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1 Introduction

Quasi-interpolants (abbr. QIs) have been studied in thealitire [2, 3,25, 34,35, 37]
(and references therein) in order to be employed in widespapplications in me-

chanics, engineering and scientific computations and mesuits have been recently
achieved on this subject. In fact Qls possess many desiggadperties, such as lo-
cality, boundedness in some relevant norm and reproduofianpolynomial space

of a certain order [2]. In particular the latter property ¢anQls reach optimal ap-

proximation order for smooth functions [7,8,15]. Moreotlee construction of Qls

does not need the solution of any system of equations.

Let Q = [0y, 1] x [a2, B2] be a rectangle decomposed imm subrectangles by
the two partitions

Xmi={x:0<i<m}, Yp:={yj:0<j<n},
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2 Paola Lamberti

of the segmentfxy, B1] = [Xo,Xm] and[az, B2] = [Yo, Yn], respectively.
Then the so called criss-cross triangulatigi, of Q is defined by drawing the
two diagonals in each subrectangle (Fig. 1.1).

y
Bo=Yn t------
Yn-1
Y1
a2=Yo f------ i .
01=Xo X1 Xm-1 fBr=Xm X

Fig. 1.1 TriangulationZmn of Q = [a1, B1] X [az2, Bz].

In [4,38] and [2], p.72, the authors introduce @b bivariate quadratic spline
Qls, defined on uniform and nonuniform criss-cross part#igm,, of the rectangular
domainQ, usingC! quadratic box-splines with octagonal support and simptatsn
[5,29]

X2 <X <ar =X <Xt <...<Xm=P1<Xmp1 < Xmp2,
Yo<Yy1<02=Yo<Y1<...<¥n= B2 <Ynt1 < Yns2.

The first Ql is defined by the Schoenberg-Marsden operajmodecing bilinear
polynomials. Based on this QI, cubature formulas have besemted in [12,13],
also for finite part integrals. These results have been géped to nonuniform criss-
cross triangulationg,, of Q in [27,38].

The second one reproducs, wherelP, is the space of all polynomials in two
variables of total degree at mast

In [9-11] some tools are given to construct a more generakatéd spline Qls,
among which the two above mentioned, defined as a linear emtibn of suchC!
guadratic box-splines, whose coefficients are in turn limeanbinations of values of
the function to be approximated. In those papers their &ffeconstruction is studied
and the corresponding Matlab software is given.

In [7,8] some approximation power performances and erralyais on the func-
tion and on its partial derivatives of first and second ordén ¥ecal and global upper
bounds are given for such a general class of spline Qls.
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A possible drawback of using such box-splines is that sonbesf supports are
not completely contained i (Fig. 1.2) and this causes the data sites, involved in
the QIs definition, can also lie outside it.

Fig. 1.2 Some B-spline octagonal supports with simple knots.

In [30,32,15, 14] such a drawback is removed by defining andystg new Qls
of the form

Qf =y A (B, (L.1)
1]
wheref € C(Q) and theB;;’s are B-splines with multiple knots

X2=X1=01=X <X <...<Xn=B1=Xm1 = Xms2,
Yo=Yy 1=0=Yo<Y1<...<¥n=B2=Yni1=Yni2

on the boundary Q of Q and with supports; all contained inQ (Fig. 1.3). The

)\ng)’s are linear functionals, defined as linear combination$uattion values at

some triangular mesh—poin(tsg),ygn) either inZ;; or close to it, that is
AR (F) = ;vé'”f(xé'%yg”),

with vé”) non-zero weights, such th@f = f, Vf € P,, for some O< r < 2.

In this paper we define and study cubature formulas basedabnrsaw QIs. It is
organised as follows.

In section 2 we recall some definitions and properties of theva Qls defined
by means of multiple knot B-splines. Based on these Qls, nibatcre formulas are
generated in section 3 and their approximation order isiestuftbr both symmetric
and nonuniform partitions of the domai@. Finally in section 4 some numerical
results are presented.
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Fig. 1.3 Some B-spline supports with multiple knots.

2 Quadratic spline Qls on a bounded rectangle
2.1 The quadratic spline spasgﬂmn)

Let S}(.Zmn) denote the space @ functions whose restrictions on each triangular
cell of T are polynomials of total degree 2, i§; j<2ajXy), i,j >0, aj € R.
Such functions are called bivaria@@ splines of total degree 2.

In this section we recall some definitions and propertieb@fbove spline space
S} (Jkmn), where Qls of kind (1.1) are defined.

First we need to define the sets of indic&gn:= {(i,j):0<i<m+1,0<j<
n+1},J£/Amn:: {(i,)):1<i<m 1< j<n}.

Moreover we selti :=xX —Xi_1, Kj :=Yj —Yj-1, § 1= 3(X—1+X), tj 1= 3(yj_1+
Yi), (i,]) € Jmn with the conventiorng = hmy1 = ko = ka1 =0, S = X0, Smi1 =
Xm, to = Yo, the1 =Yn, Ars= (X,¥s), for =1 <r <m+1land—-1<s<n+1. Letthe
data sitedvVli ; = (s;,tj), (i, ) € “#mnbe themnintersection points of diagonals in the
subrectangle$;j, the Am+ n) midpoints of the subintervals on the four boundary
edges of2 and the four vertices a®.

