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Inverse cascade in Charney-Hasegawa-Mima turbulence

G. Boffetta
1,2

, F. De Lillo
1 and S. Musacchio

1,2

1 Dipartimento di Fisica Generale, Università di Torino
Via Pietro Giuria 1, 10125 Torino, Italy
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PACS. 47.27.Eq – Turbulence simulation and modeling.

PACS. 52.35.Ra – Plasma turbulence.

PACS. 92.60.Ek – Convection, turbulence, and diffusion.

Abstract. – The inverse energy cascade in the Charney-Hasegawa-Mima turbulence is in-
vestigated. The Kolmogorov law for the third-order velocity structure function is derived and
shown to be independent of the parameter λ, at variance with the energy spectrum, as shown
by high-resolution direct numerical simulations. In the asymptotic limit of strong rotation,
λ → ∞, the Kolmogorov constant is found to be Cλ � 11 while coherent vortices are observed
to form at a dynamical scale which slowly grows with time. These vortices form an almost
quenched pattern and induce a strong deviation form Gaussianity in the velocity field.

The existence of an inverse cascade is the most remarkable property of two-dimensional
turbulence. It was predicted by Kraichnan [1] for Navier-Stokes equation: as a consequence of
inviscid enstrophy conservation, energy is forced to flow to large scales. The inverse cascade
can be sustained only in the presence of an external forcing injecting energy at a characteristic
scale into the system. At scales larger than the forcing the turbulent flow is essentially random
with Gaussian velocity difference statistics following Kolmogorov scaling [2]. Thus, in the
presence of small-scale forcing, the inverse energy cascade prevents the formation of the large-
scale vorticity coherent structures observed in the case of decaying turbulence [3].

Large-scale coherent structures in the presence of forced inverse cascade have been observed
only in the presence of a characteristic scale breaking scale invariance. A well-known example is
the so-called Bose-Einstein condensation, when the energy accumulates at the largest available
scale [4] forming vortices at the system size.

Another example of vortex formation is the quasi-crystallization phenomenon observed in
the Charney-Hasegawa-Mima (CHM) turbulence, a paradigm for both geostrophic motion in
planetary atmospheres [5] and drift-wave turbulence in a magnetically confined plasma [6].
For the stream function ψ(x, t) the CHM equation is written as

∂

∂t
(∇2ψ − λ2ψ) + J(∇2ψ,ψ) = ν∇4ψ + f , (1)
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where J denotes the Jacobian, ν is a damping coefficient (viscosity in the Charney model)
and f represents a forcing term. In this case, vortices have been observed to form, in a quasi-
crystal structure, at the intrinsic scale 1/λ, corresponding to the Rossby deformation radius
in the atmosphere [7] or to the effective ion Larmor radius in plasma [8].

In this letter we focus on dynamics on scales much larger than λ−1. In this regime there
is no intrinsic scale involved in the evolution of the system, which nevertheless exhibits the
formation of strong vortices. In this case we observe that the scale of vortices is a dynamical
one which increases in time as a consequence of vortex merging, similar to what observed in
decaying turbulence [9, 10]. The characteristic time of evolution slows down leading, in the
limit of large Reynolds numbers, to a disordered pattern of quenched vortices. Despite the
presence of strong vortices, we find that the two-dimensional 3/2 Kolmogorov law for the third-
order velocity structure function holds, independently of the value of λ. As a consequence,
the kinetic-energy spectrum follows Kolmogorov scaling but with a different constant with
respect to the Navier-Stokes turbulence.

The CHM equation (1) has two quadratic inviscid (ν = f = 0) invariants corresponding
to total energy

E = Ek + Eλ =
1
2
〈(∇ψ)2 + λ2ψ2〉 , (2)

where 〈...〉 denotes spatial average, and total enstrophy

Z = Zk + Zλ =
1
2
〈(∇2ψ)2 + λ2(∇ψ)2〉 . (3)

Both the inviscid invariants consist of two terms, the first corresponding to the kinetic con-
tribution and the second to the potential one. The kinetic terms are, by definition, the only
ones which survive in the Navier-Stokes limit λ → 0.

The range of scales is separated by the characteristic wave number λ. For k � λ the
kinetic contributions dominate in (2)-(3), at very large scales, k � λ, the leading terms are
the potential ones. In the following we will assume that the forcing F is limited to a narrow
band of wave number around kf . This will be the other relevant wave number in our problem.

Kolmogorov-like dimensional analysis can be easily extended to the present problem [8,
11–13]. If kf � λ, we recover the well-known energy spectra for two-dimensional Navier-
Stokes turbulence with energy spectrum E(k) ∝ k−5/3 and E(k) ∝ k−3 for λ < k < kf and
k > kf , respectively. When kf � λ, one obtains the prediction E(k) ∝ k−11/3 for k < kf ,
and E(k) ∝ k−5 for kf > k > λ. Dimensionally predicted spectra have been confirmed by
direct numerical simulations [8, 14, 15] but little is known about the structure functions and
probability density functions.

