in expected return forecasts, 

because the coefficients entering the (conditional) mean function are considered as fixed parameters in 

classical estimation methods. In order to cope with this problem, portfolio managers adopt well 

established robust estimation methods for expected returns, such as shrinkage and Bayesian estimators, 

that are known to improve on classical mean variance out-of-sample outcomes. In this paper we also use 

a Bayesian approach to account for parameter uncertainty. Rather than focussing on expected returns 

alone, we obtain the predictive density of future asset returns that accounts for uncertainty surrounding 

all moments of the cumulative return distribution of portfolios, as in Barberis [2000]. Such distribution is 

typically not normal, even when one period returns on each individual asset class are normally 

distributed.
2
 The number of portfolio allocations and associated realized returns for our out-of-sample 

assessment therefore climb up to 240, since the recursive scheme is applied twice, the first time to a 

Classical investor, the second to a Bayesian problem. 

Parameter uncertainty may also give rise to horizon effects [Barberis, 2000]. For instance, 

longer-horizons investors may pick less stocks and more cash than shorter horizon ones when they  

choose between these two assets only. We calculate optimal portfolio shares for buy-and-hold investors 

with different horizons, namely 1, 3, 6, 12, 24 and 60 months. We are thus able to check whether such 

horizon effects hold when the asset menu includes bonds and real estate as well. Enlarging our analysis 

along these lines implies checking for the ex-post performance of a sequence of 240 recursive portfolios 

for six different holding periods, for a total of 1,440 allocations. Therefore, ours is a rather massive effort 

                                                 
2 This approach nicely extends to the case of predictable returns when model uncertainty is also present [Avramov, 

2002].  
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devoted to the understanding of whether and why publicly traded real estate may improve the ex-post 

portfolio performance when mixed to traditional financial assets. Moreover, by focussing on long-run 

objectives, our analysis becomes relevant not only to mutual funds but also to other institutional 

investors, such as pension funds, with longer investment horizons.
3
  

We find that ex-post gains from including securitized real estate are always large, provided that the 

investors accounts for parameter uncertainty. The Sharpe ratio increases by at least 17% per month, as a 

consequence of the introduction of real estate. Such large gains for the Bayesian investor obtain due to 

higher mean portfolio returns that dominate mildly larger realized volatilities. These gains fail to show an 

obvious pattern across investment horizons. Thus, considering REITS as an additional asset is equally 

valuable for both short and long term Bayesian investors.  

It is well known that the Sharpe ratio can be a misleading indicator of performance when returns are not 

normally distributed [Leland, 1999, Goetzman et al., 2002, 2004]. In our paper, log returns on individual 

assets are assumed to be normally distributed; however the resulting, optimal portfolio returns are not. 

Thus, we also study the welfare gains deriving from real estate. Specifically, we measure the annualized 

percentage increase in initial wealth that should be awarded to a Bayesian investor in order to 

compensate her for excluding REITS from her asset menu. Such measure ranges from 0.84 to 1.68 

percent of initial wealth, confirming results obtained with the Sharpe ratio. 

Availability of real estate vehicles induces more risk taking also for a Classical investor, who overlooks 

parameter uncertainty. However such enhanced risk taking is not rewarded ex-post (by realized returns 

and portfolio moments) in our sample, given that the benchmark portfolio with no real estate is already 

very risky. The ex-post Sharpe ratio, when the asset menu includes securitized real estate, turns out to be 

lower than in the benchmark case without real estate, and for all investment horizons. 

                                                 
3
 In a similar vein, Geltner and Rodriguez [1995] compute mean-variance portfolios on the basis of 5-year return 

statistics.  
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The textbook advice for estimating inputs for optimal portfolio allocation is to use 5 years of monthly 

data. We thus check the robustness of our results when initial estimates are obtained using data over the 

period 1972-1976 only. This exercise is also interesting because mean returns for REITS are lower than 

those on T-Bills and T-Bonds over this period, whilst REITS were top performers over 1972-1994. Thus, 

in this case the benchmark, no-real estate allocation for the Classical investor is overwhelmingly invested 

in cash. When real estate is added, risk taking is enhanced and this translates in improved ex-post 

performance for a Classical investor as well. Results for the Bayesian investor are confirmed, in that 

gains in both Sharpe ratios and welfare remain substantial. 

