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Abstract. Let ‘ > 3 be a prime. Fix a regular character w of F�
‘2 of order 4 ‘� 1, and an inte-

ger M prime to ‘. Let f 2 S2ðG0ðM‘2ÞÞ be a newform which is supercuspidal of type w at ‘. For
an indefinite quaternion algebra over Q of discriminant dividing the level of f, there is a local
quaternionic Hecke algebra T of type w associated to f. The algebra T acts on a quaternionic

cohomological module M. We construct a Taylor–Wiles system for M, and prove that T is
the universal object for a deformation problem (of type w at ‘ and semi-stable outside) of
the Galois representation �rrf over

�FF‘ associated to f; that T is complete intersection and that

the module M is free of rank 2 over T. We deduce a relation between the quaternionic con-
gruence ideal of type w for f and the classical one.

Mathematics Subject Classifications (2000). 11F80, (11G18, 11F33).
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Introduction

The fact that certain Hecke algebras are complete intersections and universal defor-

mation rings is a fundamental ingredient in Wiles’ proof of the modularity of semi-

stable elliptic curves over Q [36, 39].

Taylor and Wiles’ original construction makes use of the so-called ‘multiplicity

one’ result for the ‘-adic cohomology of the modular curve: namely the fact that this

cohomology is free of rank 2 over the Hecke algebra when localized at certain maxi-

mal ideals. This result generalizes a theorem of Mazur [21]. Its proof is based on the

q-expansion principle for classical modular forms. The Gorenstein property for the

Hecke algebra is known to follow from it.

However, some later refinements due to Diamond [10] and Fujiwara [13] give an

axiomatization of the Taylor–Wiles construction which allows one to prove that the

Hecke algebra is a universal deformation ring without assuming the multiplicity one

result. Furthermore, multiplicity one becomes a consequence of this construction.

As Diamond points out in [10], in addition to simplifying the arguments of Wiles

and Taylor and Wiles, this approach makes these methods applicable in situations
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where one cannot appeal a priori to a q-expansion principle or to the Gorenstein

property of the Hecke algebra, for instance, the case of Hilbert modular forms (trea-

ted by Fujiwara) or the case of quaternionic modular forms, arising from the co-

homology of Shimura curves. In [10], Diamond gives an application of his method

which produces multiplicity results for the ‘-adic cohomology of Shimura curves

arising from quaternion algebras unramified at ‘. Some multiplicity one results of

this kind were previously proved by Ribet in [25] by different methods. In his work,

Ribet also obtains negative results, i.e., cases where the cohomology fails to be free

over the Hecke algebra.

One of the main problems in dealing with Shimura curves arising from quaternion

algebras ramified at ‘ is that the Galois representations associated to the cohomol-

ogy of such curves are very ramified at ‘. In general, we cannot appeal to a theory

analogous to that of Fontaine and Laffaille which allows one to calculate the dimen-

sion of the tangent space of the local deformation functor at ‘. Therefore, the tech-

niques of Wiles and Taylor and Wiles are not applicable as they are.

However, for the case of representations arising from ‘-divisible groups over cer-

tain tamely ramified extensions of Q‘, the work of B. Conrad [4, 3] allows one to do

this calculation. The results of B. Conrad have already been used in [5] to prove the

modularity of some ‘-adic Galois representation (whose reduction modulo ‘ is

known to be modular) which are not semistable at ‘ but only potentially semistable.

A generalization of Conrad’s results has been recently obtained by Savitt [28].

In this paper, we combine the method of Diamond and Fujiwara with Conrad’s

result (as in [5]) to deal with the Hecke algebra acting on some local component

of the ‘-adic cohomology of Shimura curves ramified at ‘.

More precisely we fix a prime ‘ > 3. Let D0 be the product of an odd number of

primes, D ¼ ‘D0; N be a square-free integer, ðN;DÞ ¼ 1. Let B denote the indefinite

quaternion algebra over Q of discriminant D, and RðNÞ be an Eichler order of level

N in B.

We assume the existence of a new form f 2 S2ðG0ðND0‘2ÞÞ, associated to an auto-

morphic representation p of GL2ðAÞ coming, by Jacquet–Langlands correspon-

dence, from a representation p0 of B�
A . The local representation p0‘ is then

associated to a regular character w of RðNÞ
�
‘ =1þ u‘RðNÞ‘ ’ F�

‘2 , where u‘ is an uni-

formizer of B�
‘ . We suppose that the order e of w is 4 ‘� 1.

Let K be a finite extension of Q‘ containing Q‘2 and the eigenvalues of f, O be its

‘-adic integer ring, l a uniformizer ofO, k the residue field. For simplicity, we discuss

in this introduction the case where the group B� \ ðGLþ
2 ðRÞ �

Q
p RðNÞ

�
p Þ has not

elliptic elements (this depends on the congruence class mod 4 of primes dividing D
and N, see [38, IV.3.A] for the precise statement); in the general case, by an argument

of Diamond and Taylor [11] an auxiliary prime s can be added in the level. Let X

be the adelic Shimura curve associated to the compact open subgroupQ
p 6¼‘ RðNÞ

�
p � ð1þ u‘RðNÞ‘Þ of B�;1

A . The module H1ðX;OÞ is equipped with an

action of F�
‘2 and with an action of the Hecke algebra generated by the operators

Tp with p 6¼ ‘. The two actions commute. Then we can consider the sub-Hecke
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module H1ðX;OÞ
w on which F�

‘2 acts by the character w; we let Tw denote the image of

the Hecke algebra in the endomorphims of H1ðX;OÞ
w.

The form f determines a character Tw ! k whose kernel is a maximal ideal m of

Tw. We define M ¼ H1ðX;OÞ
w
m, T ¼ Tw

m.

Let r:Galð �QQ=QÞ ! GL2ðOÞ be the Galois representation associated to f, �rr the

semi-simplification of its reduction mod l. We assume that �rr is absolutely irreducible

and ramified at primes p dividing N. We impose the further conditions that

p2 6� 1mod ‘ if p is a prime dividing D0 such that �rr is unramified at p and that the

centralizer of �rrjG‘
is trivial. Under these hypotheses on �rr, we construct a Taylor–

Wiles system consisting of quaternionic cohomological modules, which allows one

to characterize T as the universal solution of a deformation problem for �rr and to

assert that T is complete intersection (Theorem 3.1). This construction provides also

the multiplicity one result for the module M. In order to define the right deformation

condition at ‘, we make use of the property of ‘being weakly of type w’ for a defor-

mation, introduced in [5]. At primes p dividing D0 such that �rr is unramified at p we

had to define a deformation condition which excludes deformations arising from

modular forms unramified at p; if p2 6� 1mod ‘ we found that an appropriate condi-

tion is given by

traceðrðF ÞÞ
2
¼ ð p þ 1Þ2 ð1Þ

for a lift F of Frobp in Gp. For a deformation to O=ln this condition is equivalent to

that of being of the ‘desired form’ in the sense of Ramakrishna [23, Section 3].

Let D1 be the set of primes p dividing D0 such that �rr is ramified at p. By an abuse of

notation, if S is a set of primes, we shall sometimes denote by S also the product of

the primes in this set.

In Section 4 we assume the existence of a newform g in S2ðG0ðD1‘
2ÞÞ supercuspidal

of type w at ‘ and such that �rrg ¼ �rr. In other words, we are assuming that the repre-

sentation �rr occurs in type w and minimal level. We choose a pair of disjoint finite sets

S1;S2 of primes p such that ‘=jpðp2 � 1ÞD1. We assume that D1 is not empty. We

slightly modify the deformation problem of �rr described above by imposing condition

1 for primes in S2 and allowing ramification at primes in S1; in this way we define a

deformation ring RS1;S2
and a local Hecke algebra TS1;S2

acting on the forms which

are supercuspidal of type w at ‘, special at each prime in S2 and congruent to gmod ‘.

By combining Theorem 3.1 with Theorem 5.4.2 of [5], we prove (Theorem 4.5) that

the natural map RS1;S2
! TS1;S2

is an isomorphism of complete intersections. Let h

be a newform in S2ðG0ðD1S2‘
2ÞÞ supercuspidal of type w at ‘ and congruent to

gmod ‘. Let yh;S1;S2
:TS1;S2

! O be the section associated to h and Zh;S1;S2
be the

corresponding congruence ideal. We show that

Zh;S1S2;; ¼
Y
p2S2

ypðhÞ

 !
Zh;S1;S2
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where ðypðhÞÞ is the ideal generated by the highest power ln of l such that rh is un-

ramified mod lnO. This ideal can be interpreted in terms of the group of components

of the fiber at p of the Néron model of the abelian variety associated to h, so that the

above formula gives a generalization of the main theorem of [26] and [33] in the ‘type

w’ context.

1. Shimura Curves and Cohomology

In this section, ‘ is a prime > 2.

Let D0 be a product of an odd number of primes, different from ‘. We put D ¼ ‘D0.

Let B be the indefinite quaternion algebra overQ of discriminant D. Let R be a maxi-

mal order in B. For a rational place v of Q we put Bv ¼ B �Q Qv; if p is a finite place

we put Rp ¼ R �Z Zp; BA denotes the adelization of B, B�;1
A the subgroup of finite

ideles. The reduced norm and trace in B will be noted n and t respectively; a ! ac is

the principal involution in B. For every rational place v ofQ not dividing D, we fix an
isomorphism iv:Bv �!