Also let ZBmn:= {Bjj : (i, j) € #mn} be the collection ofm+2)(n+2) B-splines
generating the spac#;(7mn) of all C! piecewise quadratic functions on the criss-
cross triangulatioryy, associated with the partitiofy, x Y, of the domainQ. There
aremn inner B-splinesssociated with the set of indic@gfn\m, whose restrictions
to the boundary™ of Q are equal to zero. In particuldm— 2)(n— 2) B;j’s have
octagonal support, simple knots and they vanishdéh with C continuity, while
2m+2n—4B;;’s have non octagonal support, double knotgén where they vanish

with C°~continuity. To the se]%//r\nn, we add 2n+ 2n+4 boundary B-splineassociated
with Zmn:={(i,0),(i,n+1):0<i <m+1;(0,j),(m+1,j):0< j <n+1}, whose
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restrictions todQ are univariate quadratic B-splines, where they have tkplats.
All such B-splines are non negative and form a partition afjuBoundary B-splines
arelinearly independené&s the univariate ones, but the inner B-splinesliaesarly
dependentthe only dependence relationship being:

S (=1)'"IhikiBij =0.
(i.§)€ Hmn

This classification of B-splines is given in [30-32].

Since dinS}(Jmn) = (M+2)(n+2) — 1 [30,32], then a basis f@&5(Zmn) is ob-
tained by deleting any element frod,n. However, although’, is not a basis of
yzl(ﬂmn). this fact has no influence on the definition and propertieQlaiperators.
We remark that the se®,,, containing B-splines with multiple knots on the bound-
arydQ, can also be expressed in terms of thet- 2) (n+2) B-splines with octagonal
supports and simple knots [15].

2.2 The spline quasi-interpolants

In this section we recall the main properties of three QldiodiK1.1), which cubature
formulas of next section are based on.

In [30,32], the Schoenberg-Marsden opera&grdefined by putting’\i(jsl)(f) =
f(Mij) in (1.1) with (i, ) € #mn, is described in terms of the séfmn. S; still re-
produces bilinear polynomials, it has infinity norm equallt@nd the number of
requested function evaluation pointdNg(m,n) = (m+2)(n+2) (Fig. 2.1(a)). More-
over its approximation order is equal to 2.

In the same papers the QI

St= Y AP(HB;

(i,))€mn
where
A2 (£) = bij (M) +a f (Mi_g ) + i f (Miye )
+ 3;f(Mij—1) +Tj f (M j4+1)
with
bij =1—(a+ci+3+Tj),
o ddly . algy)? T T(Tg)?
&= _Ui"'clfi/:ll’ = _Gi"'ligi/lﬂ7 &= _TJ‘J“"JTi/il7 “=- TJ"*‘]TEH (2.1)
and
. _ N = R
=R O T R T 9
2.2)
K Ki 1
U=k 0= kok =1 T
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Yj

Yi

Yj

Fig. 2.1 Function evaluation points involved in the definition &) Ai(js’l)(f), (b) Ai(jSZ)(f) and
(c) /\i(jWZ)(f), for any (labelleds) and all @) (i, j) € #mn.

is defined S, is exact onP, and it reaches optimal approximation order by using the
same numbeNs(m, n) of function evaluations, needed to defige(Fig. 2.1(b)). In
terms of fundamental functions defined by

Bij == bijBij +a41Bi11 + G 1B 1j+&41Bij+1+C1Bij 1,  (2.3)
S, can be written in the form

Sf= 5  f(Mj)Bj.

(i,j)€Amn
In [15] the modified QI operatdis, with

W=y AM()B;
(i,j)Emn

and
0

> F(An k),

4h:71k:71

>
&
-
~—
Il
N
—
—
=
I
I
Mo
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is introduced and studied (see also [2, 4, 38]). Here the fpesitsAs that lie outside
Q should be thought of as if they were projecteddd®, i.e. as multiple knots 08 Q:

Mio = (S8,02), Mini1=(S,B2), Moj = (a1,tj), Mmi1j= (Brtj),

Ago0=A 1 1=A0-1=Aop,

Ami10=Amr1,-1=Am-1=Amp,

A_1n=A_1n+1=Aon+1=Aon;

Amiin = Amiinel = Anntl = Amn,

A1=Ap, Apr1=An i=1...m-1

A 1j=Aoj, Avprj=Anmj, j=1,...,n=1
W is also exact ofP, and it reaches optimal approximation order, but for its def-
inition Nw(m,n) = 2Ns(m,n) — m—n— 7 function evaluations are requested (Fig.
2.1(c)).

(I\/I)c))reover, due to multiple knot B-spline®,f interpolatesf at (x,y) = (a1,02),

(B1,02), (a1,B2) and(B1, B2) whenQ is one of the QI;, S andWs.

Now we recall some results on the approximation power of theva defined
spline operators. Let

— A =max;{h,kj};

| - | @ the supremum norm ove®;

w(y,0) = max{|[P(x,y) — P(u,v)[; (u,v),(Xy) € Q,[[(Xy) — (u,V)|| < 5} the
modulus of continuity ofp on Q, with ¢ € C(Q) and||(s,t)|| = (2 +t2)Y/2;

_ D% — planaz) — dx%g‘y‘& with | o |= a1 + ay;

— w(D%f,8) = ma{w(Df,5),| a |=s}.

An error analysis for botls, andW, on f and its partial derivatives of first and
second order in terms of the smoothnesd @ind of the triangulation properties is
presented in [15]. Based on the results given in [4,38] arjd5ih here we can state
the following theorem.