Our analysis complements the study by Ling et al. (2000), who also emphasize out-of-sample 

performance of investments in REITs. They focus on the differential returns of active versus 

buy-and-hold strategies, and find that they are negligible once transaction costs are accounted for. Here, 

we focus on the out of sample contribution of REITs to buy-and-hold, diversified portfolios, which is 

consistent with ignoring transaction costs. 

The plan of the paper is as follows. The following section briefly outlines the methodology of the paper. 

We then describe the data and their statistical properties. In the core section of the paper, we characterize 

optimal portfolios including real estate, and compare them to the case without real estate. The last section 

concludes. An Appendix collects details on the statistical models and solution methods employed in the 

paper. 

Asset Allocation Models 

Consider an investor who maximizes expected utility from terminal wealth by choosing optimal portfolio 

weights (t), when preferences are described by a power utility function: 

1
1

max
1
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where T indicates the planning horizon and  is the coefficient of constant relative risk aversion. Wealth 
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can be invested in four risky asset classes: stocks, bonds, real estate and cash. The continuously 

compounded excess returns between month t - 1 and t are respectively denoted by r t
s
, r t

b,  and r t
r,  while 

r t
f
 is the return on cash.

4
 The fraction of wealth invested in stocks, in bonds, and in real estate are t

s,  

t
b,  and t

r, respectively, so that t t
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. When initial wealth, Wt, is normalized to one, the 
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The buy-and-hold problem, when short-sales constraints are imposed, is:
5
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The vector of (excess) returns is assumed to be multivariate Gaussian: 

     
tt
 z ,         (5) 

where t is i.i.d.  ),( 0N .  

In computing optimal portfolios, the investor may consider classical estimates of the coefficients 

characterizing the return generating process as corresponding to true parameters. This is a classical 

approach. Alternatively, the investor takes into account the uncertainty surrounding the coefficients, and 

calculates conditional moments employing the predictive density of future asset returns. This is a 

                                                 
4
 The notation r t

f
 is meant to signal that on the interval [t-1, t] a short-term deposit investment is free of risk. 

5
 We also impose a further upper bound, t

s
t

b
t

r
1  ( j s,b,r ). This means that we allow t

j
 and 

t
s
t

b
t

r
 to go up to 0.9999 but prevent it from reaching 1. These restrictions are required to ensure that 

expected utility is defined when solving the portfolio problem. 
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Bayesian approach. In the following we distinguish between these two different asset allocation 

frameworks. 

Classical Portfolio Choice 

The problem can be solved by employing simulation methods similar to Kandel and Stambaugh (1996), 

Barberis (2000), and Guidolin and Timmermann (2005), discussed in the Appendix. These entail the 

maximization of  
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where N is the number of draws from the conditional distribution of future asset returns and Rt,T
s,i

  Rt,T
b,i

  

Rt,T
r,i

  Rt,T
f,i



 are the elements of z t,T
i

 along a sample path i = 1, 2, …, N. In the results that follow, we 

employ N = 30,000 Monte Carlo trials in order to minimize any residual random errors in optimal 

weights induced by simulations. 

Bayesian Portfolio Choice 

Since the true values of the coefficients are unknown, the uncertainty induced by estimation risk may 

substantially affect portfolio rules. Call  the vector collecting all unknown coefficients characterizing 

means, variances, and covariances in the statistical model in (5). Parameter uncertainty is incorporated in 

the model by using a Bayesian framework that relies on the principle that portfolio choices ought to be 

based on the multivariate predictive distribution of future asset returns. Such a predictive distribution is 

obtained by integrating the joint distribution of  and returns pz t,T,|Zt with respect to the posterior 

distribution of , p|Zt: 

      
pz t,Tpz t,T,|Ztdpz t,T|Zt,p|Z


td,

       (7) 

where Zt  collects the time series of observed values for asset returns and the predictor, Zt z ii1
t

. 
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When parameter uncertainty is taken into account, the maximization problem becomes: 

    
max
t


WtT
1

1
pz t,T|Zt,p|Z


tdz t,T.

       (8) 

In this case, Monte Carlo methods require drawing a large number of times from pz t,T and then 

“extracting” cumulative returns from the resulting vector. 

The Appendix provides further details on the solution methods and on the Bayesian prior densities, 

which we simply assume to be of a standard uninformative diffuse type, as in Barberis [2000]. In 

particular, since applying Monte Carlo methods implies a double simulation scheme, in the following N 

is set to a relatively large value of 30,000 independent trials that are intended to approximate the joint 

predictive density of excess returns and predictors. 