�
M2ðQvÞ, such that ipðRpÞ ¼ M2ðZpÞ, if v ¼ p is a finite place.

Let N be an integer prime to D. If p is a prime not dividing D we define

K 0
p ðNÞ ¼ i�1

p

a b

c d

� �
2 GL2ðZpÞ

���� c � 0modN

� �
;

K1
pðNÞ ¼ i�1

p

a b

c d

� �
2 K0

pðNÞ

���� a � 1modN

� �
:

For every p dividing N, let Kp be a subgroup of B�
p such that K1

pðNÞ � Kp � K 0
p ðNÞ.

Write U ¼
Q

pjN Kp. We define

V0ðN;UÞ ¼
Y
p 6jN

R�
p � U; V1ðN;UÞ ¼

Y
p 6jN‘

R�
p � U � ð1þ u‘R‘Þ;

where u‘ is a uniformizer of B�
‘ . For i ¼ 0; 1, we define also

FiðN;UÞ ¼ ðGLþ
2 ðRÞ � ViðN;UÞÞ \ B�;

where GLþ
2 ðRÞ ¼ g 2 GL2ðRÞ j det g > 0

� �
. There is an isomorphism

V0ðN;UÞ=V1ðN;UÞ ’ F�
‘2 ; ð2Þ

By this isomorphism F0ðN;UÞ=F1ðN;UÞ is identified with the subgroup G � F�
‘2 of

order ‘þ 1, namely the kernel of the norm from F�
‘2 to F�

‘ .

By strong approximation,

B�
A ¼ B�GLþ

2 ðRÞV0ðN;UÞ ¼
a‘�1

i¼1

B�GLþ
2 ðRÞtiV1ðN;UÞ;

where the ti’s are representatives in R�
‘ of R�

‘ =fa 2 R�
‘ jnðaÞ � 1mod ‘g ’ F�

‘ . Let

Kþ
1 ¼ R�SO2ðRÞ. We define the Shimura curves

X 0
0ðN;UÞ ¼ B�nB�

A=K
þ
1 � V0ðN;UÞ; X 0

1ðN;UÞ ¼ B�nB�
A=K

þ
1 � V1ðN;UÞ:

26 LEA TERRACINI



The curve X 0
1ðN;UÞ is not connected, since the reduced norm n: 1þ u‘R‘ ! Z�

‘ is not

surjective. Let H be the upper complex half-plane. The group GLþ
2 ðRÞ acts on H

by linear fractional transformations. There are isomorphisms (see for example [Pro-

position 6.1(i)])

X 0
0ðN;UÞ ’ H=F0ðN;UÞ; X 0

1ðN;UÞ ’
a‘�1

i¼1

H=F1ðN;UÞ:

We fix a character w:F�
‘2 !

�QQ� satisfying the following conditions:

wjF�
‘
¼ 1; ð3Þ

w2 6¼ 1: ð4Þ

Condition 4 means that w does not factor by the norm from F�
‘2 to. F

�
‘ .

We fix embeddings of �QQ in �QQ‘ and in C so that we can regard the values of w in

these fields.

Assume now that the group F0ðN;UÞ has no elliptic elements. Let Q‘2 denote the

unramified quadratic extension of Q‘, Z‘2 its ‘-adic integer ring.

Let K be a finite extension of Q‘2 . Let O be the ring of integers of K and l be a

uniformizer of O.

Consider the projection p:X 0
1ðN;UÞ ! X 0

0ðN;UÞ. The group F�
‘2 naturally acts on

H �ðX 0
1ðN;UÞ;OÞ via its action on X 0

1ðN;UÞ. The cohomology group H1ðX 0
1ðN;UÞ;OÞ

is also equipped with the action of Hecke operators Tp, for p 6¼ ‘ and diamond

operators hni for n 2 ðZ=NZÞ� (for details, see [16, Section 6 and Section 7] and

[37, Section 1.12]); if pjD0, then the Tp operator is the operator on cohomology

associated to the double coset V1ðN;UÞupV1ðN;UÞ, where up is a uniformizer of B�
p .

The Hecke action commutes with the action of F�
‘2 , since we do not have a T‘ opera-

tor. The two actions are O-linear. Since O contains the ‘2 � 1th roots of unity, and

jF�
‘2 j is invertible in O, the action of F�

‘2 decomposes according to the characters of

F�
‘2 . We denote by H1ðX 0

1ðN;UÞ;OÞ
w the sub-Hecke module of H1ðX 0

1ðN;UÞ;OÞ on

which F�
‘2 acts by the character w. It follows easily from the Hochschild–Serre

spectral sequence that

H �ðX 0
1ðN;UÞ;OÞ

w
’ H �ðX 0

0ðN;UÞ;OðwÞÞ;

where OðwÞ is the sheaf B�nB�
A �O=Kþ

1 � V0ðN;UÞ, B� acts on B�
A �O on the

left by a � ðg;mÞ ¼ ðag;mÞ and Kþ
1 � V0ðN;UÞ acts on the right by ðg;mÞ � v ¼

ðgv; wðv‘ÞmÞ. By translating to the cohomology of groups (see [17, Appendix]),

we obtain

PROPOSITION 1.1. H1ðX 0
1ðN;UÞ;OÞ

w
’ H1ðF0ðN;UÞ;Oð~wwÞÞ, where ~ww is the

restriction of w to G and Oð~wwÞ is O with the action of F0ðN;UÞ given by a 7! ~ww�1ðgÞa.

We give a description of the Hecke action on the group H1ðF0ðN;UÞ;Oð~wwÞÞ. Let
a 2 B�;1

A be such that the coset V0ðN;UÞaV0ðN;UÞ defines a Hecke operator. By

strong approximation, we can write a ¼ gQg1k, with gQ 2B�, g1 2GLþ
2 ðRÞ,
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k2V0ðN;UÞ. Decompose F0ðN;UÞgQF0ðN;UÞ ¼
‘

i F0ðN;UÞhi, with hi 2 B�. Let

x:F0ðN;UÞ ! Oð~wwÞ be a cocycle; for g 2 F0ðN;UÞ write hig ¼ gihjðiÞ; and define

xj½F0ðN;UÞgQF0ðN;UÞ�ðgÞ ¼
X

i

wðhiÞxðgiÞ:

Then it is easy to see that xj½F0ðN;UÞgQF0ðN;UÞ� is a cocycle and that the action of

F0ðN;UÞgQF0ðN;UÞ on H1ðF0ðN;UÞ;Oð~wwÞÞ corresponds to the action of

V1ðN;UÞaV1ðN;UÞ on H1ðX 0
1ðN;UÞ;OÞ

w.

Let V be a compact open subgroup of B�;1
A . We shall denote by S2ðVÞ the space of

weight 2 automorphic forms on B�
A which are right invariant for V (see, for example,

[16, Section 2]). If c: V ! C� is a character with finite order, we shall denote by

S2ðV;cÞ the subspace of S2ðkerðcÞÞ consisting of the forms j such that

jðgkÞ ¼ cðkÞjðgÞ for any k 2 V; g 2 B�
A .

We now describe the structure of the module H1ðX 0
1ðN;UÞ;KÞ

w over the Hecke

algebra. Let T
w
0ðN;UÞ be the O-algebra generated by the Hecke operators Tp,

p 6¼ ‘ and the diamond operators, acting on H1ðX 0
1ðN;UÞ;OÞ

w.

PROPOSITION 1.2. H1ðX 0
1ðN;UÞ;KÞ

w is free of rank 2 over T
w
0ðN;UÞ � K.

Proof. Let Tw
0ðN;UÞC denote the algebra generated over C by the operators Tp,

for p 6¼ ‘ and the diamond operators, acting on H1ðX 0
1ðN;UÞ;CÞw. It suffices to show

that H1ðX 0
1ðN;UÞ;CÞw is free of rank 2 over T

w
0ðN;UÞC. We consider the space

S2ðV1ðN;UÞÞ of weight 2 automorphic forms on B�
A which are right invariant for

V1ðN;UÞ. By the Matsushima–Shimura isomorphism ([20, x4], see also [16, x6])

H1ðX 0
1ðN;UÞ;CÞ ’ S2ðV1ðN;UÞÞ � S2ðV1ðN;UÞÞ

as Hecke and F�
‘2 -modules. By this isomorphism

H1ðX 0
0ðN; UÞ; CðwÞÞ �!

�
S2ðV0ðN; UÞ; wÞ � S2ðV0ðN; UÞ; �wwÞ;

where S2ðV0ðN;UÞ; wÞ is the subspace of S2ðV1ðN;UÞÞ consisting of forms j such that

jðgkÞ ¼ wðkÞjðgÞ for all g 2 B�
A and k 2 V0ðN;UÞ. The space S2ðV1ðN;UÞÞ decompo-

ses as a direct sum of V1ðN;UÞ-invariants of admissible irreducible representations of

B�
A : S2ðV1ðN;UÞÞ ¼

L
a W0

a. In an analogous way, there is a decomposition

S2ðG0ðD
0‘2Þ \ G1ðNÞÞ ¼

L
b Wb, where the Wb’s are subspaces of irreducible repre-

sentations of GL2ðAÞ, invariant by a suitable subgroup. The Jacquet–Langlands cor-

respondence [18] associates injectively a Wa to each W0
a. Observe that

(a) if p 6 jD, then the local components W 0
a;p and Wa;p are isomorphic;

(b) if pjD0 then W0
a;p and Wa;p are both one-dimensional, with the same eigenvalue of

Tp;

(c) Let ðW0
a;‘Þ

w be the subspace of W0
a;‘ on which V0ðN;UÞ acts as the character w;

if ðW0
a;‘Þ

w
6¼ 0 then it is one-dimensional (the corresponding representation

of B�
‘ has dimension 2; its restriction to R�

‘ has the form w� ws, where s is
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the nontrivial element in Galð �QQ‘2=Q‘Þ, see [14, Section 5]). On the other hand,

Wa;‘ is one-dimensional, with T‘ ¼ 0.

