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Abstract. Incremental processing is relevant for language modeling,
speech recognition and language generation. In this paper we devise a
dynamic version of Tree Adjoining Grammar (DVTAG) that encodes a
strong notion of incrementality directly into the operations of the formal
system. After discussing the basic features of DVTAG, we address the
issue of building of a wide coverage grammar and present novel data on
English and Italian.

1 Introduction

Incrementality is a largely held assumption that constrains the language pro-
cessor to parse the input words from left to right, and to carry out a semantic
interpretation of the partial structures [1]. Most of the approaches to incremental
parsing assume some standard syntactic formalism (e.g. context-free grammar)
and address the issue of incrementality in the parsing algorithm [2]. An alter-
native approach (incrementality in the competence) is to encode incrementality
in the operations of a formal system. Competence and some performance issues
are addressed by the same model, derivation and parsing share the same mech-
anism, and we can use the two terms interchangeably (we can generically talk
of a syntactic process, cf. [3]).

The detailed specification of the incremental syntactic process is often addressed
by assuming a parsimonious version of incrementality that we can call strong con-
nectivity [4]. Strong connectivity constrains the syntactic processor to maintain
a fully connected structure throughout the whole process and is supported by
a large amount of psycholinguistic evidence [5, 6] as well as linguistic facts [7].
The syntactic process consists in attaching each word from left to right to the
existing unique structure, called the left-context, that spans the previous words
in the string.

Tree Adjoining Grammars (TAG) is a well known family of formalisms. Re-
cently the results of some psycholinguistic experiments have suggested that the
adjoining mechanism of TAG can be used to fulfill the to the strong connectivity
hypothesis (adjoining mechanism hypothesis) [6].

A natural way of viewing the syntactic process is a dynamic system, that is a sys-
tem that evolves in time through a number of steps. A dynamic grammar views
the syntactic process as a sequence of transitions between adjacent states .S;_1
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Fig. 1. The DVTAG derivation of the sentence John loves Mary madly.

and S; while moving from left to right on the string of terminals [8]. Thus, it nat-
urally fulfills the incrementality in the competence and the strong connectivity
hypotheses. In this paper, we describe a constituency based dynamic grammar,
called Dynamic Version of TAG (DVTAG), that fulfills the hypotheses of incre-
mentality in the competence, strong connectivity, adjoining mechanism. DVTAG
is TAG-related, since it shares some basic properties with LTAG formalism, i.e.
the extended domain of locality, the lexicalization and the adjoining mechanism
[9].

The focus of the paper is on the applicability of the formalism into a realistic
context. In particular, we build two wide coverage DVTAGs for English and
Italian respectively, through extraction from treebank.

2 LTAG, Dynamic grammars and DVTAG

In Fig. 1 we can see the DVTAG derivation of the sentence John loves Mary
madly. Like LTAG [10], a Dynamic Version of Tree Adjoining Grammar (DV-
TAG) consists of a set of elementary trees, divided into initial trees and auxiliary
trees, and attachment operations for combining them. Lexicalization is expressed
through the association of a lexical anchor with each elementary tree. With the
aim to consider the lexical dependencies between the lexical items, each node
in the elementary trees is augmented with a feature indicating the lexical head
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Fig. 2. The DVTAG derivation of the sentence Bill often pleases Sue.

that projects the node. The head variable is a variable in logic terms: _vg will
be unified with the constant loves in the derivation of Fig. 1. The derivation pro-
cess in DVTAG builds a constituency tree by combining the elementary trees via
some operations that are illustrated below. DVTAG implements the incremental
process by constraining the derivation process to be a series of steps in which an
elementary tree is combined with the partial tree spanning the left fragment of
the sentence. The result of a step is an updated partial structure. Specifically,
at the processing step i, the elementary tree anchored by the i-th word in the
sentence is combined with the partial structure spanning the words from 1 to
1— 1 positions; the result is a partial structure spanning the words from 1 to 7. In
DVTAG the derivation process starts from an elementary tree anchored by the
first word in the sentence and that does not require any attachment that would
introduce lexical material on the left of the anchor (such as in the case that a
Substitution node is on the left of the anchor). This elementary tree becomes
the first left-context that has to be combined with some elementary tree on the
right. At the end of the derivation process the left-context spans the whole sen-
tence, and is called the derived tree: the last tree of Fig.1 is the derived tree for
the sentence John loves Mary madly.