Theorem 1 Let Q be one of the QIs;SS,, Ws. Then there exist positive constants
Co,0: C1,0, Cg,, G20, C3,0 such that
() if f eC(Q), then
| f—Qf o< Coqu(f,4);
(i) if f € C(Q), then
| f—Qf |[a<Ci1olAw(Df,A/2),
i) if f € C?(Q), then

[ f-Sif [o< Cslﬂzmgg\l D*f |lo

and, if Q= S or W, then
| f—Qf o< Co0A’w(D?f,4/2).
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(iv) Finally, if f € C3(Q) and Q= S, or W, then

| f-Qf o< C3,Q43m§>§|| DYf || .

Remark 1 Additional results on the approximation orders of the qeiagérpolant
S and its derivatives are given in [20], [21].

3 Cubature rules based on spline Qls
3.1 General results

For any functionf € C(Q), we consider the numerical evaluation of the integral
I(f):l(f;Q)::/ £ (x,y) dxdly
Q
by cubature rules defined by

QN =1(QF:Q):= T W f(R)),
1]

whereQ is any Ql amongs, $,Ws, defined on the bounded domai and theR;’s
are the evaluation points of Fig. 2.1, belonging to the ecigss triangular meshn,
[26].

For such cubatures the weighn‘/-fﬁQ> are computed as follows. In case@f= S
we detail the proof of a result sketched in [17].

Theorem 2 If Q = S, then

S).
Wi(j = /Q i = /Eij B

1 1
Tz(hi—l+ hit1)(Kj—1+Kj1) + &

1
= ﬂ[(hi—l +hiy 1) (Kj—144Kj +Kj1) + (hi—g +4hi +hiy 1) (Kj_1+Kj11)] (3.2)

[(hi—1+hita)kj + hi(kj—1 +Kj11)] (3.1)

for (i, ) € Hun

Proof. A quadratic polynomiap € P, on a triangleT of the partition.Zy,, can be
represented in the local Bernstein basis as

p(A) = HZ c(a)ba(A)
a|=2

whereby (A) = %/\“, a = (a1,02,03), A = (A1,A2,A3) are the barycentric coordi-

nates ofT, a! = a1!az!as! andA® = A1 A2A 8,
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If T is included in the rectangle with edges of lenbtlandk;, its area is equal to

h.kJ and, since [1]
1
for all by, then

/ p= —h. c(a).

2

The supports;; of Bjj, composed by 28 triangl%f'”, k=1,...,28 (Fig. 3.1),
sometimes degenerates for boundary and some inner B-spHoevever, the general
expression oB;j is still valid when somé; orks are zero. For the computation of this
integral, it is enough to sum up the BB-coefficients ), given in [31], and multiply
such a sum byz%1 times the area of the rectangle containing the triangle.

Yitl pommmme - <ommmmmm oo
, W N .
Yi-1 J Y
- \SW, SE !
Vjiopbommmee N NI L i
i—2 Xi—1 X Xi+1

Fig. 3.1 Subregions of;j, support ofB;; .
Then, sinceSij = U2, T, by [31] and Fig. 3.1 we deduce

4
1
Bij = / Bij = -5hikj[(0] + 0i2) (T) + T
/(; 1) kZl Tk(ll) 1) 12 { J[( | |+l)( ] ]+1)
+ 2(0"'+0'i+1+'[]{+'[j+1)],

/Blj = (,] Blj 2hi+1kj0'i+1(TJ{+Tj+l+2)7

10
Bij = L Bij = h Kjit10i41T
NE ij kzg k(”) i) = 12 i+1Kj+10i+1tj+1,

1
Bij = 1, Bij = Shikja T (0] + 61 +2),
ICEPWELTES. /
16 1 /

B = _ Bij = —=hi_1K{+10/Ti 11,
NW 1 k:ZlS Tk(lj) 1] 12 i—1Rj+10 Lj+1
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20
1
Bij = / Bij = —=hi_1kj 0 (T} + Tj11+2),
/\N 1) k:Zl7 Tk(”) 1] 12 i—1 ] I( ] J+l )

Bij = S / Bij = =hi_1kj_10/T!
Jsw ! _k;r URCEEE TR

. 26
1
Bij = % i) Bii = 5hikj a7 (0f + 011+ 2),
/S e A 12 :

28 1 )
SEBij = kZ7~/rk(ij) Bl] = Tzhi+lkjflo-i+lrj-

Now, after some simple algebraic manipulations, we get

/ B,J:/Bij—l—/ Bij+/ Bij
Sij C NUSUEUW NEUSEUNWUSW

1

= Nk (67 + Gi1) (T + Tj11) + 2(0] + Gip1+ Tj + Tj11)]
1

+ Tzhi(o-i/+o-i+l+2)(kj+11'j+1+kj—lTJ{)
1

+ Ekj(rj + Tj+1+ 2)(hit1kj i1 + hi_1kj o))

1
+ Tz(hi—lai/ +hit10i1) (Kj-1T] +Kj11Tj41),

from which we obtain (3.1) and, by dividing and multiplying B, after conveniently
collecting terms, we obtain (3.2.

We remark that, since tH#&;'s form a partition of unity and they are non negative,
then aIIvvi(jSl)'s are positive. Therefore

S oW = Y Wi = (Bi-a) (B a2).