By the above analysis we see that there is an homomorphism

JL:S2ðV1ðN;UÞÞ�!S2ðG0ðD
0‘2Þ \ G1ðNÞÞ

satisfying JL  Tp ¼ Tp  JL, for every p 6¼ ‘ and JL  hni ¼ hni  JL for every

n 2 ðZ=NZÞ� (for details see [37, Section 1]). By c) the restriction of JL to the space

S2ðV0ðN;UÞ; wÞ is injective. Let Vw ¼ JLðS2ðV0ðN;UÞ; wÞÞ; then there is an isomorph-

ism between T
w
0ðN;UÞC and the Hecke algebra TðVwÞ generated over C by the Hecke

operators Tp with p 6¼ ‘ and hni acting on Vw. The latter is also equal to the Hecke

algebra generated by all the Hecke operators, because the forms occurring in Vw are

supercuspidal at ‘ and so T‘ ¼ 0 on Vw. In the same way we can deal with

S2ðV0ðN;UÞ; �wwÞ. The space Vw is a direct sum of Wa’s; therefore it is a direct sum-

mand of S2ðG0ðD
0‘2Þ \ G1ðNÞÞ as a Hecke module. We can assume that B contains

an element g such that i1ðgÞ¼
�

a 0

0 �a

�
for some a2R. Let g1 be the idèle having 1

in the finite part and g at the infinite place. Then there is an isomorphism of Hecke

modules S2ðV0ðN;UÞ;wÞ!
�

S2ðV0ðN;UÞ; �wwÞ, defined by j 7! �cc, where cðgÞ¼jðgg1Þ;

therefore V�ww’Vw. Since we know that H1ðX1ðND0‘2Þ;CÞ is free of rank 2 over the

Hecke algebra (see [31, Chap. III]), the result follows. &

2. The Deformation Problem

If K is a field, let �KK denote an algebraic closure of K; we put GK ¼ Galð �KK=KÞ. For a

local field K, Kunr denotes the maximal unramified extension of K in �KK; we put

IK ¼ Galð �KK=KunrÞ, the inertia subgroup of GK. For a prime p we put Gp ¼ GQp
,

Ip ¼ IQp
; we denote WQp

, WDQp
the Weil group and the Weil–Deligne group over

Qp respectively, cf. [34]. If r is a representation of GQ we write rp for the restriction

of r to a decomposition group at p.

In the rest of this paper, ‘ is a fixed prime > 3. We fix a character w:F�
‘2 !

�QQ�,

trivial over F�
‘ and such that

2 < ordðwÞ4 ‘� 1: ð5Þ

By composing with the reduction mod ‘ we can view w as a character of Z�
‘2 !

�QQ�

and extend it to Q�
‘2 by putting wð‘Þ ¼ �1; the above conditions imply that w is trivial

over Z�
‘ and that it does not factor through the norm from Q�

‘2 to Q�
‘ . By

[14, Section 3] we can associate to w a supercuspidal representation p‘ðwÞ of GL2ðQ‘Þ

having conductor ‘2 and trivial central character. Let WDðp‘ðwÞÞ be the two-dimen-

sional representation of the Weil–Deligne group at ‘ associated to p‘ðwÞ by local

Langlands correspondence. Here we normalize WDðp‘ðwÞÞ by following the conven-

tions in [2], but twisted by the character j j�1
‘ . Then we have, by [2, Section 11.3], WD

ðp‘ðwÞÞ ¼ Ind
WQ‘

WQ
‘2
ðwÞ � j j

�1=2
‘ .
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Let M 6¼ 1 be a square-free integer not divisible by ‘; and f ¼
P1

n¼1 anð f Þq
n be a

normalized newform in S2ðG0ðM‘2ÞÞ. Let pf ¼
N

vpf;v be the automorphic represen-

tation of GL2ðAÞ associated to f; then pf;p is special, for all pjM. We assume that f is

supercuspidal of type w at ‘, that is pf;‘ ¼ p‘ðwÞ, (see [37, Section 3.16] for some con-

ditions on M assuring that such a form f exists). Let rf:GQ �!GL2ð �QQ‘Þ be the Galois

representation associated to f and �rr:GQ �!GL2ð �FF‘Þ be its reduction modulo ‘.

We fix a factorization M ¼ ND0, where D0 is a product of an odd number of

primes. We impose the following conditions on �rr:

�rr is absolutely irreducible; ð6Þ

if pjN; then �rrðIpÞ 6¼ 1; ð7Þ

if pjD0 and p2 � 1mod ‘; then �rrðIpÞ 6¼ 1; ð8Þ

End �FF‘½G‘�
ð �rr‘Þ ¼ �FF‘: ð9Þ

Let K ¼ Kð f Þ be a finite extension of Q‘ containing Q‘2 and the eigenvalues for f of

all Hecke operators. Let O be the ring of integers of K, l be a uniformizer of O,

k ¼ O=ðlÞ be the residue field.

Let B denote the set of normalized newforms h in S2ðG0ðM‘2ÞÞ which are super-

cuspidal of type w at ‘ and whose associated representation rh is a deformation of

�rr. For h 2 B, let h ¼
P1

n¼1 anðhÞq
n be the q-expansion of h and let Oh be the O-alge-

bra generated in �QQ‘ by the Fourier coefficients of h. Let T denote the sub-O-algebra

of
Q

h2B Oh generated by the elements ~TTp ¼ ðapðhÞÞh2B for p6 jM‘.

Our next goal is to state a deformation condition of �rr which is a good candidate

for having T as universal deformation ring.

2.1. LOCAL DEFORMATIONS AT ‘: THE TYPE t

We use the terminology and the results in [5].

We can regard w as a character of I‘ by local classfield theory:

I‘ ¼ GalðQ‘=Q
unr
‘ Þ ! GalðQab

‘2 =Q
unr
‘ Þ �!

�
Z�

‘2 ! F�
‘2 !

w �QQ�
‘ :

Consider the type t ¼ w� ws: I‘ ! GL2ð �QQ‘Þ. The representation rf;‘ is of type t,
since by [27] or [5, Appendix B], WDðrf;‘Þ ’ Ind

WQ‘

WQ
‘2
ðwÞ � j j

�1=2
‘ , so that

WDðrf;‘ÞjI‘ ’ w� ws; moreover rf;‘ is Barsotti–Tate over any finite extension L of

Q‘ such that wjIL
is trivial.

Let e be the order of w. The kernel H of the above map is an open normal sub-

group of I‘, therefore it fixes a finite extension F 0 of Qunr
‘ . Then we have

F 0 ¼ F �Qunr
‘ for a finite extension F of Q‘ of ramification index e. Since

IF ¼ GalðQ‘=F
0Þ ¼ H, w is trivial over the inertia of F.

Then there is an ‘-divisible group G over OF with an action of O such that rf;‘jGF
is

isomorphic to the representation defined by the action of O½GF� on the Tate module
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L of G. By [24, Cor. 3.3.6] the group scheme G ¼ G½l� ’ G½‘�=lG½‘� is finite flat over
OF. Since �rr‘jGF

is isomorphic to GðQ‘Þ as a k½GF�-module, it is finite and flat over OF.

We show that G is connected. The canonical connected-étale sequence for G gives

rise to an exact sequence 0 ! L0
! L ! Lét

! 0 of free O-modules with an action

of GF, and IF acts trivially on Lét. Since rf;‘ is ramified, L0
6¼ 0. If rankOðL

0
Þ ¼ 1,

then by the exactness of the functor WD and the fact that WDðrf;‘jGF
Þ ¼

WDðrf;‘ÞjWF
, the representation WDðrf;‘ÞjWF

¼ ðInd
WQ‘

WQ
‘2
ðwÞ � j j

�1=2
‘ ÞjWF

would have

a one-dimensional subrepresentation of the form Zj j�1
‘ where Z is an unramified

character of WF with values in O�, a contradiction. Then L ¼ L0 and thus G is con-

nected, so that G is connected. A similar argument applied to the dual ‘-divisible

group GD shows that the Cartier dual of G is also connected.

Suppose first that �rr‘ is irreducible. In this case, by [30, Section 2],

�rr‘jI‘ ’ om
2 � o‘m

2 where o2 is a fundamental character of level 2, m � 1mod ‘� 1

and m 6� 0mod ‘þ 1. Replacing m by ‘m if necessary we can write em �

a þ ‘bmod ‘2 � 1, where 04 b4 a4 ‘� 1. By Raynaud’s classification [24, Théo-

rème 3.4.3] the OF-flatness condition gives the constraint a; b4 e. Since ej‘þ 1 we

have a � bmod e and thus either a ¼ b or b ¼ 0; a ¼ e. However, if a ¼ b; then

e � 2amod ‘� 1 and since a4 e < ‘� 1, e ¼ 2a, which implies ð‘� 1Þ=2 �

0mod ‘� 1, a contradiction. Therefore em � emod ‘2 � 1.