In DVTAG we always combine a left context with an elementary tree, then



there are seven attachment operations. Standard LTAG adjoining is split into
two operations: adjoining from the left and adjoining from the right. The type
of adjoining depends on the position of the lexical material introduced by the
auxiliary tree with respect to the material currently dominated by the adjoined
node (which is in the left-context). In Fig. 1 we have an adjoining from the right
in the case of the left auxiliary tree anchored by madly, and in Fig. 2 we have an
adjoining from the left in the case of the left auxiliary tree anchored by often. In-
verse operations account for the insertion of the left-context into the elementary
tree. In the case of inverse substitution the left-context replaces a substitution
node in the elementary tree; in the case of inverse adjoining from the left and
inverse adjoining from the right, the left-context acts like an auxiliary tree, and
the elementary tree is split because of the adjoining of the left context at some
node!. In Fig. 1 we have an inverse substitution in the case of the initial tree
anchored by John. Finally, the shift operation either scans a lexical item which
has been already introduced in the structure or derives a lexical item from some
predicted preterminal node. The grounding of the variable _v; in Fig. 2 is an
example of shift.

It is important to notice that, during the derivation process, not all the nodes in
the left-context and the elementary tree are accessible for performing operations:
given the i — 1-th word in the sentence we can compute a set of accessible nodes
in the left-context (the left-context fringe); also, given the lexical anchor of the
elementary tree, that in the derivation process matches the ¢-th word in the
sentence, we can compute a set of accessible nodes in the elementary tree (the
elementary tree fringe). To take into account of this feature, the elementary tree
in DVTAG are dotted tree, i.e. a couple (v,4) formed by a tree v and an integer
i denoting the accessible fringe? of the tree [11].

The DVTAG derivation process requires the full connectivity of the left-context
at all times. The extended domain of locality provided by LTAG elementary trees
appears to be a desirable feature for implementing full connectivity. However,
each new word in a string has to be connected with the preceding left-context,
and there is no a priori limit on the amount of structure that may intervene be-
tween that word and the preceding context. For example, in a DVTAG derivation
of John said that tasty apples were on sale, the adjective tasty cannot be directly
connected with the S node introduced by that; there is an intervening NP symbol
that has not yet been predicted in the structure. Another example is the case
of an intervening modifier between an argument and its predicative head, like
in the example Bill often pleases Sue (see Fig.2). The elementary tree Bill is
linguistically motivated up to the NP projection; the rest of the structure de-
pends on connectivity. These extra nodes are called predicted nodes. A predicted
preterminal node is referred by a set of lexical items, that represent a predicted

! In [9] there is shown the importance of the inverse operation to obtain the correct
cross-serial dependencies in DVTAG.

2 In the picture we represent the integer using a dot. Note that fringe and dotted tree
are two concepts borrowed from parsing as a consequence of the dynamic nature of
DVTAG.



head. So, the extended domain of locality available in LTAG has to be further
extended. In particular, some structures have to be predicted as soon as there
is some evidence from arguments or modifiers on the left.

The notion of predicted nodes is crucial for the linguistic appealing of the for-
malism. Indeed DVTAG does not assume any linguistic theory a priori. Similar
to LTAG, DVTAG allows for the specification of a number of linguistic principles
licensing the elementary trees. The mathematical properties of TAG are a con-
sequence of the finiteness of the size of the lexicon, then the linguistic principles
have to guarantee (more or less implicitly) this property [12]. In DVTAG there
is no a priori limit on the number of predicted nodes, an then there is not a
limit on the size of the grammar. The notion of predicted nodes is also crucial
for the applicability of DVTAG a real context. Several works have showed that
the most important factor in TAG parsing complexity is the size of the grammar
[13] [14], and for a wide coverage DVTAG predicted nodes could produce a very
huge grammar [15]. Our hypothesis is that DVTAG respects the constraint on
the finiteness of the lexicon because there is an empirical limit on the number of
predicted heads. This limit can be obtained by the observation of the experimen-
tal data: several work confirmed that the number of predicted heads necessary
to guarantee the strong connectivity is relatively low [16,17].

In the next sections we address the problem of building a linguistic motivated
wide coverage DVTAG for English and Italian. As a side result of these exper-
iments we present a number of exploratory experiments that empirically verify
the hypothesis about the limited number of predicted heads.