(i,J) € mn (i,)€mn

Moreover ifh; = h andkJ =k, for anyi andj then the weights can be computed

once for all asw,(]S” hk, with thecJ 's given in Table 3.1. The71v<J Vs, i =

2,....m=1j=2.. n 1 coincide with those given in [13] for uniform partitions.

Theorem 3 If Q = S, then

/B., = bywi a6y
+ aj+1Wi<’Sj1l1+Cj_1Wi(_’Sj17)1, (3.3)

for (i, j) € J#mnand with the convention@» =8, =c_1 =T_1 =0.
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Table 3.1 The coefficientsi(jsl)'s for a uniform partition.

n+1|1/12 14 1/3 1/3  1/4  1/12
n 1/4 5/12 2/3 2/3  5/12 1/4
n-1|13 253 1 1 2/3  1/3
2 13 23 1 1 23 13
1 1/4 5/12 2/3 2/3  5/12 1/4
0 /12 1/4  1/3 /3  1/4  1/12
i |0 1 2 m-1 m m+1

Table 3.2 The coefficients:f”’s for a uniform partition.
n+1 | -1/12  7/36 1/9 1/9 1/9 1/9 7/36  —1/12
n 7/36 2/3 8/9 7/8 7/8 8/9 2/3 7/36
n-11|1/9 8/9  37/36 7372 73/72 3736 89  1/9
n—-2 | 1/9 7/8 7372 1 1 7372 7/8  1/9
3 1/9 7/8 7372 1 1 73/72  7/8 1/9
2 1/9 8/9  37/36 7372 73/72 37/36 89  1/9
1 7/36 2/3 89 7/8 7/8 8/9 2/3  7/36
0 -1/12  7/36 1/9 1/9 1/9 1/9 7/36  —-1/12
iNi ]oO 1 2 3 m-2 m-1 m m+1

Proof. The proof follows immediately from (2.3) and from Theorem 2.

In this case from (3.3), SiN0& 1 = ami2 =C_1 =8n2 =0, | bjj |[< 3, | @41 |,

|Ci—1 ], @jua s[ T [< 3 andw™ > 0 for anyi andj, we can deduce that

2

Wi < S (i [+ @ |+ G|
(i,j)eAmn 1]

@ |+ [T ) Wi < 5(BL— a1)(Be — a2).

Again if by = h andk; = k, for all i and j, thenw{?’ = ¢?hk, with thec;?)'s
given in Table 3.2. It is interesting to remark that in casarform criss-cross trian-
gulations onlyci(jS’Z), (i,j) =(0,0),(m+1,0),(0,n+1),(m+1,n+1) are negative.
Theorem 4 For any function fe C(Q),

1(ef) = T w? f(R))
1]
(3.4)

where
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Table 3.3 The coeff|C|ent§(W2) s for a uniform partition.

n+1 | -7/16 -9/16 -2/3 ... -2/3 -9/16 —7/16
n -9/16 -11/16 -5/6 .- -5/6 -11/16 —9/16
n-1|-2/3 -56 -1 .. -1 -5/6 -2/3
2 2/3 506 -1 .. -1  -5/6 —2/3
1 —9/16 -11/16 -5/6 .-~ -5/6 —11/16 —9/16
0 ~7/16  -9/16 -2/3 ... -2/3 -9/16 -7/16
i JoO 1 2 -+ m=1 m m+1
_ 1
Wi(JWZ) = _Z(Vlwi(jSl) + VZWI( 1421"‘ V3W|(+1)J + YaW, |(+1)|+1) (3.5)
with
A if (r,s) = (0,0),(0,n+ 1), (m+1,0), (M+1,n+1),
ywiS) = J2w if (r.9) = (0.1),(1,0). (m+1,)), (i,n+ 1), (3.6)
i=1....m j=1,...,n,
WES) ifr=1,....ms=1....n
(=1,2,34.

Proof. From its definition, we can rewridh f in the following form:

1mn

Wof=2 5 f(M;)B;j - %Ey 1)Bij

(i,J)€Xmn
where
Bij = vaBij + y2Bi j+1+ ¥3Bit 1, + VaBis 1 j41.

They,’s are obtained, after some algebraic manipulations, biynggkto account the
multiplicity of the Ajj's along the boundarg Q: 4 at the four corners and 2 along the
four edges 00 Q. »

From (3.5) itis easy to verify that

m n 4
Z)Z)W:vi(}/\@ |< (; W) > W.(, <9(BL—a1)(B2—az).
== =1/ (i,§) €A

Thus, in conclusion, we have

z\w., |—z| +3 W) |< 1281 — a1) (B2 — a2).

1]

If by = t1andk, K, naraniandj,thenv¢¥b> hk, whereg|"” = 2c{> and

v:vi(JWZ) = C 'k, with theé( 's given in Table 3.3.
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According to Rabinowitz and Richter [28], a good quadratureubature formula
has all points inside the regio and all weights positive. Positive weights imply
thatl (Q-) is also a positive functional. In [22] we can find again such tesiderable
properties for a numerical integration formulaz (Ehe points used lie in the integra-
tion domain; (B) the coefficients be positive. Regarding property)(fhe function
to be integrated may not be defined outside the domain ofriatieg. Therefore, the
use of integration rules based on B-splines with multipletkns plainly justified in
that case.