Estimation Results 

Data and Descriptive Statistics 

Our sample of monthly data runs from January 1972 to November 2004 for a total of 371 observations, as 

the US public real estate data we use are available for this time span only. The sample period is 

well-balanced, including several, complete bull and bear stock market cycles. The NaREIT website 

provides monthly returns on equity REITS.
6
 Stock returns are derived from the value weighted CRSP 

index of listings on the NYSE, NASDAQ and the AMEX. The 10-Year constant maturity portfolio 

returns on Treasury Bonds as well as the 1-month T-bill come from the Federal Reserve Bank of St. 

Louis database (FREDII
®
). 

We use continuously compounded total return market-capitalization indices, including both capital gains 

and income return components. Excess returns are calculated by deducting short-term cash returns from 
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total returns. The short-term investment yield is expressed in real terms as the difference between the 

nominal yield and the seasonally-adjusted monthly rate of change in the consumer price index for urban 

consumers provided by FREDII
®
. 

In Exhibit 1 we present summary statistics. Over our complete sample period, the US securitized real 

estate market dominates (in mean-variance terms) the stock market, in spite of the euphoria 

characterizing the years from 1995 to 2000: real estate investments perform better than equities in mean 

terms (0.5 and 0.3 percent per month in excess of short-term deposits, respectively), and are less volatile 

than stocks (their monthly standard deviation is 4% vs. 4.6% for equities). In annualized terms, these 

correspond to means and volatilities of 4.0 and 16.1% for stocks and 6.0 and 13.8% for E-REITs. As one 

would expect, bonds have been less profitable (0.1%) but also less volatile (2.3%) than stocks and real 

estate. Correspondingly, the Sharpe ratio of real estate almost doubles (0.13) the equity ratio (0.07). 

The right-hand side column provides simultaneous correlations. Performance of the four assets is only 

weakly correlated, with a peak correlation coefficient of 0.570 between excess stock and real estate 

returns. Under these conditions, there is wide scope for portfolio diversification across assets. Excess 

bond returns are characterized by correlations vs. both stock and real estate lower than 0.2. Even lower is 

the correlation of the real return on T-Bills with stocks and E-REITs, which never exceeds 0.12: 

therefore we expect a relatively large demand for T-Bills for hedging purposes. 

The middle and bottom panels report the same descriptive statistics for the two sub-samples used for 

initial parameter estimation in our recursive experiments. The sub-sample 1972-1994 is qualitatively 

similar to the full sample, although investment opportunities worsen: Sharpe ratios are lower and all 

correlations increase. On the opposite, the years 1972-1976 are quite different, being characterized by the 

1973 oil shock and subsequent world-wide recession: Sharpe ratios for both stocks and E-REITs turn 

                                                                                                                                                                        
6
 It covers all real estate investment trusts that are listed on the New York Stock Exchange, the American Stock 

Exchange or the NASDAQ National Market List. Only trusts that satisfy a minimum capitalization and turnover 
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negative, although correlations remain largely unchanged. In the next section we assess how these 

differences in the data used to estimate initial parameters affect optimal portfolio shares. 

Optimal Asset Allocation with Real Estate 

Portfolio composition changes depending on perceived market conditions as information arrives. One 

way to approach this problem involves estimating a range of optimal portfolio shares through Monte 

Carlo simulation of returns as in Ziobrowski, Caines and Ziobrowski [1999]. Instead we compute 

averages of optimal portfolios for investors entering the market at different dates. 

Exhibit 2 reports such average weights for horizons between 1 and 60 months. The investor is assumed to 

have an intermediate coefficient of relative risk aversion,  = 5, a typical value in the empirical portfolio 

choice literature.
7
 

We start by considering a Classical investor who commits her initial wealth for T months and ignores 

parameter uncertainty. Over the sample 1995-2004, we find that portfolio weights with real estate are 

extremely different than those obtained under a no-real estate benchmark. For instance, the average 

percentage to be invested in stocks for a one month horizon are 13% with real estate vs. 40% without real 

estate, 22% vs. 25% for long-term bonds, and 16 vs. 36% for T-Bills. Real estate vehicles attract a 

sizeable weight of 49% of the overall portfolio, thus reducing the appeal of stocks and T-Bill, the 

combined weight of which declines by 47% when real estate is introduced. A portfolio share of 49% on 

E-REITs is very high, compared to the typical findings in literature.
8
 

This allocation remains  high when compared to the share chosen by a Bayesian investor: the real estate 

weight falls to 37%. Accounting for the high estimation uncertainty characterizing the relatively risky 

                                                                                                                                                                        
requirement are included. 