The starting point for a statistical analysis of the turbulent cascade is the exact Kol-
mogorov’s law which determines the scaling exponent for the third-order structure func-
tion [16]. A standard calculation, reported in the appendix, leads to the result

〈(
δu‖(�)

)3
〉

=
3
2
ε� , (4)

where δu‖ represents the longitudinal increment of the velocity u = (∂yψ,−∂xψ) and ε is
the energy input due to the forcing. The “3/2” law (4) is a well-known result for the two-
dimensional Navier-Stokes turbulence (see, e.g., [17]). In the appendix we show the remarkable
result that (4) is universal with respect to the class of equations (1) parameterized by λ.

From a dimensional point of view, (4) implies a scaling exponent h = 1/3 for velocity
increments and thus a scaling exponent 4/3 for ψ, as in the Navier-Stokes turbulence. From (2)
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one obtains the different predictions for the spectrum discussed above. In particular, the
kinetic spectrum has the form

Ek(k) = Cλε2/3k−5/3 (5)

for any value of λ, but with a Kolmogorov constant Cλ which, in principle, can depend on
λ. A simple physical argument for this dependency is as follows. The scaling of the eddy
turnover time depends on the scaling exponent. In the kinetic limit k � λ one has the
standard Kolmogorov scaling τ(k) � ε−1/3k−2/3 [16]. On the other hand, in the potential
limit k � λ, (1) gives τ(k) � (λ/k)2ε−1/3k−2/3. Thus, for k � λ, the efficiency of energy
transfer is reduced and one expects a larger value of the constant in (5).

We have numerically investigated the inverse cascade in the potential-energy regime by
direct numerical simulations. In order to avoid complications induced by the crossover from
the kinetic domain to the potential domain, we study the system in the limit λ → ∞. This is
to be seen only as a formal procedure, equivalent to considering wave numbers much smaller
than λ, which physically might be the case for magnetized plasma in the presence of a strong
magnetic field. Indeed this limit provides us with a model suitable for any λ � kf : because
the energy is transferred to large scale, the dominance of the potential term will be assured
in all the inertial range. In the limit λ � kf , rescaling the time t → t/λ2, one obtains the
so-called asymptotic model [12]

∂ψ

∂t
= J(∇2ψ,ψ) − ν∇4ψ − f , (6)

for which the inviscid conserved quantities become

E =
1
2
〈ψ2〉 ,

Z =
1
2
〈(∇ψ)2〉 . (7)

We have integrated (6) with a standard pseudo-spectral code in a double periodic domain
of size L = 2π at resolution N = 512. The forcing is white in time in a narrow band of wave
numbers around kf = 160. The dissipative term in (6) has the role of removing potential
enstrophy at small scales and, as customary, it is numerically substituted by a hyperviscous
term (of order 8 in our simulations). Time evolution is obtained by a standard second-order
Runge-Kutta scheme starting from a zero initial condition. The run is stopped at a given time
T at which the energy-containing scales are still much smaller than the computational box in
order to avoid condensation effects [4] (see fig. 1). All the results discussed in the following
are taken after averaging over 14 independent realizations.

The limitation in the resolution (N = 512) is due to the discussed scaling of the charac-
teristic time. Even with this moderate resolution, the ratio of the large-scale characteristic
time with the forcing scale time is about 2000 and thus time evolution is very expensive
(106 time steps for each realization). In the case of Navier-Stokes turbulence (λ = 0) this
would correspond to an integration covering about 5 decades of inertial range.

In fig. 1 we plot the potential-energy spectrum Eλ(k) at two different times. The scaling
exponent −11/3 is clearly visible even if some accumulation at the largest mode is evident.
This accumulation is not due to condensation as it is still well below the largest mode and it
moves in time. We think that the existence of this “bump” is a genuine effect, probably due to
the rapid growth of characteristic times and to the presence of intense vortices, as discussed
below. The energy flux ε � 1.24 is estimated by the plateau of the energy flux shown in
the inset.
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Fig. 1 – Potential-energy spectrum Eλ(k) at times t = 4 × 10−3 (×) and t = 10−2 (+) and kinetic
energy spectrum Ek(k) at time t = 10−2 (∗) averaged over 14 realizations of the asymptotic model (6).
The continuous line represents the dimensional prediction k−11/3, the dashed line is the Kolmogorov
spectrum Ek(k) = Cλε2/3k−5/3 with constant Cλ = 11. In the inset we plot the average energy flux
at time t = 10−2 with the line ε = 1.24.

The “3/2” law for the longitudinal velocity structure function is shown in fig. 2, also plotted
at two different times. The compensation with the theoretical prediction (4) is remarkable,
taking into account the limited resolution of our runs. As expected, the extension of the
inertial range increases with time without changing the small-scale statistics. The oscillations
observed at small scales are due to the contamination of the forcing. A similar effect was
observed also in NS simulations.