Moreover the sum of the coefficients of any formula of degre® or higher is
equal to] Q |, the measure of the integration domain. Thus, propedyrtRans that,
if the coefficients are all positive, there is a natural botmtheir size. This is not the
case of rules based on the operatSrsandW,. However, if we define the quantity
[22]

1

. Q)
EI

which is > 1 if and only if some coefficients are negative, we hiél (S;f)) = 1,
Ni(I1(Sf)) <5 andN;(I(Wof)) < 11. Therefore the sum of the absolute values of
weights, associated with the operatSsandW,, is uniformly bounded, as we proved
just above.

N1(1(Qf))

Finally, from Theorem 1 we can immediately deduce some tesulthe conver-
gence ofl (Qf) tol(f).

Theorem 5 Let f € C(Q). Then for Q= S, S, W» we have
1(Qf) = I(f) asA — 0,
whereA = max;{h;,k;j}. In particular
[ E(QF) [=[1(f) —1(Qf) |< Couw(F,4),

where @ is a positive constant independent on m and n.
Moreover if fe CX(Q), then

E(Qf) = 0(4¥)
withk=1, 2forQ=5, $, Woand k=3forQ=S, W.
Proof.Let R(Qf) = f —Qf. Since
[EQF) [< (| RQT) ]),

then we get
|E(QF) [<[[RQF) [| (B — a1)(B2 — a2),
where|| R(Qf) || is bounded in Theorem &.
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3.2 Symmetric criss-cross triangulations

It is well known that ifl (Qf) is exact for all bivariate polynomials of total degree
p or lower, but it is not exact for some bivariate polynomialdaial degreep+ 1,
thenl (Qf) is said to have “degree of precisiop’ For any integrand functiof, the
accuracy with whicH (Qf) approximates the integr&(f) is related to the degree
of precision ofl (Qf) and to the accuracy with which itself can be approximated
by polynomials, this latter depending on the smoothneds éf contribution in this
direction is given by the following results on the precisiegree of the above inte-
gration rules for symmetric criss-cross triangulations.

Theorem 6 Let Q be any rectangular domain. If the partitiofim, has symmetric
knots with respect to the centre @f, i.e. (Xm—i,Yn—j) = (014 B1—Xi, 02+ B2 —Yj),
then

Wl =W, forQ=5s.% 3.7)
and
Wgr\ﬁzi{nfj = WI(V]\&)

Proof. Let us consider the casg = S;. If Xm—i = a1+ B —X andyn_j = a2+
B2 —yj, then from the definition oy andk; we immediately deduden_i+1 = h; and
kn—j+1 = kj and, from Theorem 2, we obtain (3.7).

If Q=%, then from (2.2), foi =2,...,m,

h

. hm—i-¢—1 —
0= h; G

I .
+hi T g timoiz T M2

(3.8)
s _hig Pm_is+2 _ )
T = Rt~ Ropa g Om-it2:

Moreoverop = 0 andgy = 1 sincehyg = 0 andom, 1 = 0 sincehmy 1 = 0. Now, from
(2.1) and (3.8) we can write

2 / ! \2.
o O %2 (GG
Am-i+1=—g o7 == .10 = Cis
m—i+1 /m—i+22 i+12 )
Cmisl = Om-i+1(0m i12)°  (G)°0(, a
m—i+1 = — - = - = =q.
+ Om-i+1+0m_i42 0/, 110

Similarly, from (2.1) and (2.2) we deducg= T,LHZ, rJf =Tn_j42, With To = Tpy1 =

0 andry = 1. Moreoverg,_j1 = Cj, Ch—j+1 = 8j and then
bm-it1n—j+1 = 1— (Bm-i+1+ Cm—it1+8n—j+1+Cnj+1)
=1- (Ci +8; +C;j Jr?ij) = bij.
Then, from (3.3), we obtain

(S2) _ : : (S1)
Wi itin-j+1 = Brm—i+1,n0-j+1 WmZitin-j+1

. (S1) (S
+ 8m-i+2 Wi o0 1+ Cm—i WinTin_j11

. (S1) D)
+ @n-j+2 WnTiyin-je2 8- Wnlis i
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Now, sinceam_it2 = Ci-1, Cm-i = &+1, 8- j+2 = Cj—1 andCn_j = @j;1, we have
(3.7|Zinally, if Q — Wb, then from (3.5) it results
Wi = _%(ylwgnsi)hn*i YW 1
+ YSW(SPH_L”_J‘ + V4W§nsi)i+l,n—j+l)

1
= =2 0aw o+ a5+ ).

Therefore, from (3.6), the theorem is proved.

Thus, by using Theorem 6, in case of symmetric partitionsavestate something
more on the precision degree of the cubature formulas bas#temperator§;, S

andWs. We setmy s(x,y) = X'y°.

Corollary 1 Let Q be any rectangular domain andm, have symmetric knots
(Xm—i,Yn—j) = (al+B1—Xi,02+BZ—yj)- I :Oa"'vma J = 0;"'7”' IfQ: 827 Vva

then
1(QMs) = 1(mys) (3.9)
with0<r,s<3, r+s=3and(r,s) = (3,1),(1,3).

Proof. Let Q be eitherS, or Wo. Any integral on a rectangular domain can be
converted, via convenient changes of variables, to anratey the square domain
[—1,1)2. Therefore, by setting

X=Hiu+Kjz, y=Hv+Ky,

with 8 8 8 8
_pi—ax _+p _ p2—az _+p2
Hl - 2 ) Kl - 2 bl H2 - 2 bl K2 - 2 )
we can write
I(mys) = / M.s(x, y)dxdy = H1H2/ (pz(u,v) + Z Hij (u,v))dudv,
Q [-1,1)2 J]

wherep, € P> and in the sum at least eithieor j is odd andu;j € R.
Now, from the hypothesis offm,, from Theorem 6 and by the polynomial repro-
duction and linearity properties of the operat§sandW, it results

1(Qmys) = HiHa[l (Qp2) + H wij (Qmj)] = HiHal (p2).
1]

So we get the desired resut.