7
 We used other  values  (2 and 10), obtaining qualitatively similar results. These are available upon request from 

the Authors. 

8
 For instance, Chandrashakaran [1999] finds negligible optimal weights unless the investor accounts for 
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real estate and equity returns increases the share invested in T-Bills to as much as 29%. In the Bayesian 

case, the presence of real estate equilibrates portfolio composition that is overwhelmingly invested in 

cash (46%) otherwise. 

Estimation risk has been found to cause substantial horizon effect in portfolio shares, when stocks and a 

riskless asset are considered [Barberis, 2000]. This is because the perceived (i.e., when estimation 

uncertainty is taken into account) variance of cumulative returns on the risky asset increases faster than 

linearly in the horizon T. Here we find modest horizon effects, in line with results for the i.i.d case in 

Fugazza et al. [2007]. For horizons of two or more years, the average share invested in real estate 

diminishes from 37 to 36% and the one invested in cash increases from 29 to 35%  

We saw that both stocks and E-REITs have high volatility and negative mean returns over the sample 

1972-1976. These unfavourable initial conditions contribute to reduce average portfolio holdings of the 

riskier assets by investors entering the market between 1977 and 1994, which is our second recursive 

portfolio experiment. In Panel B of Exhibit 2 we notice that T-Bills dominate all other assets in terms of 

portfolio weights averaged over the longer sample 1977-2004. Without allowing for real estate the share 

invested in T-Bills, for both Bayesian and Classical 1-month investors, lies between 68 and 71 percent. It 

drops to the range 42 – 52 percent when E-REITs are included. As in our shorter, main sample, real estate 

crowds out stock investments, the portfolio share of which falls from 20 to 5 percent, while investment in 

long-term bonds is almost unaffected. Despite the negative Sharpe ratio of E-REITs over the 5-year 

estimation period 1972-1976, the average portfolio weight of real estate turns out once more to be high, 

equalling 44% and 35% for a classical and a Bayesian investor, respectively.
9
 Thus in both sub-samples, 

                                                                                                                                                                        
predictable returns. 

9
 In our experiments, E-REIT average optimal holdings exceed 30%. This may turn out to be too large a 

share when market equilibrium is imposed. A downward revision of this weight obtains as well when 

considering also investments in  private real estate, as in Karlberg, Liu, and Greig [1996], or in  housing, 
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the presence of E-REITs reduces the portfolio share invested in stocks. It also increases the overall 

portfolio share invested in the riskier assets (i.e., real estate, equities, and bonds) – with a corresponding 

reduction in the share of cash.  

As one should expect, estimation risk is higher when parameter are estimated over a shorter sample. It 

follows that parameter uncertainty now displays larger horizon effects than in Panel A. For instance, 

when going from a 1-month to a 5-year horizon, a Bayesian investor reduces by 5% her portfolio share in 

the riskier assets and correspondingly increases investment in T-Bills. 

Ex Post Performance  

Expanding the asset menu cannot reduce the investor’s welfare ex-ante, as it is always possible to 

exclude the additional asset from the optimal portfolio. Additionally, welfare can only increase in 

in-sample experiments. In the literature, relatively rich econometric models fitted to asset returns 

produce good in-sample fits and optimal portfolios built on those estimates have good in-sample 

performance. However, this is by no means a guarantee that expanding the asset menu will lead to 

improved future, ex-post portfolio performance. This problem arises, for example, when the proposed 

model for returns is misspecified and/or there is large parameter estimation error. To address this concern, 

we next explore how well real estate as an asset class performs out-of-sample. 

Exhibit 3 refers to average performances over 1995-2004 when E-REITs are alternatively included or 

excluded from the asset menu. Panel A reveals that the mean Sharpe ratio achieved by a Classical 

investor falls – irrespective of the investor horizons when real estate is added to the asset menu. Such a 

change is substantial, a decline between 0.35 and 0.42, for long horizons, T = 24 and T = 60. This is 

caused by the fact that ex post, realized portfolio volatility generally rises as a result of reduced 

investment in bonds and – above all – in cash. Such increased risk taking appears not to have been 

                                                                                                                                                                        

as in De Roon et al.[2002]. 