Suppose that �rr‘ is reducible. Then �rr‘�
�Zom �

0 Z�1on

�
where Z is an unramified

character of G‘, o is the cyclotomic character mod‘ and mþn�1mod‘�1. By

OF-flatness and the connectedness of G and its Cartier dual, Raynaud’s classification

gives ne� iþ1mod‘�1 with 04 i4e�2. If ‘ 6�1mod4 or e 6¼ ð‘þ1Þ=2 or n 6¼

ð‘�1Þ=2mod ‘�1 or ZðFrob‘Þ 6¼!1, then there is exactly one such representation

(up to isomorphism).

Suppose finally

‘ � 1mod 4; e ¼ m ¼
‘þ 1

2
; n ¼

‘� 1

2
; ZðFrob‘Þ ¼ !1:

Then �rr‘�Zo�n �
�o �

0 1

�
becomes flat over the ring of integers of a tamely ramified

extension of F, so that � must be peu ramifié by [30, Section 2.8]. Then we see that

in any case �rr‘ is included in the classification of [4, Theorem 0.1]. Let Rw
O;‘ be the

universal deformation ring for �rr‘ with respect to the property of being weakly of

type t; by [5, Corollary 2.2.2] there is a surjective homomorphism of local O-algebras

O½½X�� ! Rw
O;‘: ð10Þ

2.2. LOCAL DEFORMATIONS AT PRIMES DIVIDING M

Let g be a weight two eigenform with trivial character such that �rrg � �rr. By the

results of Deligne, Langlands and Carayol [2], the local component pg;p is special

of conductor p if and only if rg j Ip
�
�
1 �

0 1

�
with � ramified. Hence if �rrðIpÞ 6¼1
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we get a suitable deformation condition at p by requiring the restriction to Ip to be

unipotent (the condition of minimal ramification at p, [22]).

On the other hand, if �rrðIpÞ ¼ 1 we have to rule out those deformations of �rr arising

from modular forms which are not special at p.

We denote by CO the category of local complete Noetherian O-algebras with resi-

due field k. Let E:Gp ! Z�
‘ be the cyclotomic character and o:Gp ! F�

‘ be its reduc-

tion mod ‘. The following lemma gives a characterization of the deformations of �rrp

in the unramified case, if p2 6� 1mod ‘:

LEMMA 2.1. Let p be a prime such that ‘ 6 j pðp2 � 1Þ. Let �rr: Gp ! GL2ðkÞ be an

unramified representation. Assume that �rrðFrobpÞ¼!
�

p 0

0 1

�
. Then every deformation r

of �rr over an O-algebra A2CO is strictly equivalent to an upper triangular repre-

sentation r such that rðIpÞ�
�
1 �

0 1

�
.

Proof. Let mA be the maximal ideal of A. Since rðIpÞ � 1þmA, the wild inertia

group acts trivially. Let F be a lift of Frobp in Gp, s be a topological generator of

Itame
p . Since p 6� 1mod ‘ we see that r is strictly equivalent to a representation (which

we denote by r again) such that rðFÞ is diagonal: rðFÞ¼
�

a 0

0 b

�
with a�!p;

b�!1modmA. We prove that rðsÞ has the form
�
1 d
0 1

�
for some d2mA. By induction

on n write rðsÞ¼
�
1 dn

0 1

�
þNn, with Nn �0modmn

A, Nn ¼
�

xn yn

zn wn

�
. The relation

FsF�1�spmodIwildp implies

rðFsF�1Þ ¼
1 dn

0 1

� �
þ Nn

� �p

�
1 pdn

0 1

� �
þ pNn modmnþ1

A

because
�
1 dn

0 1

�
and Nn commute modmnþ1

A . The above equality, under the hypothesis

p2 6�1mod‘, gives xn;wn;zn 2mnþ1
A . &

By the previous lemma, every class of strict equivalence of deformations r of

�rrp over A with determinant E is determined by a pair of elements ðg; dÞ in mA,

given by

a ¼ !p þ g; b ¼ p=a; rðF Þ ¼
a 0
0 b

� �
; rðsÞ ¼

1 d
0 1

� �
;

satisfying

a 0
0 p=a

� �
1 d
0 1

� �
a�1 0
0 a=p

� �
¼

1 pd
0 1

� �
;

that is gd ¼ 0. Moreover, two deformations r1; r2 corresponding to the pairs ðg1; d1Þ
and ðg2; d2Þ respectively are strictly equivalent if and only if g1 ¼ g2 and

d2 ¼ ð1þ mÞd1, for some m 2 mA. Then we see that R0
p ¼ O½½X;Y��=ðXYÞ is the ver-

sal deformation ring of �rr. If we assume �rrp has been suitable diagonalized, then the

versal deformation rv over R0
p is such that
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rvðFÞ ¼
!p þ X 0

0 p=ð!p þ XÞ

� �
; rvðsÞ ¼

1 Y
0 1

� �
:

DEFINITION 2.2. Let p be a prime such that ‘ 6 jpðp2 � 1Þ and �rr is unramified at p.

We say that a deformation r of �rrjGp
over a O-algebra A 2 CO satisfies the sp-con-

dition if every homomorphism j:R0
p ! A associated to r has jðXÞ ¼ 0.

It is immediate to see that the sp-condition is equivalent to the condition that

traceðrðF ÞÞ
2
¼ ðp þ 1Þ2

for a lift F of Frobp in Gp.

Remark 2:3. There is some connection here with Ramakrishna’s work [23, Sec-

tion 3]. Though the application is quite different, a key role is played there by lifts of

�rrjGp
to quotients of WðkÞ satisfying the condition of being of the ‘desired form’,

which is equivalent to the sp-condition.

Remark 2:4. Suppose that pjD0 and �rr is unramified at p; then by condition 8,

p2 6� 1mod ‘. Let g be a modular form (weight 2, trivial Nebentypus) such that

�rrg;p � �rrp. If g is special at p then rg;p�c�
� E �
0 1

�
with an unramified quadratic

character c. Therefore rg;p satisfies the sp-condition. On the other hand, if g is not

special at p then by Lemma 2.1 it must be principal unramified at p. Then the

representation rg;p cannot satisfy the sp-condition: otherwise apðgÞ
2
¼ðpþ1Þ2, in

contradiction with the Ramanujan–Petersson conjecture, proved by Deligne.

In the hypotheses of the above remark, we consider the deformations of �rrp satisfy-

ing the sp-condition. This space includes the restrictions to Gp of representations

coming from forms in S2ðG0ðND0‘2ÞÞ which are special at p, but it does not contain

those coming from principal forms in S2ðG0ðND0‘2ÞÞ. The corresponding versal ring is

O½½X;Y��=ðX;XYÞ ¼ O½½Y��: ð11Þ

2.3. THE GLOBAL DEFORMATION CONDITION

We let D1 be the product of primes p jD0 such that �rrðIpÞ 6¼ 1, and D2 be the product

of primes p jD0 such that �rrðIpÞ ¼ 1.

DEFINITION 2.5. Let Q be a square-free integer, prime to M‘. We consider the

functor FQ from CO to the category of sets which associate to an object A in CO the

set of strict equivalence classes of continuous homomorphisms r: GQ ! GL2ðAÞ

lifting �rr and satisfying the following conditions:

(aQ) r is unramified outside MQ‘;

(b) if p jD1N then r j Ip
is unipotent;
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(c) if p jD2 then rp satisfies the sp-condition;

(d) r‘ is weakly of type t;
(e) detðrÞ is the cyclotomic character E:GQ ! Z�

‘ .

PROPOSITION 2.6. The functor FQ is representable.

Proof. By the hypothesis of absolute irreducibility of �rr, there is in CO the uni-

versal deformation ring ~RRQ of �rr with condition (aQ) [22, Section 20, Prop. 2 and

Section 21]. Then we can use Proposition 6.1 in [8] for checking the representability

of the deformation subfunctor FQ. Let F 0
Q be the functor corresponding to condi-

tions (aQ), (b), (e). We know that it is representable (see, for example, [22,

Section 29]). On the other hand one easily checks that the subset of deformations

having properties (c) and (d) in Definition 2.5 satisfies the representability criterion

in [8, Proposition 6.1]: then there is a closed ideal aQ of ~RRQ such that the ring

RQ ¼ ~RRQ=aQ represents the functor FQ in CO. &

Let RQ be the universal ring associated to the functor FQ. We put F ¼ F ;,

R ¼ R;.

3. Construction of a Taylor–Wiles System

We set D ¼ ‘D0; let B be the indefinite quaternion algebra over Q of discriminant D.
Let R be a maximal order in B.

It is convenient to choose an auxiliary prime s 6 jM‘; s > 3 such that no lift of �rr can

be ramified at s; such a prime exists by [11, Lemma 2]. With the notation of Section 1,

we put U ¼
Q

pjN K 0
p ðNÞ � K1

s ðs
2Þ, F0 ¼ F0ðNs;UÞ; it is easy to verify that the group

F0 has not elliptic elements.

There exists an eigenform ~ff in S2ðG0ðMs2‘2ÞÞ such that rf ¼ r ~ff and Ts
~ff ¼ 0.