Then, in case of uniform partition& andW; have a better precision degree,
i.e. increased by one, similarly to some integration rulasell on tensor product
of interpolatory quadrature formulas, giving rise to Nem#Ootes formulas, to be
preferred in case of an odd number of interpolation poir3$. [ddeed, since uniform
partitions are special cases of symmetric ones, the ded@edsion ofS, andW,
is not 2, but 3. Therefore these new integration rules carobpared, e.g., with the
tensor product of Simpson rules.
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Remark 2 If 9y, is any criss-cross triangulation, then Maple symbolic catagion
gives evidence that

— (3.9) holds for =W, withr,s=1,2, r +s=3:

|Werme 1) = 20— 302 1) =1 (me.)

and

(W6 2) = <% —3) (3~ ¥8) = | (M)

— there exists a constantq;, depending only on the knots x=0,...,m, such that

1(StMz.1) = G (Y2 —¥3)

and, similarly, there exists a constang,Cdepending only on the knots,yj =
0,...,n, such that

(St 2) = Cy, (X — %5)-

Then (3.9) holds for @& S withr,s=1,2, r+s= 3, if Q is of type[ay, B1] x
[—a2,az] and[—a1, a1] x [0z, B2], respectively.

In case of rules based on the operatonge have only numerical evidence that such
precision degree is also attained, but till now we have nopaf this fact.

Corollary 2 LetQ=5;, S, Wo. If Q = [—a1, a1] x [ a2, d2] and Iy has symmet-
ric knots, then
1(Qms) = 1(mys)

in the following two cases:

—r+s=2k+1,
— r+s= 2k with r and s odd,

where ke N.

Proof. From Theorem 6, by reasoning as in Corollary 1 and taking &etmunt
the definition ofQ2, we obtain the thesis.

Remark 3 We recall [22] that a regionQ  R? is said to be “fully symmetrical” if,
whenever(x,y) is a point of the integration domain, all points of the fo(ex, +y)
and (+y, +x) are also integration points.

Similarly a numerical integration formula is “fully symmal” [6, 22] if, when-
ever it contains the poir(ix,y) with associated coefficient w, it contains all the points
(£x,£y) and (LY, £x) with the same associated coefficient.

Therefore, ifQ is a “fully symmetrical” domain, the integration rules basen
the operators § S and W are “fully symmetrical”, so that we find again the results
of Corollary 2 for the case # s odd also in [22] (p. 493).

Finally, if 9mn has symmetric knots, then we can provide another result®n th
convergence df(Qf) tol(f).
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Theorem 7 Let Q= $, W, and .7mn have symmetric Knotm—i, Yn—j) = (a1+ 1 —
X, 02+ P2 —Yj),i=0,....,m j=0,...nIf f €C3Q), then there exists a positive
constantCsz g such that

| E(Qf) |< C30A3%w(D3f,A).
Moreover if f€ C*(Q), then there exists a positive const&tg such that

|E(Qf) < C4.,QA4‘T‘§§” Df |lo -

Proof. Due to the symmetry of knots and weights with respect to thereeof
Q [16,18,24], from Corollary 1 the cubatures associated WiehQIsS, andW, are
exact on the spades. Then, similarly to [38] and [15], we have

If=Qfllo= f-Qf [r<(A+ QI I f -z llur< A+ [ QI I f =g flur

with UT the union of the triangular cells of the B-spline supportd ire non zero on
T, g; the best approximation polinomial éfin P3 on UT and

3 i
wey) =3 -85 ro-mg] . (310)

where (&,n) € T and for partial derivatives in (3.10) the powestands for their
order.
If f cC3(Q),we setf =qz+rzwith

3

ey =53 () 0 I~ HEmo O )’

where the poinfu, V) lies somewhere in the segment joinit§, n) to (x,y). Then,
since(x— &)+ (y—n) < 4A, from the modulus of continuity properties [36], it results

1 256
| £ lur=I 13 llor < £[0x— &)+ (v — )P, VIGA) < Z2A%(D%1, ).

If f €C*Q),we setf =gz +rgwith

4

iy = 35 (1) 04t g0l @
Then, from (3.11), we get

256
f— =|r < ZA*max|| DY || .
| f—aallor=[raflur< oa u|:4” o

\
Finally, since|| S ||< 5 and|| W ||< 3 [15], we obtain

512

Cas, = 2561 — a1)(B2— a2), Caw, = T(Bl —a1)(B2—a2),
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Cas, = 64(B1— a1)(B2— a2), Caw, = 2%6([31 —a1)(B2—a2). .

Of course such constants are not the best ones, since indbkvpe considered
the polynomialys, instead ofg;.

We remark that similar results f& in the univariate case can be found in [33].

Approximation order in case of both symmetric/uniform amhuniform criss-
cross triangulations can be observed in the next section.