 13 

compensated in the out-of-sample period, as mean portfolio returns fall (except for T = 1) as the strategy 

of substituting real estate for stocks does not pay off. 

However, this is not the picture emerging in the Bayesian case, reported in Panel B. Here the reduced 

investment in cash due to the addition of real estate to the asset menu leads to higher realized portfolio 

returns that offset the increase in ex-post volatility, resulting in higher mean Sharpe ratios for all 

investment horizons. Such gains are substantial when parameter uncertainty is accounted for: the Sharpe 

ratio improvement always exceeds 0.17 and reaches a stunning 0.33 for T = 6. Thus a cautious Bayesian 

investor benefits ex post from increased risk taking in the form of a “switch” from equities and bonds into 

real estate. On the contrary, a Classical investor – who is more confident of her forecasts of future returns 

and fails to account for estimation uncertainty – loses from adding real estate to the available asset menu, 

because her pre-real estate portfolio is already considerably exposed to risk. 

This heterogeneous impact of real estate on portfolio performance is not displayed by Exhibit 4, when 

portfolio performance is recursively computed over the longer period 1977-2004. Portfolio volatility 

increases in both the Classical and the Bayesian case, but mean returns also increase as investors 

substitute part of their overwhelming cash investments with real estate. As a consequence, the presence 

of real estate in the asset menu increases the ex-post Sharpe ratio, independently of whether estimation 

uncertainty is taken into account.
10

 

Welfare Gain Analysis 

It remains important to evaluate the effects of real estate on the expected utility of an investor. Indeed, an 

increase in Sharpe ratio is not necessarily associated with higher welfare, if this is obtained at the cost of 

                                                                                                                                                                        
 
10

 In particular, increasing risk-taking does improve the performance for the Classical investor: in the absence of 

real estate, her investments in cash would massive due to the poor stock market performance of the mid-1970s. 
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worse higher-order moment properties of portfolio returns.
11

 This is because investors are typically 

averse to negative skewness and excess kurtosis, and these preferences are fully captured by the power 

utility function in (1). 

We therefore obtain estimates of the welfare cost of restricting the width of the asset menu available to 

our investors. Call VWt,z t;t the realized utility of the unconstrained problem – i.e., when real estate 

belongs to the asset menu – and VWt,z t;t
R
 the constrained realized utility, where t

R
 is the vector of 

portfolio weights obtained when real estate investments are ruled out. The compensatory premium, t
R

, 

is defined as the percentage of wealth that when added to the investor’s initial wealth, equates the 

realized utility from the constrained and unconstrained problems: 

t
R


VWt,z t;t

VWt,z t;t
R


1

1

1.   #   

        (9) 

Therefore t
R

 is a measure of the ex-post welfare gain from enlarging the asset menu to real estate. 

Exhibit 4 reports our estimates of the average premium. These confirm earlier insights based on Sharpe 

ratios, in that they are negative for the Classical investor in 1995-2004 and positive in  other cases. When 

positive, they are far from negligible: An investor would be willing to pay a yearly fee above 1% of her 

initial wealth in order to improve her portfolio performance through investments in real estate. 

Conclusions 

We have provided an out-of-sample analysis of portfolio performance when the asset menu alternatively 

excludes or includes Equity REITs. Our results confirm the conjecture that securitized real estate may 

considerably improve portfolio performance, be it measured via a Sharpe ratio or via realized utility, 

when the investor accounts for the uncertainty in her own forecasts. Adding real estate to optimal 

                                                 
11

 We know that increases in Sharpe ratios may artificially be obtained from increasing negative skewness of 

portfolio returns, as in Goetzman et al. [2002]. 
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portfolios usually implies higher realized volatility, which is however matched by a more-than-offsetting 

increase in realized mean returns. However, the increase in mean returns may sometimes be insufficient 

to increase the Sharpe ratio of optimal portfolios. In our sample, this happens when the investor 

overlooks parameter uncertainty such that her optimal portfolio composition gets massively tilted 

towards risky assets when securitized real estate is added to the menu. 
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Appendix 

In this section we review the solution methods for a portfolio choice problem when the horizon is long 

and when the uncertainty about parameter estimates may be taken into account. 