By the Jacquet–Langlands correspondence, the form ~ff determines a character

T
w
0ðNs2;UÞ �! k sending the operator t in the class mod l of the eigenvalue of t

for ~ff. The kernel of this character is a maximal ideal m in T
w
0ðNs2;UÞ. We define

M ¼ H1ðX 0
1ðNs2;U Þ;OÞ

w
m: By combining Proposition 4.7 of [6.7] with the Jacquet–

Langlands correspondence we see that there is a natural isomorphism

T ’ T
w
0ðNs2;UÞm. Therefore by Proposition 1.2

M �O K is free of rank 2 over T�O K: ð12Þ

Since R is topologically generated by traces, the map R !
Q

h2B Oh has image T.

Thus there is a surjective homomorphism of O-algebras F:R�!T:

Our goal is to prove the following

THEOREM 3.1. ðaÞ R is complete intersection of dimension 1; ðbÞ F: R ! T is an

isomorphism; ðcÞ M is a free T-module of rank 2.

In order to prove Theorem 3.1, we shall apply the Taylor–Wiles criterion in the

version of Diamond [10] and Fujiwara [13].
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We shall prove the existence of a family Q of finite sets Q of prime numbers, not

dividing M‘, and of an RQ-module MQ for each Q 2 Q such that the system

ðRQ;MQÞQ2Q satisfies the following conditions:

(TWS1) For every Q 2 Q and every q 2 Q, q � 1mod ‘; for such a q, let Dq be the

‘-Sylow of ðZ=qZÞ� and define DQ ¼
Q

q2Q Dq. Let IQ be the augmentation

ideal of O½DQ�. Then RQ is a local complete O½DQ�-algebra and

RQ=IQRQ ’ R;

(TWS2) MQ is O½DQ�-free of finite rank a independent of Q;

(TWS3) for every positive integer m there exists Qm 2 Q such that q � 1mod ‘m for

any prime q in Qm;

(TWS4) r ¼ jQj does not depend on Q 2 Q;

(TWS5) for any Q 2 Q, RQ is generated by at most r elements as local complete

O-algebra;

(TWS6) MQ=IQMQ is isomorphic to M as R modules, for every Q 2 Q.

Then Theorem 3.1 will follow from the isomorphism criterion in [10, Theorem 2.1]

and [13, Theorem 1.2].

3.1. THE ACTION OF DQ ON RQ

Let Q be a finite set of prime numbers not dividing ND and such that

(A) q � 1 mod ‘; 8q 2 Q;

(B) if q 2 Q, �rrðFrobqÞ has distinct eigenvalues aq; bq contained in k.

Let ~aaq and ~bbq be the two roots in O of the polynomial X2 � aqð f ÞX þ q reducing to

aq; bq, respectively. Let Dq;DQ; IQ as in condition (TWS1) above. The ring RQ

defined in Section 2.3 is naturally equipped with a structure of O½DQ�-module. In fact

for every deformation r of �rr with determinant E and for every q 2 Q,

rjGq
�

xq 0

0 Ex�1
q

� �
ð13Þ

for some character xq such that �xxqðFrobqÞ ¼ aq, [36, Appendix, Lemma 7]. Let

wq: GQ ! Dq be the composite of the cyclotomic character modulo q:

GQ ! ðZ=qZÞ� and the projection on the ‘-part ðZ=qZÞ� ! Dq; we put

wQ ¼
Q

qjQ wq. The map Iq ! R�
Q, s 7! xqðsÞ, factors through wq: xq j Iq

¼ fq  wq j Iq
,

where fq is a character Dq ! 1þMRQ
([7], Corollary 3). Consider the character

~ff ¼
Q

qjQ f2
q: DQ ! R�

Q. Its O-linearization gives the structural map O½DQ� ! RQ.

PROPOSITION 3.2. There is a canonical isomorphism RQ=IQRQ ’ R.

Proof. The deformation associated to the quotient RQ ! RQ=IQRQ is unrami-

fied at every q 2 Q; properties (b)-(e) in Definition 2.5 are stable by quotients;
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therefore there exists a map R ! RQ=IQRQ which is the inverse of the evident map

RQ=IQRQ ! R. &

3.2. THE HECKE ALGEBRAS TQ

Let BQ denote the set of new forms h of level dividing MQ‘2 special at primes p

dividing M, supercuspidal of type w at ‘, such that �rrh � �rr and whose nebentypus

ch factors through the map ðZ=MQ‘2ZÞ� ! DQ. Let TQ denote the sub-O-algebra

of
Q

h2BQ
Oh generated by the elements ~TTp ¼ ðapðhÞÞh2BQ

for p 6 jMQ‘ and

ðchðnÞÞh2BQ
for n 2 DQ. Then TQ is naturally an O½DQ�-algebra.

PROPOSITION 3.3. There is a surjective homomorphism of O½DQ�-algebras

FQ: RQ ! TQ.

Proof. For each h in BQ, the Galois representation rh is a deformation of �rr, unra-
mified outside MQ‘ and such that detðrhðFrobpÞÞ ¼ chðpÞp, if p 6 jMQ‘. By Čebotarev,

detðrhÞ ¼ ðch  wQÞE. Define r0h ¼ ðch  w
�1=2
Q Þ � rh (since DQ is an ‘-group, the

square root makes sense). Then r0h is a deformation of �rr unramified outside MQ‘,

with determinant E. By the results of Deligne, Langlands and Carayol, if pjM, then

rhjGp
�

a�1ðch  wQÞE �

0 a

� �
;

where a is an unramified character, a2 ¼ ch  wQ, � ramified. Therefore r0h satisfies

conditions b) and c) in definition 2.5. Since wQjG‘
is unramified, the type of r0hjG‘

is

equal to the type of rhjG‘
; hence condition d) is fulfilled by r0h. By the universality

of RQ there exists an homomorphism of O-algebras FQ: RQ !
Q

h2BQ
Oh; since

RQ is generated by traces, the image of this homomorphism is in TQ. Again by

Deligne–Langlands–Carayol, if qjQ then

rhjGq
�

a�1ðch  wqÞE 0
0 a

� �
;

where a is unramified. Therefore FQ brings fqjIq
to w1=2q jIq

and so it is O½DQ�-linear

and surjective. &

3.3. DEFINITION OF THE MODULES MQ

If q 2 Q, we put

K 0
q ¼ a 2 R�

q jiqðaÞ 2
Hq �

qZq �

� �� �
;

where Hq is the subgroup of ðZ=qZÞ� consisting of elements of order prime to ‘. We

define

UQ ¼
Y

pjN
K0

pðNÞ � K1
s ðs

2Þ �
Y

qjQ
K 0

q; F0
Q ¼ F0ðNQs2;UQÞ;

VQ ¼
Y

pjNQ
K0

pðNQÞ � K1
s ðs

2Þ; FQ ¼ F0ðNQs2;VQÞ:
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Then FQ=F0
Q ’ DQ acts on H1ðF0

Q;Oð~wwÞÞ. Consider the Hecke algebras

T
w
0ðNQs2;UQÞ and T

w
0ðNQs2;VQÞ defined in Section 1. There is a natural surjection

sQ: T
w
0ðNQs2;UQÞ ! T

w
0ðNQs2;VQÞ. Since the diamond operator hni depends only

on the image of n in DQ, T
w
0ðNQs2;UQÞ is naturally an O½DQ�-algebra.

As in [6, Sect. 4.2] we see that there exists a unique eigenform ~ffQ 2 S2ðG0ðMQs2‘2ÞÞ

such that r ~ffQ
¼ rf; asð

~ffQÞ ¼ 0; aqð
~ffQÞ ¼

~bbq for qjQ.

By the Jacquet–Langlands correspondence, the form ~ffQ determines a character

yQ: T
w
0ðNQs2;VQÞ ! k, sending Tp to apð

~ffQÞmod l and the diamond operators to

1. We define

~mmQ ¼ keryQ; mQ ¼ s�1
Q ð ~mmQÞ; and MQ ¼ H1ðF0

Q;Oð~wwÞÞmQ
:

Then the map sQ induces a surjective homomorphism T
w
0ðNQs2;UQÞmQ

!

Tw
0ðNQs2;VQÞ ~mmQ

whose kernel contains IQðT
w
0ðNQs2;UQÞÞmQ

. By combining the

Jacquet–Langlands correspondence with the discussion in Section 4.2 of [6] we obtain:

PROPOSITION 3.4. There is an isomorphism of O½DQ�-algebras

TQ ’ ðT
w
0ðNQs2;UQÞÞmQ

sending ~TTp to Tp for each prime p not dividing MQs‘.

PROPOSITION 3.5. ðaÞ MQ is free over O½DQ�; ðbÞ MQ=IQMQ ¼ H1ðFQ;Oð~wwÞÞ ~mmQ
;

ðcÞ rkO½DQ�MQ does not depend on Q; ðdÞ There is an isomorphism of R-modules

MQ=IQMQ ’ M.