4 Numerical results

In this section we propose some numerical results obtaiggedting cubatures of
section 3, when integrating the following functions:

fi(x,y) == VI xyl,

=|x®+y*—0.25],

fa(%y) = VIx=vy],

o= Byfsa (3 (- 3)) 2

(5-10x)2 (5-10y)2 _(5-1x2  (5-10y)2
2

fs(x,y):=€ 2 +.75% 2z +.75 e 2z,

—

N

—~

X
|

(x,y) € [0,1] x [0,1],[—1,1] x [-1,1]. All computations have been performed on a
personal computer with a 16-digit arithmetic, by using dhtl

4.1 Comparison based on about the same relative error

In tables 4.1, 4.2, 4.3 we present the relative errors peavioy the application of
our rules on uniform criss-cross triangulations and othewkn ones, given in [13,
27] and [19], p.216, in particular Simpson product rule,hwapproximation order
O(A%), and the ones based on the Schoenberg-Marsden opegatmdS", defined
by using simple knot B-splines on uniform and nonunifornsgstross triangulations,
respectively, whose approximation order is the same asitegration rule based on
S.

Here we want to underline the different number of integramctfion evaluations
(figures in parentheses) in order to get about the samewekatior size.

These results show that the new cubatures are comparabléwibnes based on
simple knot B-splines, but they do not need any functionwat&bn points outside
the domainQ.
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Table 4.1 Absolute values of relative errors in the computatiorl df; [0,1] x [0,1]) = 4/9 by several
integration methods.

Romberg  Gauss- Clenshaw- &' S S Ws Simpson
[19] Legendre  Curtis+trapz. [13] product
[19] rule [19] rule
1.4(-2) 1.3(-2) 11(-4) 56(—2) 7.8(-2) 8.6(-3) 87(-3) 7.7(-3)
(32060 (4096 (6786 (25) (25) (25) (37 (121
49(-3) 9.0(-3) 6.3(—4) 14(-3) 3.8(-3)
(276) (272 (272 (477 (289
9.7(—4) 22(-3) 15(-4) 34(-4) 1.0(-3)

(1476 (1480 (1480 (2880  (152))

Table 4.2 Absolute values of relative errors in the computatior (d; [—1,1] x [-1,1]) = 5/3+ /16
by several integration methods.

Romberg  Gauss- tanh S S S W, Simpson
[19] Legendre  product [13] product
[19] rule [19] rule

59(-7) 19(-5) 16(-5) 95(-3) 95(-3) 29(-5) 15-4) 17(-4)
(36504 (4096 (10057 (540 (528) (528) (1007) (625
97(-4) 86(—4) 68(—6) 23(-5 4.9(-5)
(4608 (5184 (5184 (10221 (5041)

Table 4.3 Absolute values of relative errors in the computation (d; [0, 1] x [0,1]) = 8/15 by several
integration methods.

Romberg  Gauss- tanh S Su S S Wo
[19] Legendre  product [13] [27]
[19] rule [19]

62(-5 21(-3) 94(-3) 16(-3) 10(-3) 7.8(-3) 13(-3) 26(-3)
(16224 (4096 (2751 (160 (160) (160) (160) (291)
48(-3) 75(-4) 7.3(-4) 7.2(-4) 18(-5) 15(-b)
(3441 (1364 (1364 (1376 (1311 (2539
18(—3) 26(-5) 24(-5 19(-4) 15(-5 22(-5)
(10057 (5152 (5152 (5183 (5183 (10219

4.2 Comparison based both on the same spline space and drtlsseame number
of function evaluation points

In tables 4.4-4.7 we compare our cubatures with compositgp$&in product rule
(1(=f)) for some test functions. We denoteB{Q f) the cubature errdr( f) — I (Qf).
In particular, in tables 4.4 and 4.5 the comparison is cdraet both in the same
spline space and by using about the same number of functalnations, in case of
uniform criss-cross triangulations. In order to do it, gg(m,n) = (m+2)(n+2)

andNw(m,n) = 2Ns—m—n— 7, in the seventh column we uNwU } { ~

Ns(m, n) function evaluations. Moreover, if we denote y(m,n) = (m+1) 1)
the number of function evaluation points for Simpson pradute (m andn even),

%
(n+
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Table 4.4 Absolute errors in the computation bffs; [0,1] x [0,1]) = .2865833317293664 on uniform
triangulations.

m=n ESf) E(Sf) EW, ) E(Zf) | m=n EMWf) | mn E(=f)

4 18(-2) —45(-4) -1.0(-3) 50(-4) | 3 ~2.6(—3) | 6,4 31(-4)
8 51(-3) -42(-5) -91(-5 39(-5) |6 —25(—4) | 108  28(-5)
16 14(-3) -3.3(-6) —7.0(-6) 2.7(-6) | 12 —21(-5) | 1816 22(-6)
32 35(—4) —23(-7) -49(-7) 17(-7) | 23 ~17(-6) | 3432 15(-7)
64 90(-5) —1.5(-8) -32(-8) 11(-8) | 46 —1.2(-7) | 66,64 10(-8)

Table 4.5 Absolute errors in the computation bffs; [0,1] x [0,1]) = .4857835323466119 on uniform
triangulations.

m=n ESf) E(Sf) E(W,f) E(zf) | m=n EMW.f) | mn E(=f)
4 45(-2)  3.8(-2) 13(-1) 11(-1 |3 -6.0(-1) | 6,4 18(-2)
8 15(-5) —4.8(-5) —45(-5 15(-2) |6 22(-3) | 108 52(-3)
16 11(-6) -6.1(-7) -10(-6) 12(-6) | 12 -49(-6) | 1816 55(-7)
32 16(-7) -1.6(-8  -33(-8) 7.6(-9) | 23 ~16(-7) | 3432 67(-9)
64 31(-8) -6.4(-10) -1.5(-9) 55(-10) | 46 —-6.3(-9) | 66,64 51(-10)

Fig. 4.1 (a) fo(x.Y), (xY) € [-1,1] x [-1,1]; (b) Py,

then in the ninth column we udds(m,n+ 2) = Nx(m+ 2,n) function evaluation
points, that are aboNs(m,n), whenm=n.