3 Building a wide coverage DVTAG

A way to build a wide coverage grammar is to manually write the grammar.
For instance, XTAG [18] is an ongoing project to produce a hand written wide
coverage LTAG for English. In [15] and [11] we have discussed the possibility
of transforming the XTAG grammar into a DVTAG using a non-constrained
transformation. These experiments have showed the DVTAG produced in this
way is not adequate for an applicative context. The key point is the size of the
grammar. Indeed the non-constrained transformation did not take into account
any empirical principle to construct the DVTAG elementary trees. In this paper
we pursue a different approach.

As large size treebanks are becoming widely available (among others Penn tree-
bank [19]) a new way is the automatic extraction of wide coverage grammar from
a treebank [20,21]. Here we investigate on the possibility of extracting a large
DVTAG from a treebank. In particular, exploiting the formal relation between
LTAG and DVTAG (cf. [11]) we propose a two steps algorithm. In the first step
we use a LTAG extractor; in the second step we transform the LTAG produced
in the first step into a DVTAG. To pursue this strategy we use the LTAG extrac-
tors described in [20] and [14] for English and Italian respectively. Both these
extractors have been used to test the relation between the time complexity of
the parsing and the size of LTAG lexicon [13,14]. The Italian LTAG extractor



has been also used to test the relation between the coverage of extracted LTAG
and the genre of the extraction corpus [22].

In section 3.1 we briefly describe the basic issues of an algorithm to automatically
extract a LTAG from a treebank. In section 3.2 we define the left-association,
an operation that allows us to increase a DVTAG lexicon with new wider ele-
mentary trees. In section 3.3 we describe an algorithm to transform a LTAG
automatically extracted into a DVTAG based on the left-association. In section
3.4 and in section 3.5 we report some data for DVTAG automatically extracted
from an English treebank and from an Italian treebank respectively: we provide
an explorative analysis of this data with the aim to test the reliability of the
grammars produced.

3.1 Extracting a LTAG from a treebank

All the algorithms for automatic extraction of a LTAG from a treebank share a
basic feature. They produce a LTAG grammar that covers the treebank, and at
the same time they assign a derivation tree Dp to each tree T of the treebank
([20] [21]). Each derivation tree Dy contains all the elementary trees that the
algorithm extracts from each derived tree T'. The derivation trees Dp play a
key role in the definition of a probabilistic model for the treebank grammar
[23]. Now we describe the basic feature of the algorithm (henceforth LexTract)
proposed in [20] for the extraction of a wide coverage LTAG from Penn treebank.
A quite similar algorithm has been used for the extraction of a wide coverage
LTAG from an Italian dependency treebank [14]. LexTract can be essentially
described as a two steps procedure. In the first step, each constituency tree T' of
the treebank is converted into a set of elementary trees 47 ...y By using a head-
table and a modifier-table, the algorithm identifies the head and modification
relations between the nodes of constituency tree. The algorithm uses the head-
modifier annotation together with a set of prototypical tree templates (a sort of
extended projection skeletons) to extract a set of elementary trees that derives
the constituency tree. In the second step, using the elementary trees 7 ...yl
produced in the first step, each constituency tree T of the treebank is converted
into a derivation tree.

3.2 Left-association

The left-association takes as input two DVTAG elementary trees, called the
base tree and the raising tree respectively, and returns a new DVTAG el-
ementary tree, the raised tree®. The operation produces the raised tree by
grafting the base tree into the raising tree, and replacing the left-anchor of the
raising tree with a new head-variable. Left-association can be performed during
the parsing/derivation process (i.e. on-line, cf. [17]) or with the goal to extend

3 There are some similarities between left-association and the CCG type raising op-
eration [3], because in both cases some root category X is raised to some higher
category Y.
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Fig. 3. First step of the conversion from a LTAG to a DVTAG: each nodes is augmented
with a head variable.

the lexicon (i.e. off-line). In this paper we are exploring the consequences of
increasing the role of the competence grammar, then we use this operation off-
line. The raised tree produced by the left-association displays a larger number
of predicted nodes in comparison with the base tree. The raised tree has zero or
more predicted heads: the raised tree has one more predicted head that projects
a number of the predicted nodes in the raised tree (cf. Fig. 4).