Proof. (a) We shall prove that H1ðF0
Q;Oð~wwÞÞ is free over O½DQ�. Remark that

HiðFQ;Oð~wwÞÞ ¼ HiðF0
Q;Oð~wwÞÞ ¼ 0 if i 6¼ 1: in fact H0 ¼ 0 since ~ww is nontrivial. By

[31, Props. 8.1 and 8.2], if G ¼ FQ or F0
Q, H2ðG;Oð~wwÞÞ ¼ O=I where I is the O-ideal

generated by ~wwðgÞ � 1 for all g 2 G. Since ~ww is not trivial and Imð~wwÞ consists of ‘2 � 1th

roots of unity, I ¼ O, so that H2ðG;Oð~wwÞÞ ¼ 0. Moreover, if i > 2;Hi ¼ 0, because

FQ and F0
Q have cohomological dimension 2, [29, Prop. 18.a]). Since

H 0ðF0
Q;K=Oð~wwÞÞ ¼ 0, H1ðF0

Q;Oð~wwÞÞ is free over O. Then it suffices to prove that

HiðDQ;H
1ðF0

Q;Oð~wwÞÞ ¼ 0 if i > 0 (see for example [1, VI.8.10]). Recall the Hochs-

child–Serre spectral sequence: E
p;q
2 ¼ HpðDQ;H

qðF0
Q;Oð~wwÞÞÞ ) HnðFQ;Oð~wwÞÞ; by the

previous considerations E
p;q
2 ¼ 0 if q 6¼ 1. Therefore Ep;q

1 ¼ E
p;q
2 . Since

HnðFQ;Oð~wwÞÞ ¼ 0 if n > 1, we obtain E
p;q
2 ¼ 0 if p > 0.

(b) We have MQ=IQMQ ¼ H0ðDQ;H
1ðF0

Q;Oð~wwÞÞÞmQ
. We have proved in (a) that

the DQ-module N ¼ H1ðF0
Q;Oð~wwÞÞ is cohomologically trivial; from the exact sequence

0 ! ĤH�1ðDQ;NÞ ! H0ðDQ;NÞ ! H0ðDQ;NÞ ! ĤH0ðDQ;NÞ ! 0

we deduce

H0ðDQ;NÞ ’ H0ðDQ;NÞ ¼ H0ðDQ;H
1ðF0

Q;Oð~wwÞÞÞ:

Again by the Hochschild–Serre spectral sequence the latter is isomorphic to

H1ðFQ;Oð~wwÞÞ. The trace map in the sequence is compatible with the Hecke operators,
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as is the map H1ðFQ;Oð~wwÞÞ ! H1ðF0
Q;Oð~wwÞÞ, so that, after localization, we get the

result.

(c) It is sufficient to show that the rank over O of the module MQ=IQMQ ¼

H1ðFQ;Oð~wwÞÞ ~mmQ
does not depend on Q. Let B0

Q be the set of forms in BQ with trivial

character. By Proposition 1.2

rankOH1ðFQ;Oð~wwÞÞ ~mmQ
¼ 2 dimKðT

w
0ðNQs2;VQÞ ~mmQ

�O KÞ ¼ 2jB0
Qj:

By 13 every form in B0
Q is principal at each q dividing Q; therefore it is unramified at

these places, by [19]. So these forms are Q-old; therefore B0
Q ¼ B and rankO

ðMQ=IQMQÞ ¼ rankOðMÞ.

(d) We show that if Q0 ¼ Q [ fqg there is an isomorphism of R-modules

MQ0=IQ0MQ0 ’ MQ=IQMQ. Let e 2 T
w
0ðNQ0s2;VQ0 Þ be the projection on the ~mmQ0-

component. We define a map of R-modules:

H1ðFQ;Oð~wwÞÞ ~mmQ
�!H1ðFQ0 ;Oð~wwÞÞ ~mmQ0

x ��! eðresFQ=FQ0 xÞ

By (c) and Nakayama’s lemma, it is an isomorphism if and only if its reduction

modulo l

F: H1ðFQ; kð~wwÞÞ ~mmQ
�! H1ðFQ0 ; kð~wwÞÞ ~mmQ0

is injective.

Notice that the restriction map resFQ=FQ0 is injective on H1ðFQ; kð~wwÞÞ, because

‘ 6 j q þ 1.

Let Zq be the idèle in B�
A defined by Zq;v ¼ 1 if v 6¼ q and Zq;q ¼ i�1

q

�
q 0

0 1

�
. By strong

approximation, write Zq ¼dqg1u with dq 2B�;g12GLþ
2 ðRÞ;u2 V0ðNQ0s2;VQ0 Þ. We

define a map

H1ðFQ;Oð~wwÞÞ �! H1ðFQ0 ;Oð~wwÞÞ

x ��! xjZq

as follows: let x be a cocycle representing the cohomology class x in H1ðFQ;Oð~wwÞÞ;
then xjZq is represented by the cocycle x0ðgÞ ¼ wðdqÞ � xðdqgd

�1
q Þ. It is straightforward

to see that Tpðx j ZqÞ ¼ ðTpðxÞ j ZqÞ if p 6 jMQ0‘, that Tqðx j ZqÞ ¼ q resFQ=FQ0 x, and that

TqðresFQ=FQ0 xÞ ¼ resFQ=FQ0 ðTqðxÞÞ � x j Zq.

Let x 2 H1ðFQ; kð~wwÞÞ ~mmQ
. Since Tq � aq 2 ~mmQ, there is a smallest integer n such that

ðTq � aqÞ
n
ðxÞ ¼ 0. By induction on n, we show that FðxÞ ¼ 0 implies x ¼ 0. If n ¼ 1

then x is an eigenvector for Tq. Then it is easy to see that

ðTq � bqÞðbqresFQ=FQ0 x � xjZqÞ ¼ 0 and ðTq � aqÞðaqresFQ=FQ0 x � xjZqÞ ¼ 0;

so that

FðxÞ ¼
1

bq � aq
ðbq resFQ=FQ0 x � xjZqÞ:
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Assume that bqresFQ=FQ0 x ¼ xjZq. Decompose the double coset FQdqFQ ¼
‘qþ1

i¼1

FQdqhi with hi 2 FQ. If g 2 FQ0 , we put dqhig ¼ gidqhjðiÞ, where gi 2 FQ. Then we have

high�1
jðiÞ 2 d�1

q FQdq \ FQ ¼ FQ0 . Let x be a cocycle representing x in Z1ðFQ; kð~wwÞÞ.
Then

ðTqxÞðgÞ ¼
X

i

wðhidqÞxðgiÞ ¼
X

i

wðhidqÞxðdqhigh�1
jðiÞd

�1
q Þ

¼
X

i

wðhiÞxjZqðhigh�1
jðiÞ Þ;

and the latter is cohomologous to bq

P
i wðhiÞxðhigh�1

j Þ. From the cocycle relation we

know that wðhiÞxðhigh�1
j Þ ¼ xðgÞ þ w�1ðgÞxðh�1

j Þ � xðh�1
i Þ. Since i 7! jðiÞ is a permuta-

tion of f1; . . . ; q þ 1g we find

ðTqxÞðgÞ ¼ bqðq þ 1ÞxðgÞ þ bq

�X
i

w�1ðgÞxðh�1
i Þ � xðh�1

i Þ

�
:

The sum on the right side is a coboundary, so that

resFQ=FQ0 Tqx ¼ 2bqresFQ=FQ0 x;

since q � 1mod ‘. This shows that aq � 2bq kills resFQ=FQ0 x. Since aq and bq are dis-

tinct mod ‘, aq � 2bq is a unit, so resFQ=FQ0 x ¼ 0 and thus x ¼ 0.

Suppose now the result to be true for n and ðTq � aqÞ
nþ1x ¼ 0 with FðxÞ ¼ 0. Then

eTqðxjZqÞ ¼ 0 and so eðxjZqÞ ¼ 0, since Tq 62 ~mmQ0 . Let y ¼ ðTq � aqÞx. Then

ðTq � aqÞ
n
ðyÞ ¼ 0 and FðyÞ ¼ FðTqðxÞÞ ¼ TqðFðxÞÞ þ eðxjZqÞ ¼ 0. By induction

hypothesis y ¼ 0, so that x is an eigenvector for Tq and the above argument shows

that x ¼ 0. &

3.4. CALCULATIONS ON SELMER GROUPS

Propositions 3.2 and 3.5 show that ifQ is a family of finite sets Q of primes satisfying

conditions (A) and (B), then conditions TWS1, TWS2 and TWS6 hold for the system

ðRQ;MQÞQ2Q. The existence of a family Q realizing simultaneously conditions

(TWS3), (TWS4), (TWS5) is proved by the same methods as in [6, Section 6 and

Theorem 2.49] or [7, Sections 4, 5]; we confine ourselves to show that in our situation

the dimensions of the cohomological subgroups defining the local conditions at

p jD2‘ allow one to apply that technique.

We let ad 0 �rr denote the subrepresentation of the adjoint representation of �rr over

the space of the trace-0 endomorphisms. Local deformation conditions (aQ), (b), (c),

(d) in Section 2.3 allow one to define for each place v of Q, a subgroup Lv of

H1ðGv; ad 0 �rrÞ, see [22, Section 23]. If p divides D2, Lp is the kernel of the restriction

map to H1ðhFi; ad 0 �rrÞ, for a lift F of Frobp in Gp. Then

. dimkLp ¼ 1 (formula 11)

. dimkH
0ðGp; ad 0 �rrÞ ¼ 1, because the eigenvalues of �rrðFrobpÞ are distinct, by

hypothesis 8.
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By Conrad’s result (formula 10),

. dimk L‘ ¼ 1; and

. dimkH
0ðG‘; ad 0 �rrÞ ¼ 0, because of hypothesis 9

Theorem 3.1 is then proved.

4. The Quotient between Classical and Quaternionic Congruence Ideals

Let D1 be a set of primes, disjoint from ‘. By an abuse of notation, we shall some-

times denote by D1 also the product of the primes in this set.