A1. Classical Buy-and-Hold Investor 

Call  the vector collecting all the parameters, i.e. 


vech.  From the assumption in (5), the 

conditional distribution of cumulative future returns z t,T k1

T
z tk  is multivariate normal with mean 

and covariance matrix given by:  















TVar

TE

Ttt

Ttt

][

][

,1

,1

z

z  

Since the parametric form of the predictive distribution of  z t,T  is known, it is simple to approach the 

problem in (1), or equivalently 

max
t


WtT
1

1
Etz t,T,Var tz t,Tdz t,T   #   

 

where Etz t,T,Var tz t,T is a multivariate normal with mean Etz t,T and covariance matrix  

Vartz t,T, by simulation methods. This means evaluating the integral by drawing a large number of 

times (N) from Etz t,T,Var tz t,T and then maximizing the functional (6). At this stage, the portfolio 

weight non-negativity constraints are imposed by using a simple two-stage grid search algorithm that 

sets t
j
 to 0, 0.01, 0.02, ..., 0.99, 0.9999 for j s,  b,  r  . 

A2. Bayesian Buy-and-Hold Investor 

Given the problem  

max
t


WtT
1

1
pz t,T|Zt,p|Z


tdz t,T,
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the task is somewhat simplified by the fact that predictive draws can be obtained by drawing from the 

posterior distribution of the parameters and then, for each set of parameters drawn, by sampling one point 

from the distribution of returns conditional on past data and the parameters drawn in the first stage. If we 

consider the following standard uninformative diffuse prior:  

,||),(p 2

2n


   

then the posterior distribution for the coefficients in , )|,(p t

1
Z   can be characterized as: 

 



),ˆ(vecN,|)(vec

)ˆ,2nt(Wishart|

t

1

1

t

1









Z

SZ




 

where Ŝ  is the sample covariance of the residuals and ̂  is the sample mean. Also for the Bayesian case, 

we adopt a simulation method by which: First, we draw N independent variates from ).|,(p t

1
Z   This 

is done by first sampling from a marginal Wishart for 
1

 and then (after calculating ) from the 

conditional  ),ˆ(vecN  . Second, for each set ),(   obtained, the algorithm samples cumulated returns 

from a multivariate normal with mean vector and covariance matrix given by first-round draws. 
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Exhibit 1 -- Descriptive Statistics 

The left column reports descriptive statistics (mean, standard deviation and Sharpe ratio) for monthly excess 

returns on stocks, bonds, E-REITs and returns on cash investments (real and nominal). The sample periods 

considered are: January 1972 - December 1976; January 1972 - December 1994; January 1972 - November 

2004. Data on stocks are from CRSP (NYSE, NASDAQ, and AMEX value-weighted indices), FREDII® 

Database series on 10 year Treasury bonds (constant maturity) rates of return are used for bonds, while 

NaREIT data are considered for Equity E-REITs. Nominal and real returns on 1 month Treasury bills are 

computed from FREDII® data the Consumer Price Index For All Urban Consumers (All Items, seasonally 

adjusted). The right panels report, for the various samples, contemporaneous correlations. 

 

SUMMARY STATISTISCS  CORRELATION MATRIX 

   

 Mean St. Dev. Sharpe Ratio   Stock Bond E-REIT Cash  

Sample:  1972:01-2004:11  

 

Stock 0.003 0.046 0.072  Stock 1    

Bond 0.001 0.023 0.054  Bond 0.176 1   

E-REIT 0.005 0.040 0.125  E-REIT 0.570 0.167 1  

Cash  0.005 0.003   Cash  -0.069 0.127 -0.104 1 

Cash (Real) 0.002 0.004   Cash (Real) 0.120 0.240 0.074 0.441 

          

Sample:  1972:01-1976:12  

 

Stock -0.002 0.052 -0.043  Stock 1    

Bond 0.000 0.014 0.031  Bond 0.305 1   

E-REIT -0.001 0.051 -0.026  E-REIT 0.667 0.290 1  

Cash  0.005 0.002   Cash  -0.251 0.148 -0.114 1 

Cash (Real) -0.001 0.003   Cash (Real) 0.268 0.056 0.293 0.159 

          

Sample:  1972:01-1994:12  

 

Stock 0.002 0.046 0.050  Stock 1    

Bond 0.001 0.023 0.025  Bond 0.305 1   

E-REIT 0.004 0.041 0.092  E-REIT 0.675 0.210 1  

Cash  0.006 0.003   Cash  -0.078 0.189 -0.089 1 

Cash (Real) 0.002 0.004   Cash (Real) 0.141 0.304 0.115 0.474 
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Exhibit 2 -- Optimal Portfolio Weights 

This table reports mean optimal portfolio weights for stocks, bonds and cash, for the two alternative cases in which 

real estate is or is not in the asset menu. Means are computed over the recursive sample 1995-2004 in panel A, and 

over the sample 1977-2004 in panel B. The investment horizon varies from 1 to 60 months. In the Bayesian case, 

parameter uncertainty is accounted for. The coefficient of relative risk aversion is set equal to 5. 