3.3 Converting an automatically extracted LTAG into a DVTAG

The left-association can be used to transform an automatically extracted LTAG
into a DVTAG. For each tree T' in the treebank, we define a relation, called
left-corner relation, on the nodes belonging to Dr. We say that v; 7; are in the
left-corner relation if in Dy g is the left-most child of ~;, and if the root node
label of ~; is different from the root node label of ;. If two nodes ~;, v, of Dy
are in the left-corner relation, we use the left-association on the respective trees
to build a new DVTAG elementary tree.

Conversion algorithm

[step 1:] We extract the LTAG ~{...yI and the derivation Dy from T (i.e.
derived(D7) = T). We build the dotted trees (y{,0)...(yI,0) augmenting each
non terminal node in y; ¢ € 1..n with a head feature that contains the lexical
item projecting the node (Fig. 3).

[step 2:] To produce (d1,0)...{d,,,0) we apply the transitive closure of the left-
association on (71, 0)...(vx, 0).

The application of the transitive closure of left-association is subject to a clo-
sure condition. The sequence of raising tree in the transitive closure of the
left-association, applied to some base tree (J,0), has to respect the left-corner
relation.
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Fig. 4. Second step of the conversion from a LTAG to a DVTAG: iteration of the
left-association.

The adequacy of the closure condition is motivated by the presence of the ad-
joining operation, which factorizes recursion. So, adjoining should account for
repetitions of the root category outside of the left-association. But, since DV-
TAG respects the strong connectivity hypothesis, not all the cases of recursion in
LTAG derivation tree are generable in DVTAG also using the predicted nodes (cf.
[11]). Then, in some cases the generative power of the DVTAG produced with the
conversion algorithm is not equal to the generative power of the original LTAG
extracted. However, our final goal in this work is to provide an exploratory
analysis of a realistic DVTAG. In comparison with this task, we assume as a
working hypothesis that the difference on the generative power between LTAG
and DVTAG is not substantially relevant.

In the next sections we apply the conversion procedure described above to two
LTAG automatically extracted from an English and Italian treebanks respec-
tively. We compare the properties of the DVTAG extracted with the data re-
ported in [16], based on Connection Path Grammars (CPG). Similar to DVTAG,
CPG is a dynamic constituency grammatical formalism, but there are some cru-
cial differences between them. DVTAG uses linguistically motivated elementary
trees and uses adjoining to factorize recursion. In contrast, CPG uses elemen-
tary structures motivated uniquely by the constraint of strong incrementality.
However, similarly to DVTAG CPG includes the notion of predicted heads, and
then can be used as a baseline.

3.4 Extraction of an English DVTAG from Penn Treebank

By applying the LexTract* on the sections 02-21 of the Wall Street Journal part
of the Penn treebank II (39,832 sentences, 950,026 words), we have obtained

4 We wish to thank Fei Xia, that kindly let us to use her program.



# %
. 7 . DVPenn | DVPenn % .
of iterations Connection
.. dotted | dotted
of left-association paths
trees trees
0| 764,359 90.95 82,33
1 75,125 8.94 15,26
2 959 0.11 2,28
3 7 0.00 0.13

| Total]| 840,450] [ |

Table 1. Number of (non distinct) DVTAG elementary dotted trees with respect to
the number of left-associations for the DVPenn grammar.

# %
. 7 . DVPenn DVPenn # .
of iteration Connection
£ loft-association dotted dotted ths
of fett-assoclatio templates| templates pathis
0 4,947 41.13
1 6,329 52.63
2 743 6.18
3 7 0.06
| Total:]] 12,026] I 1,896]

Table 2. Number of DVTAG templates with respect to the number of left-associations
for the DVPenn grammar.

841,316 LTAG (non distinct) elementary trees®, corresponding to 5,268 (dis-
tinct) templates. The DVTAG conversion algorithm on these LTAG elementary
trees, produces a DVTAG (henceforth DVPenn) with 840,450 (non distinct) el-
ementary dotted trees corresponding to 12,026 (distinct) dotted templates. In
Table 1 we have reported the number of dotted trees with respect to the number
of left-association in DVPenn. Moreover we have reported the also the percent-
age of CPGs with respect to the number of headless as reported in [16]. Note
that we have used the percentage because in in [16] it has been used a fraction of
the WSJ of ~100,000 words: then their corpus is ten times smaller with respect
to corpus used in this experiment. Comparing the percentage of dotted trees in
DVPenn to the percentage of connection path in the CPG extracted from Penn,
we note that both the grammars have really few elementary structures with more
than two predicted heads (~0.001% and 0.13% for DVPenn and CPG respec-
tively). Moreover, most of the structures do not use predicted heads (90,95%
and 82,33% for DVPenn and CPG respectively). In Table 2 we have reported
the number of dotted templates with respect to the number of left-association