Let g be a newform in S2ðG0ðD1‘
2ÞÞ supercuspidal of type w at ‘. As above, let t be

the type t ¼ ðw� wsÞjI‘ . Let �rr ¼ �rrg: GQ ! k; k � �FF‘1 be the residue representation

associated to g and suppose that �rr is ramified at every prime in D1. In other words,

we are assuming that the representation �rr occurs with type t and minimal level. This

happens for example if the type t is ‘strongly acceptable’ for �rr in the sense of

Conrad, Diamond and Taylor [5, pp. 524–525 and Proposition 5.4.1].

We assume that the character w satisfies conditions (3) and (4) in Section 1, that �rr
is absolutely irreducible and that �rr‘ has a trivial centralizer.

Let D2 be a finite set of primes p, not dividing D1‘ such that p2 6� 1mod ‘ and

traceð �rrðFrobpÞÞ
2
� ðp þ 1Þ2 mod ‘. We let BD2

denote the set of new forms h of weight

2, trivial character and level dividing D1D2‘ which are special at D1, supercuspidal of

type w at ‘ and such that �rrh ¼ �rr. We choose an ‘-adic ring O with residue field k,

sufficiently large, so that every representation rh for h 2 BD2
is defined over O.

For every pair of disjoint subsets S1;S2 of D2 we denote by RS1;S2
the universal solu-

tion over O for the deformation problem of �rr consisting of deformations r satisfying

(a) r is unramified outside D1S1S2‘;

(b) if pjD1 then rjIp
is unipotent;

(c) if pjS2 then rp satisfies the sp-condition;

(d) r‘ is weakly of type t;
(e) detðrÞ is the cyclotomic character E:GQ ! Z�

‘ .

Let BS1;S2
be the set of newforms in BD2

of level dividing D1S1S2‘ which are special at

S2 and let TS1;S2
be the sub-O-algebra of

Q
h2BS1;S2

O generated by the elements
~TTp ¼ ðapðhÞÞh2BS1 ;S2

for p not in D1 [ S1 [ S2 [ f‘g. Since RS1;S2
is generated by traces,

we know that there exists a surjective homomorphism of O-algebras RS1;S2
! TS1;S2

.

Moreover, Theorem 5.4.2 of [5] shows that RS1;; ! TS1;; is an isomorphism of com-

plete intersections, for any subset S1 of D2 (In section 2.1 we verified that the type t is
acceptable for �rr; in [5] the further hypothesis that t is strongly acceptable for �rr is

made in order to prove that B; 6¼ ;, but we can do without it, since we are already

assuming the existence of g).
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If D1 6¼ 1, then each T;;S2
acts on a local component of the cohomology of a

suitable Shimura curve, obtained by taking an indefinite quaternion algebra of discri-

minant S2‘ or S2‘p for a prime p in D1. Therefore Theorem 3.1 gives the following

COROLLARY 4.1. Suppose that D1 6¼ 1 and that B;;S2
6¼ ;; then the map R;;S2

!

T;;S2
is an isomorphism of complete intersections.

If p 2 S2 there is a commutative diagram

RS1p;S2=p �! RS1;S2

# #

TS1p;S2=p �! TS1;S2

where all the arrows are surjections.

For every p dividing D2 the deformation over RD2;; restricted to Gp gives maps

R0
p ¼ O½½X;Y��=ðXYÞ �!RD2;; as explained in Section 2.2. The image xp of X and

the ideal ðypÞ generated by the image yp of Y in RD2;; do not depend on the choice

of the map. By an abuse of notation, we shall call xp; yp also the images of xp; yp

in every quotient of RD2;;. If h is a form in BD2;;, we denote by xpðhÞ; ypðhÞ 2 O the

images of xp; yp by the map RD2;; ! O corresponding to rh.

LEMMA 4.2 If h 2 BD2
and p jD2, then

ðaÞ xpðhÞ ¼ 0 if and only if h is special at p;

ðbÞ if h is unramified at p then ðxpðhÞÞ ¼ ðapðhÞ
2
� ðp þ 1Þ2Þ;

ðcÞ ypðhÞ ¼ 0 if and only if h is unramified at p;

ðdÞ if h is special at p, the order at ðlÞ of ypðhÞ is the greatest positive integer n such that

rhðIpÞ � 1 mod ln.

Proof. It is an immediate consequence of the discussion in Section 2.2. Statement

(b) follows from the fact that

apðhÞ ¼ traceðrhðFrobpÞÞ ¼ !p þ xpðhÞ þ
p

!p þ xpðhÞ
&

LEMMA 4.3. For every pair of disjoint subsets S1;S2 of D2 and for every p 2 S1

ðaÞ the map RS1;S2
! RS1=p;S2p has kernel ðxpÞ;

ðbÞ the map RS1;S2
! RS1=p;S2

has kernel ðypÞ.

Proof. The deformation over RS1;S2
=ðxpÞ satisfies the sp-condition at p; thus there

is a map RS1=p;S2p ! RS1;S2
=ðxpÞ; on the other hand the map RS1;S2

! RS1=p;S2p kills

xp and so it induces a map RS1;S2
=ðxpÞ ! RS1=p;S2p. By universality the two maps are

inverse each other. An analogous argument holds for assertion b), by replacing xp by

yp and the sp-condition by the condition of being unramified at p. &
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If h is a form in BS1;S2
then there is a character yh;S1;S2

: TS1;S2
! O corresponding

to h; we denote by ph;S1;S2
: RS1;S2

! O the composition of yh;S1;S2
with the map

RS1;S2
! TS1;S2

and by Ph;S1;S2
the kernel of ph;S1;S2

.

LEMMA 4.4. Suppose that p divides S1 and h belongs to BS1=p;S2p. Then

lengthO
Ph;S1;S2

ðPh;S1;S2
Þ
2

 !
4 lengthO

Ph;S1=p;S2p

ðPh;S1=p;S2pÞ
2

 !
þ lengthO

O
ðypðhÞÞ

� �
:

Proof. There is a surjective homomorphism

j:
Ph;S1;S2

ðPh;S1;S2
Þ
2
!

Ph;S1=p;S2p

ðPh;S1=p;S2pÞ
2

induced by RS1;S2
! RS1=p;S2p. By point a) of Lemma 4.3 the kernel of j is the

O-module generated by the image ~xxp of xp in Ph;S1;S2
=ðPh;S1;S2

Þ
2. We choose a map

jp: R0
p ’ O½½X;Y��=ðXYÞ ! RS1;S2

associated to the restriction to Gp of the univer-

sal deformation over RS1;S2
. Let Pp ¼ j�1

p ðPh;S1;S2
Þ be the kernel of ph;S1;S2

 jp and

let ~XX be the image of X in Pp=P2
p. Then O ~XX maps surjectively on O ~xxp via jp. We put

a ¼ ph;S1;S2
 jpðYÞ 2 O, so that ðaÞ ¼ ðypðhÞÞ; then Pp ¼ ðX;Y � aÞ and P2

p ¼

ðX2; ðY � aÞ2; aXÞ. The O-module O½½X;Y��=ðXYÞ is isomorphic to

XO½½X�� �O½½Y��; by this isomorphism Pp is sent on XO½½X�� � ðY � aÞO½½Y�� and

P2
p on XI � ðY � aÞ2O½½Y��, where I ¼ ða;XÞ is the O½½X��-ideal consisting of series f

with fð0Þ 2 ðaÞ. Thus, as O-modules, O ~XX ’ O½½X��=I ’ O=ðaÞ and therefore

lengthOðO ~xxpÞ4 lengthOðO=ðypðhÞÞÞ. &

We now define the congruence ideal of h relatively to BS1;S2
as the O-ideal:

Zh;S1;S2
¼ yh;S1;S2

ðAnnTS1 ;S2
ðker yh;S1;S2

ÞÞ:

It is known that Zh;S1;S2
controls congruences between h and linear combinations of

forms different from h in BS1;S2
.

THEOREM 4.5. Suppose D1 6¼ 1 and D2 as above. Then

ðaÞ B;;D2
6¼ ;; and for every subset S � D2

ðbÞ the map RS;D2=S ! TS;D2=S is an isomorphism of complete intersections;

ðcÞ for every h 2 B;;D2
, Zh;S;D2=S ¼ ð

Q
pjS ypðhÞÞZh;;;D2

.

Proof. By induction on jD2j. If D2 is empty statement (a) is true by the hypothesis

B;;; 6¼ ;, statement (b) is the minimal case of Theorem 5.4.2 in [5] and (c) is tau-

tological. Assume now the result to be true for jD2j4 n and suppose that

jD2j ¼ n þ 1. Choose a prime p in D2 and define Q ¼ D2=p. Let h be a form in B;;Q,

whose existence is assured by induction hypothesis. Then
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Zh;D2;;
¼ ðxpðhÞÞZh;Q;; ¼ xpðhÞ

Y
qjQ

yqðhÞ

 !
Zh;;;Q: ð14Þ

Because of the characterization of xpðhÞ given in Lemma 4.2, the first equality above

follows from [5, Cor. 1.4.3 and Section 5.5]; the second one holds by inductive

hypothesis.

For an element t in Annðker yh;p;QÞ, let ~tt be a lift of t in TD2;;. Lemma 4.2c) implies

that
Q

qjQ yq annihilates kerðTD2;; ! Tp;QÞ so that ~tt
Q

qjQ yq 2 Annðker yh;D2;;Þ, and

Zh;p;Q

Y
qjQ

yqðhÞ

 !
� Zh;D2;;

: ð15Þ

By 14 and 15 we obtain Zh;p;Q � ðxpðhÞÞZh;;;Q and we know that xpðhÞ is not invertible

in O; thus the map Tp;Q ! T;;Q has a non trivial kernel, that is B;;D2
is not empty

and (a) is proved.