As discussed above, the fact that the “3/2” law is independent of λ (and thus the velocity
scaling exponent has always the Kolmogorov value h = 1/3) does not imply that the statistics,
and in particular the form of the pdf of velocity differences, is the same as for the Navier-Stokes
equation. For example, in fig. 1 we also plot the kinetic energy spectrum Ek(k) at final time
t = 10−2. The scaling exponent is compatible with the Kolmogorov value 5/3 as predicted
by (5), but the Kolmogorov constant Cλ � 11 is about two times that of Navier-Stokes [2].
A larger constant means a suppression of the energy flux which is a direct consequence of the
dilatation of the characteristic times.
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Fig. 2 – Third-order longitudinal structure function 〈(δuL(r))3〉 compensated with the dimensional
prediction εr at times t = 4× 10−3 (×) and t = 10−2 (+) averaged over 14 independent realizations.
The horizontal line represents the Kolmogorov law (4).
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Fig. 3 – Gray-scale plot of the stream function ψ at time t = 10−2. The characteristic scale of vortices
�E ∼ L/10 corresponds to the peak of the energy spectrum in fig. 1.

A more significant difference with respect to the Navier-Stokes inverse cascade is the
presence of strong vortices, as shown in fig. 3. Vortices in CHM turbulence are injected at
the forcing scale and they organize themselves to form a random pattern on the characteristic
scale �E . This dynamical scale is associated to the peak of the spectrum of fig. 1. Vortex
dynamics slows down as �E increases as τ(�E) ∼ �

8/3
E . Thus, in the limit of large Reynolds

number the system will end in a disordered pattern of quenched vortices forming a kind of
“turbulent glass”.

An important consequence of the presence of strong vortices is that the statistics of the
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Fig. 4 – Probability density functions of longitudinal (a) and transverse (b) velocity differences at
separations � = 0.05 (+), � = 0.1 (×) and � = 0.2 (∗) at time t = 10−2. The dashed line represents
the Gaussian distribution.
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velocity field strongly deviates from Gaussianity. In fig. 4 we plot the pdf of longitudinal and
transverse velocity differences at three different scales within the inertial range. The effect of
vortices is evident by the presence of large “wings” in the tails, in particular on the transverse
velocity differences which are more sensible to a rotating structure.

In conclusion, we have derived the Kolmogorov “3/2” law for a two-dimensional energy
cascade in the Charney-Hasegawa-Mima turbulence and shown that it is independent of the
value of the intrinsic scale λ. Velocity difference statistics satisfies Kolmogorov scaling with
non-universal coefficients. In the asymptotic limit λ → ∞ the Kolmogorov constant is found
to be about 2 times the Navier-Stokes case. Strong coherent vortices are found to emerge at
the forcing scale and aggregate to form a pattern of quenched vortices at large scale [8, 15].
As a consequence of the presence of vortices, strong deviations from Gaussianity are observed
in the velocity field.
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Appendix

In this appendix we report, for completeness, the main steps leading to (4). The starting point

is the time derivative of the two-point correlator 〈∇ψ · ∇ψ′ + λ2ψψ′〉 (where ψ = ψ(x), ψ′ =
ψ(x + �)) which, making use of (1), homogeneity and integration by parts, can be written as

∂

∂t
〈∇ψ · ∇ψ′ + λ2ψψ′〉 = 〈ψJ(∇2ψ′, ψ′)〉 + 〈ψ′J(∇2ψ,ψ)〉 − 2ν〈ψ∇2ψ′〉 −

−〈ψ [f(x + �) + f(x − �)]〉 . (8)

The inertial term can be rewritten in terms of velocity differences δu(�) = u(x + �) − u(x)
(where ui ≡ εi,j∂jψ) by making use of homogeneity and incompressibility (∇ · u = 0):

〈ψJ(∇2ψ′, ψ′)〉 + 〈ψ′J(∇2ψ,ψ)〉 =
1
2

∂

∂�i
〈|δu(�)|2δui(�)〉 . (9)

The dissipative term in (8) disappears in the limit of ν → 0. For simplicity, the forcing
term is assumed to be isotropic, stationary, Gaussian, of zero mean and with covariance
〈f(x, t)f(0, 0)〉 = δ(t)C(x/�f ) with C constant for x � �f and rapidly decaying for x > �f .
From the energy balance one has C(0) = 2ε, where ε = dE

dt is the energy input. In the in-
ertial range of scales, between the forcing scale and the energy-containing scale �E , Galilean
invariant quantities are stationary [18], thus

0 =
∂

∂t
〈(δ∇ψ)2 + λ2(δψ)2〉 = 2

dE

dt
− 2

∂

∂t
〈∇ψ · ∇ψ′ + λ2ψψ′〉 . (10)

Taking into account (9) and (10), (8) can be written as

∂

∂�i
〈|δu(�)|2δui(�)〉 = 4ε − C(�/�f ) . (11)

Assuming isotropy, and introducing the longitudinal velocity difference δu‖(�) = δui(�)�i/�,
for � � �f , one ends with the well-known “3/2” law

〈(
δu‖(�)

)3
〉

=
3
2
ε� . (12)
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