4.3 Comparison between uniform and nonuniform partitions

Finally a comparison between uniform and nonuniform ccissss triangulations in
the same spline space is presented in tables 4.6 and 4.7 wibegration rules are
applied to the test functions shown in Fig. éaland 4.2a), respectively.
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(@ (b)
Fig. 4.2 (a) f1(xy), (xY) € [-1,1] x [-1,1]; (b) PiZ,y

Table 4.6 Absolute errors in the computation bffs; [~1,1] x [~1,1]) = & on uniform (u) and nonuni-
form (nu) P,%l,z criss-cross triangulations.

m=n EST) E(Sf) E(Wf) E(Zf)
u nu u nu u nu u

4 ~15(-1) —7.9(-3) -85(-2) —25(-2) -46(-1) —25(-1) 11(-1)

8 —47(-2) 28(-2) -30(-2) —39(-3) -16(-1) —37(-2) 41(-2)

16 ~15(-2) 11(-2) -11(-2) —54(-4) -58(-2) —50(-3) 14(-2)

32 —48(—3) 34(-3) -38(-3) —7.0(-5) -21(-2) —6.4(—4) 51(-3)

64 ~16(-3) 93(-4) -13(-3) —9.0(-6) -7.3(-3) —82(-5) 1.8(-3)

In Fig. 4.1(b) and 4.2b) the following nonuniform symmetric partitions, depend-
ing on the features of the integrand functions, are reporésghectively, where for the
sake of clarity only the verticeld;; andAs appear:

R =X X Yo = {(%,¥))}
= {((BL— an&™ + a1, (B2~ a)n + az)}, k=12

with

@ &Y = L :07...,mandnj(1) = %cos”/i’j mj=0,...,n/2,

n’=1-n,, i=n/2+1,....n(neven);

(2) Ei(z) = %cos% I, r/j(z) = %cos”/ﬁ’j m i=0,...,m/2

j=0...,n2 and§? =1-¢?, nP=1-nP,
i=m/24+1,...,m j=n/24+1,...,n(m, neven).
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Table 4.7 Absolute errors in the computation kfffy; [—1,1] x [1,1]) = % on uniform (u) and nonuni-
form (nu) Prﬁqzr% criss-cross triangulations.

m=n ESf) E(S) EMf) E(sf)
u nu u nu u nu u

4 —21(-1) —10(-2) -11(-1) —33(-2) -62(-1) —3.1(-1) —15(-1)

8 ~63(-2) 37(-2) -41(-2) —48(-3) -22(-1) —48(-2) 54(-2)

16 —20(-2) 15(-2) -14(-2) —66(—4) -7.8-2) —65(-3) 1.9(-2)

32 —64(-3) 46(-3) -51(-3) —89(-5) -27(-2) —85(—4) 6.8(—3)

64 —21(-3) 12(-3) -18(-3) —12(-5) -9.7(-3) —11(-4) 24(-3)

Such examples show that the choice of the partition can lwéadfor the accuracy
of the results.

We recall that (Qf) has precision degree 2, 2 whenQ =S, S, Ws, respec-
tively. However, due to the symmetry of the weights and kiath respect to the
centre ofQ, from Corollary 1,1 (S f) andl (W, f) have precision degree 3 in case of
symmetric criss-cross triangulations. Indeed the abdwesaconfirm the approxima-
tion order of the Qls, stated in theorems 5 and 7.

We remark that the signs of cubature erkfz f) andE(Qf), Q = $,W, are
opposite, wherm andn are large enough, i.e. both two formuldg>f), | (Sf))
and two formulas(l(Zf),I(Wxf)) give lower and upper estimates of the integral
value, being the corresponding sequences of integraties,vhermandnincrease,
convergent to the integral to be calculated from below ancthfabove. P. J. Davis
and P. Rabinowitz in their comprehensive monograph on nicaléntegration refer
to this property as ‘bracketing’ property [16], p.54.

5 Final remarks

In this paper we studied cubature formulas based on B-spliith multiple knots,
having all supports included into the integration dom@if30, 32]. This is an advan-
tage with respect to other known ones [13,27,38], alwayedas B-splines, that
need also function evaluation points outside

Moreover such cubatures turn out to be comparable with stkieown in liter-
ature [19] and in case of symmetry of knots, and if necessamyaih, they provide
higher precision degree.

We remark that the proposed schemes could be used in the isahealuation
of 2D singular integrals, defined in the Hadamard finite pansg [12,13].

A deeper and theoretical study of the signEfQf), Q = $,W, and of the

Weightswi(js’Z) is an interesting problem, that we are considering.
Finally a possible suitably weighted means of such intégmaules can provide

more accurate formulas [33] and this could be a further stilbjebe investigated.

Acknowledgements The author is grateful to professor C. Dagnino and profeBsBablonrére for help-
ful discussions, useful comments and encouragements.
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