We prove (b) and (c) by induction on jSj. Suppose S ¼ ;; we know by a) that

B;;D2
6¼ ;; then the hypothesis D1 6¼ 1 and Corollary 4.1 imply b); c) is tautological.

Suppose now the results being true for S and let r 2 D2nS. By inductive hypothesis

(on S and D2 respectively) we know that the maps RS;D2=S �!TS;D2=S and

RS;D2=Sr �!TS;D2=Sr are isomorphisms of complete intersections. Consider the fol-

lowing surjections

a:RSr;D2=Sr �!TSr;D2=Sr

b:TSr;D2=Sr �!TS;D2=S ’ RS;D2=S

g:TSr;D2=Sr �!TS;D2=Sr ’ RS;D2=Sr:

Since BSr;D2=Sr is the disjoint union of BS;D2=S and BS;D2=Sr, and since kerðg  aÞ ¼ ðyrÞ

by Lemma 4.3 we have ðyrÞ ¼ ker g ¼ Annðker bÞ. Let h be a form in BS;D2=S. Then

ðyrðhÞÞZh;S;D2=S � Zh;Sr;D2=Sr (see the proof of 15 above). We claim that this inclusion

is in fact an equality: suppose that t 2 Annðker yh;Sr;D2=SrÞ; then t belongs to

Annðker bÞ ¼ ðyrÞ; write t ¼ cyr, with c in TSr;D2=Sr. For every form g 2 BS;D2=S differ-

ent from h we have tg ¼ 0 and yrg 6¼ 0, thus cg ¼ 0. Then bðcÞ 2 Annðker yh;S;D2=SÞ

and so yh;Sr;D2=SrðcÞ 2 Zh;S;D2=S. Therefore

Zh;Sr;D2=Sr ¼ ðyrðhÞÞZh;S;D2=S; for every h 2 BS;D2=S: ð16Þ

We are now ready to prove b); according with Criterion I of [9] the map a is an

isomorphism of complete intersections if and only if

lengthO
Ph;Sr;D2=Sr

ðPh;Sr;D2=SrÞ
2

 !
4 lengthO

O
Zh;Sr;D2=Sr

 !
:

By applying successively Lemma 4.4, point b) of the inductive hypothesis and equal-

ity 16 we obtain
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lengthO
Ph;Sr;D2=Sr

ðPh;Sr;D2=SrÞ
2

 !
4 lengthO

Ph;S;D2=S

ðPh;S;D2=SÞ
2

 !
þ lengthO

O
ðyrðhÞÞ

� �

4 lengthO
O

Zh;S;D2=S
ðyrðhÞÞ

 !

4 lengthO
O

Zh;Sr;D2=Sr

 !
:

Now we prove c): if h 2 B;;D2
, then the identity 16 combined with the inductive

hypothesis gives Zh;Sr;D2=Sr ¼ ðyrðhÞ
Q

pjS ypðhÞÞZh;;;D2
. &

Remark 4:6: Statement (a) in Theorem 4.5 determines some ‘nonoptimal levels’

(in the sense of [12]) for which �rr is modular of type w at ‘ and weight two.

If we combine point (c) of Theorem 4.5 to the results in Section 5.5 of [5] we obtain:

COROLLARY 4.7. Let h 2 BS1;S2
. Then

Zh;D2;; ¼
Y

pj
D2

S1S2

xpðhÞ
Y
pjS2

ypðhÞZh;S1;S2
:

Remark 4:8: Let h be a weight two eigenform with trivial character, which is

p-new for a prime p such that ‘ 6 j pðp2 � 1Þ. Let O0 be the ring generated over Z by the

Fourier coefficients of h, K0 its quotient field, and let ~OO0 be the integral closure of O0

in K0. By the work of Shimura [32], there is an Abelian variety A over Q associated

to h, of dimension equal to ½K0:Q�, such that O0 � End ðAÞ.

LEMMA 4.9. There exists an abelian variety ~AA over Q, isogenous to A, such that
~OO0 � End ð ~AAÞ.

Proof. Let f 2 End0ðAÞ ¼ End ðAÞ �Q be an element in ~OO0. Then f satisfies a

relation of the form fk
¼ ak�1f

k�1
þ � � � þ a0 with a0; . . . ; ak�1 2 O0. Put J ¼ fa 2

O0jaf; . . . ; af
k�1

2 O0g; then J is a nonzero ideal of O0, Jf � J and A½J� is finite.

We define A0 ¼ A=A½J�; it is a consequence of Grotendieck’s results on quotients of

group schemes (see [35, Theorem 3.4 and Section 3.5]) that this quotient is an

Abelian variety, defined over Q, with an action of O0 that the projection A ! A0

is an isogeny defined over Q and O0-linear. We show that f 2 End ðA0Þ. Let x be a

non zero element in O0 such that xf 2 O0. Let P 2 A0 and choose Q 2 A0 such that

xQ ¼ P. Define fðPÞ ¼ ðxfÞðQÞ; it is immediate to see that this definition does not

depend on the choice of x and Q, and that O0½f� � End ðA0Þ. By induction on the

number of generators of ~OO0 as an O0-algebra, we deduce the result. &

The ‘-adic Tate module T‘ð ~AAÞ is a free Z‘ �Z
~OO0-module of rank 2 and

M ¼ T‘ð ~AAÞ �
Z‘� ~OO0

O is an O-integral model for rh. Assume that the representation
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�rrh over k is absolutely irreducible; then up to homotheties there is a unique O-lattice

stable for GQ in the space of rh. Therefore the order at ðlÞ of ypðhÞ is the greatest

exponent n0 such that Ip acts trivially over M �O O=ðln0 Þ.

Since h is special at p, A and ~AA have multiplicative reduction at p: there is an exact

sequence of ðZ‘ � ~OO0Þ½Ip�-modules

0 ! L1 ! T‘ð ~AAÞ ! L2 ! 0 ð17Þ

where L1 ¼ T‘ð ~AAÞ
Ip and Ip acts trivially over L1 and L2. Let Fpð ~AAÞ be the group

of components of the fiber at p of the Néron model of ~AA. It is shown in

[15, Section 11] that Fpð ~AAÞ �Z Z‘ is isomorphic to the torsion part of

H1ðIp;T‘ð ~AAÞÞ, that is to the cokernel of the coboundary map d:L2 ! Hom ðIp;L1Þ

associated to sequence 17.

Since O is flat over Z‘ � ~OO0, we can tensor sequence 17 with O over Z‘ � ~OO0 and

get a sequence of O½Ip�-modules

0 ! M1 ! M ! M2 ! 0: ð18Þ

Then Fpð ~AAÞ � ~OO0
O ’ cokerðd0Þ where d0: M2 ! HomðIp;M1Þ is the coboundary

map associated to sequence 18. On the other hand, it is immediate to see that

cokerðd0Þ is a cyclic O-module whose annihilator is ðln0 Þ ¼ ðypðhÞÞ. Therefore we

obtain the formula

O=ðypðhÞÞ ’ Fpð ~AAÞ � ~OO0
O: ð19Þ

Now let h be a newform in S2ðG0ðMÞ;QÞ where M ¼ DN is the product of two rela-

tively prime integers D and N and D is the discriminant of an indefinite quaternion

algebra B over Q. Let XD
0 ðNÞ be the Shimura curve associated to B and to an Eichler

order of level N in B. Let E be the elliptic curve associated to h and let dðEÞ; dDðEÞ
denote the degrees of parametrization of E by X0ðMÞ and XD

0 ðNÞ respectively; under

the hypothesis of the irreducibility of �rrh, the main theorem in [26] and [33] implies

that

ord‘ðdðEÞÞ ¼ ord‘ dDðEÞ �
Y
pjD

cpðEÞ

 !
; ð20Þ

where cpðEÞ ¼ jFpðEÞj. If ‘ 6 jM then the ideal generated by dðEÞ in Z‘ is the anni-

hilator of the Z‘-module of congruence of h with respect to forms in S2ðG0ðMÞÞ,

cf. [40, Theorem 3]. Therefore by equality 19 we can regard Corollary 4.7 as an ana-

logue of formula 20 (locally at ‘) in the ‘type w’ context.
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formes automorphes, I, Publications Mathématiques Univ. Paris VII, 1978 pp. 37–77.
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J. 54 (1987), 179–230.

31. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami

Shoten and Princeton Univ. Press, 1971.
32. Shimura, G.: On the factors of the jacobian variety of a modular function field, J. Math.

Soc. Japan 25 (1973), 523–544.

33. Takahashi, S.: Degrees of parametrizations of elliptic curves by modular curves and
Shimura curves, Phd thesis, University of California, Berkeley, 1998.

34. Tate, J.: Number-theoretic background. In: Automorphic Forms, Representations, and
L-Functions, Proc. Sympos. Pure Math. 33, Springer, New York, 1979, pp. 3–26.

35. Tate, J.: Finite flat group schemes. In: G. Cornell, H. Silverman, and G. Stevens (eds),
Modular Forms and Fermat’s Last Theorem, Springer, New York, 1997, pp. 121–154.

36. Taylor, R. and Wiles, A.: Ring-theoretic properties of certain Hecke algebras, Ann. of

Math. (1995), 553–572.
37. Terracini, L.: Groupes de cohomologie de courbes de Shimura et algèbres de Hecke
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