Panel A: 1995-2004 

 Stock Bond 
E-REIT 

Cash 

 
With 

E-REIT 
Without 
E-REIT 

With 
E-REIT 

Without 
E-REIT 

With 
E-REIT 

Without 
E-REIT 

        

                   T=1 

Classical 0.13 0.40 0.22 0.25 0.49 0.16 0.36 

Bayesian 0.12 0.29 0.23 0.25 0.37 0.29 0.46 

                   T=3 

Classical 0.13 0.40 0.22 .25 0.49 0.16 0.36 

Bayesian 0.12 0.28 0.23 0.25 0.37 0.28 0.47 

                   T=6 

Classical 0.13 0.40 0.22 0.25 0.49 0.16 0.36 

Bayesian 0.12 0.29 0.22 0.25 0.37 0.29 0.47 

                  T=12 

Classical 0.13 0.40 0.22 0.25 0.49 0.16 0.36 

Bayesian 0.12 0.29 0.22 0.25 0.37 0.30 0.47 

                  T=24 

Classical 0.13 0.40 0.22 0.25 0.49 0.16 0.36 

Bayesian 0.12 0.29 0.21 0.24 0.36 0.31 0.47 

                  T=60 

Classical 0.13 0.40 0.22 0.25 0.49 0.16 0.36 

Bayesian 0.13 0.30 0.20 0.22 0.36 0.35 0.48 

Panel B: 1977-2004 

                   T=1 

Classical 0.05 0.21 0.09 0.11 0.44 0.42 0.68 

Bayesian 0.04 0.20 0.08 0.09 0.35 0.52 0.71 

                   T=3 

Classical 0.05 0.22 0.10 0.11 0.45 0.40 0.67 

Bayesian 0.04 0.20 0.08 0.09 0.35 0.53 0.71 

                   T=6 

Classical 0.05 0.22 0.10 0.11 0.45 0.40 0.67 

Bayesian 0.04 0.20 0.08 0.08 0.35 0.53 0.72 

                   T=12 

Classical 0.05 0.22 0.10 0.11 0.45 0.40 0.67 

Bayesian 0.04 0.20 0.08 0.08 0.34 0.54 0.72 

                   T=24 

Classical 0.05 0.22 0.10 0.11 0.45 0.40 0.67 

Bayesian 0.04 0.20 0.07 0.09 0.33 0.56 0.71 

                   T=60 

Classical 0.05 0.22 0.10 0.11 0.45 0.40 0.67 

Bayesian 0.04 0.17 0.07 0.07 0.32 0.57 0.75 
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Exhibit 3 – Ex-Post Performance (1995 - 2004 Sample) 

The table shows the ex post performance of optimal portfolios recursively computed over the sample January 1995 - November 2004. Optimal portfolio 

weights are computed for an investor with constant relative risk aversion equal to 5 and different investment horizons (from 1 to 60 months). Two 

alternative asset menus are considered, with and without E-REITs. Panel A reports the performance of classical optimal portfolios while panel B covers 

Bayesian portfolios. 

Classical  

  T=1 T=3 T=6 T=12 T=24 T=60 

  
With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


Sharpe ratio 0.389 0.426 -0.037 0.390 0.425 -0.035 0.397 0.434 -0.037 0.331 0.492 -0.161 0.196 0.548 -0.351 0.349 0.772 -0.422 

Certainty Equivalent 8.262 8.941 -0.679 8.310 8.895 -0.585 8.365 8.926 -0.560 7.737 9.242 -1.505 6.306 9.502 -3.197 6.796 9.790 -2.995 

Annual Mean Returns 10.251 10.240 0.011 10.007 10.268 -0.261 9.854 10.116 -0.262 9.469 10.460 -0.991 8.183 10.780 -2.597 7.156 10.568 -3.412 

Annualized Volatility 8.353 6.829 -1.524 7.952 7.091 -0.862 7.741 6.885 -0.857 8.826 7.278 -1.548 10.022 8.182 -1.840 4.886 7.994 3.108 