5 The number of elementary tree is different in comparison with the number of token
words because LexTract does not extract trees anchored by punctuations.
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2 i %

. . DVTUT |DVTUT .

of iterations Connection
.. dotted | dotted
of left-association paths
trees trees

0 37,382 92.39 82,33
1 3,059 7.56 15,26
2 22 0.05 2,28
3 0 0.00 0.13

| Total]| 40,463] [ |

Table 3. Number of DVTAG trees with respect to the number of left-association, for
the DVTUT grammar.

in DVPenn®. In this case, the maximum percentage of dotted templated (52,63
%) are left-associated only once. Also if the corpus used in [16] is smaller with
respect to our corpus, the total number of templates extracted is not really dif-
ferent for CPG, LTAG and DVTAG, 1,896 5,268 12,026 respectively. This fact
could suggest that the number of structures necessary to fulfill strong connectiv-
ity is not really huge, but more experiments on the properties of the extracted
grammars are necessary. For example to assess the quality of the grammars it is
necessary to test their coverage.

However the results of the experiment show that for the Penn treebank only
few dotted trees have more than two predicted heads. Moreover, this result is in
accord with a precedent test performed with connection path grammars [16]. In
the next section we replicate this experiment using an Italian treebank.

3.5 Extraction of an Italian DVTAG from TUT

The Turin University Treebank (TUT) is an ongoing project of the University of
Turin on the construction of a dependency style treebank for Italian [24]: each
sentence is semi-automatically annotated with dependency relations that form
a tree, and relations are of morphological, syntactic and semantic types. The
corpus is very varied, and contains texts from newspapers, magazines, novels
and press news. Its current size is 1,800 annotated sentences (40,470 words).
In order to extract the LTAG grammar, we have converted the TUT treebank
dependency format to a constituency format”, and then we have adapted the
LexTract algorithm described above (for the details of the algorithms see [14]).

We have used the DVTAG extraction algorithm by applying the TUT LTAG
extractor on the whole TUT corpus. From the 167 out 1800 sentences are dis-
carded because they represent linguistic constructions that the extractor is not
yet able to take into account. From the remanent 1683 sentences, the LTAG ex-
tractor produces (non distinct) 43,621 elementary trees corresponding to 1,212

6 In this measure we do not have the complete data for CPG.
" The constituency format is not yet compliant with the Penn treebank format
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# %
. #* . DVTUT | DVTUT #
of iterations Connection Path
. dotted dotted
of left-association templates

templates | templates
0 844 52.29
1 752 46.59
2 18 1.12

| Total:]] 1,614] I 1,896]

Table 4. Number of DVTAG templates with respect to the number of left-association,
for the DVTUT grammar.

(distinct) templates, while the DVTAG extractor produces 40,463 dotted trees
corresponding to 1,614 dotted templates (henceforth DVTUT grammar).

In Table 4, we have reported the number of templates with respect to the number
of left-association. The total number of dotted templates is 1,614: 844 are no left-
associated, 752 are left-associated only once, 18 are left-associated two times.
The percentage values for zero or one left-associations is quite close (52% vs.
46.59%), while the number of two times left-associated templates is very small
(1,12%). In the last raw of the table, we have compared the total number of
dotted templates with the total number of connection path type (i.e. template)
reported in [16]. Note that also if the size of the TUT is less than the half of the
corpus used in [16] (40,470 versus ~100,000 words respectively), the number of
templates is quite similar. However as well as for the experiment on the Penn
treebank, the results of this experiment are in accord with the results of [16].

4 Conclusions

In this paper we have provided the basic features of the DVTAG formalism. We
have analyzed the theoretical and applicative problems related to the notion of
predicted heads. Moreover, we have defined an algorithm to extract a DVTAG
from a treebank based on a generic LTAG extractor. We have used this algorithm
to produce two wide coverage DVTAGs for English and Italian. Analyzing these
grammars, as a side result we have found that the DVTAG elementary trees
extracted from the treebanks have very few predicted heads. In a future work
we want to extend the analysis of the extracted grammars taking into account
of their coverage [22].
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