 

 

 

Bayesian  

  T=1 T=3 T=6 T=12 T=24 T=60 

  
With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


Sharpe ratio 0.310 0.099 0.211 0.347 0.023 0.324 0.352 0.018 0.334 0.305 0.027 0.278 0.200 0.022 0.178 0.299 0.037 0.262 

Certainty Equivalent 7.724 6.596 1.128 7.976 6.246 1.730 7.962 6.173 1.789 7.596 5.925 1.671 6.715 5.244 1.471 6.555 5.059 1.496 

Annual Mean Returns 8.885 7.286 1.600 8.978 6.827 2.151 8.848 6.748 2.100 8.578 6.704 1.874 7.746 6.510 1.236 6.839 6.100 0.739 

Annualized Volatility 6.439 5.091 -1.348 6.171 4.777 -1.393 5.993 4.811 -1.182 6.649 5.727 -0.921 7.468 7.722 0.255 4.322 4.100 -0.222 
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Exhibit 4 – Ex-Post Performance (1977-2004 Sample) 

The table shows the ex post performance of optimal portfolios recursively computed over the sample January 1977 - November 2004. Optimal portfolio 

weights are computed for an investor with constant relative risk aversion equal to 5 and different investment horizons (from 1 to 60 months). Two 

alternative asset menus are considered, with and without E-REIT. Panel A reports the performance of classical optimal portfolios while panel B covers 

Bayesian portfolios. 

 

Classical  

  T=1 T=3 T=6 T=12 T=24 T=60 

  
With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


Sharpe ratio 0.470 0.247 0.223 0.502 0.335 0.167 0.518 0.316 0.203 0.508 0.353 0.155 0.488 0.373 0.115 0.545 0.439 0.106 

Certainty Equivalent 8.869 7.377 1.491 9.105 7.769 1.336 9.126 7.605 1.521 8.999 7.705 1.295 8.725 7.622 1.103 9.023 7.705 1.318 

Annual Mean Returns 10.162 7.923 2.239 10.367 8.327 2.040 10.285 8.148 2.137 10.251 8.392 1.859 10.041 8.645 1.397 10.094 8.772 1.322 

Annualized Volatility 6.736 4.450 -2.287 6.845 4.562 -2.283 6.723 4.563 -2.161 7.284 5.216 -2.068 8.195 6.620 -1.574 10.603 8.845 -1.758 

 

 

Bayesian  

  T=1 T=3 T=6 T=12 T=24 T=60 

  
With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


With 

E-REIT 

Without 

E-REIT 


Sharpe ratio 0.512 0.307 0.205 0.495 0.323 0.172 0.532 0.349 0.182 0.516 0.353 0.162 0.485 0.364 0.121 0.495 0.450 0.045 

Certainty Equivalent 8.913 7.621 1.292 8.780 7.651 1.129 8.865 7.690 1.175 8.744 7.650 1.094 8.470 7.563 0.907 8.384 7.717 0.667 

Annual Mean Returns 9.734 8.055 1.679 9.581 8.086 1.495 9.580 8.110 1.470 9.528 8.192 1.336 9.321 8.365 0.956 9.188 8.571 0.617 

Annualized Volatility 9.734 8.055 1.679 9.581 8.086 1.495 9.580 8.110 1.470 9.528 8.192 1.336 9.321 8.365 0.956 9.188 8.571 0.617 
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Exhibit 5 – Welfare gains from including real estate 

The table shows the welfare gains of including real estate in the opportunity set. The welfare gains are considered through the comparison of ex-post 

realized utility from classical and Bayesian optimal portfolios computed for two alternative asset menus, with and without E-REIT. Optimal portfolio 

weights are computed for an investor with constant relative risk aversion equal to 5 and different investment horizons (from 1 to 60 months). Panel A, 

reports results for recursive optimal weights computed over the sample January 1995- November 2004; panel B reports results for the sample January 
1977-November 2004.  

 

 T=1 T=3 T=6 T=12 T=24 T=60 

Panel A: Sample 1995-2004 

Classical -0.624 -0.538 -0.514 -1.378 -2.919 -2.728 

Bayesian 1.059 1.628 1.685 1.578 1.397 1.424 

Panel B: Sample 1977-2004 

Classical 1.389 1.239 1.414 1.202 1.025 1.224 

Bayesian 1.200 1.049 1.287 1.016 0.843 0.619 
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