
EnFilter: A Password Enforcement and Filter
Tool Based on Pattern Recognition Techniques

Giancarlo Ruffo and Francesco Bergadano

Dipartimento di Informatica,
Università degli Studi di Torino

{ruffo, bergadano}@di.unito.it

Abstract. EnFilter is a Proactive Password Checking System, designed
to avoid password guessing attacks. It is made of a set of configurable
filters, each one based on a specific pattern recognition measure that
can be tuned by the system administrator depending on the adopted
password policy. Filters use decision trees, lexical analysers, as well as
Levenshtein distance based techniques. EnFilter is implemented for Win-
dows 2000/2003/XP.

1 Introduction

Passwords are considered weak when they are (1) guessable (i.e., phone numbers,
boyfriend names, car’s numberplate, . . .), (2) not resistent against dictionary
driven attacks (see Crack software [6]), or (3) with low entropy [10], and, as a
consequence, not secure in terms of brute force attacks.

Proactive password checking is considered the best approach [3,7,9] for avoid-
ing selection of weak passwords. Quite surprisingly, the literature on this field
is limited, if one considers the great practical importance of this problem. This
does not imply that acceptable solutions to the given problem do not exist
[1,2,3,7,9,10]. In Particular, the EnFilter system, which is presented in this pa-
per, is partially based on ProCheck [1], that provides a solution for Unix systems.
Some key features have been changed, as explained in Section 4, and the system
has been engineered for Windows 2000/2003/XP.

2 Password Filters and Proactive Checking

Spafford suggests that proactive checking can take advantage of Bloom filters [9];
Davies e Ganesan adopt a markovian model in Bapasswd [3], and Nagle proposes
a simple, but effective test based on a lexical analyser in [7]. With ProCheck,
proactive checking is reduced to a Pattern Recognition problem, where the task
is to learn the rules to classify passwords as good or bad. These rules can be
represented by means of decision trees, built by classical induction algorithms
ID3-like; in fact, ProCheck uses C4.5 of Quinlan [8] to build a decision tree from
a “crack” dictionary (a list of examples of bad passwords), and from a randomly
generated file of “good” passwords.

F. Roli and S. Vitulano (Eds.): ICIAP 2005, LNCS 3617, pp. 75–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of...

https://core.ac.uk/display/301858486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

76 G. Ruffo and F. Bergadano

In [1], these approaches are compared on the basis of the compression rate
of the given dictionary and the time taken by the classifiers to decide if a pass-
word is good or bad. Of course, another important parameter is given by the
classification error percentage (the sum of the rate of false negatives and false
positives).

as reported in the following sections, Enfilter uses a “Dictionary Filter” based
on decision tree classification. The implementation of such a filter is a scalable
generalization of ProCheck.

Even though ProCheck is still referenced in [10] as the most efficient so-
lution w.r.t. classification times and space required for storing the compressed
dictionary, in [2] learning is phase is refined in order to further improve the
compression rate of the derived decision tree. Yan in [10], addresses one of the
most important flaws of existing proactive checkers (including ProCheck): they
fail to catch weak passwords like ca12612, hhiijjkk, a1988b53, 12a3b4c5
and 12a34b5. In fact, such passwords can be considered invulnerable against a
dictionary attack, but their low-entropy makes them vulnerable to brute force
attacks.

As a further consideration, another weakness of ProCheck is given by its poor
scalability: even if strong against attacks driven with the same dictionary used
during the learning phase, ProCheck fails with passwords that trivially were
not given to the inductive learner (as, for example, passwords contained in a
dictionary of another language).

ProCheck has been shown to be noisy resistant in [1], i.e., classification must
be strong against passwords that are slightly different from those given to the
learner. But this is not enough: what if an administrator requires that the system
under her responsibility is strong against a particular dictionary? How to improve
the proactive checking with additional filters based on some lexical password
features (for example, in a given environment we can ask the user to adopt
passwords containing at least one upper case letter, two special characters and
one digit)? In other words, the proactive checker should combine an efficient and
complete defence against dictionary attack and a configurable filter that rejects
low-entropy passwords.

Finally, another weakness of ProCheck has been highlighted during its usage
at our department, even if it does not concern with a security flaw. ProCheck
has been running at the student’s laboratory (about 500 users) since four year,
but users sometimes complain because too many difficult passwords were not
accepted. When the checker is too severe, productivity of the user is reduced,
and money is lost. The reason behind this excessive severity is explained in
Section 5.1, where EnFilter’s solution is proposed.

In the Microsoft Windows framework, some commercial tools allow the inser-
tion of additional filters based on lexical rules, but to the best of our knowledge,
no current access control package is able to proactively check against both a set
of dictionaries and configurable filters.

EnFilter is a tool that allows for the extension of the proactive checking
features by means of filters with different characteristics. This control is com-

EnFilter: A Password Enforcement and Filter Tool 77

pletely integrated in the Windows framework, with a proper management of the
Security Account Manager (SAM) database and by means of the Notification
Packages [5].

3 Dictionary Filter Based on Decision Tree Classification

The Dictionary Filter described in Section 4, is based on a decision tree classifier.
This proactive checker filters out passwords that are classified as “not resistent”
against a dictionary attack.

We view the training phase of a password checker as a particular Pattern
Recognition problem. More precisely, we would like to use the dictionaries as
sources of positive examples (i.e., belonging to the dictionary), and learn more
concise descriptions that classify passwords as either positive or negative. We
also choose to create an explicit set of negative examples (i.e., not belonging
to the dictionary) by generating random passwords that do not belong to the
dictionaries. Examples are given all at once and no new dictionaries can be added
without repeating the training phase. This fits into the standard framework of
one-step learning from positive and negative examples.

We chose a decision tree representation due to three reasons: (1) word mem-
bership is a simple problem and does not need more expressive formalisms, (2)
excellent systems have been developed and implementations are available and
(3) decision trees are likely to achieve greater compression on word membership
problems, because prefixes common to many words need be stored only once.

Words will be described by means of so-called attributes, i.e. functions that
take a finite number of values. A node of a decision tree will correspond to some
attribute, and the arcs from this node to its children correspond to particular
values of the attribute. Leaves will be associated to a classification, positive or
negative. A decision tree can then be used for classifying a word w as follows:
we start from the root of the tree, and evaluate the corresponding attribute
for w obtaining value v; then we follow the arc labelled by v and reach the
corresponding node; then, we repeat the procedure until a leaf is reached, and
output the associated classification.

As an example, suppose we have a dictionary containing just two bad pass-
words: “ab” and “cow”. Suppose also that we generate two random passwords:
“w31” and “exw”. Then, we label “ab” and “cow” as positive examples, and
“w31” and “exw” as negative examples. In practice, dictionaries with million of
words, each with 6 characters or more, are largely used to train the system (e.g,
as described in [1] ProCheck was trained on a dictionary of 3,215,846 bad words
plus a list with the same number of examples containing random good words).
Now, suppose we describe these examples with 3 attributes:

a1 - equals 0 if the first character is a vowel, 1 otherwise;
a2 - equals 0 if the second character is a vowel, 1 otherwise;
a3 - the length of the word.

Ley D1 be a decision tree that will first consider the length of the word (i.e.,
the value of a3 is checked). If the length is less than 3, the example is classified

78 G. Ruffo and F. Bergadano

positive, otherwise D1 will examine the second character, to see whether it is a
vowel. If a2 = 0, the example is classified as positive, otherwise it is negative,
e.g, D1 classifies examples“exw” and “w31” as negative. D1 is an acceptable
solution of this simple classification problem.

A reference system for learning decision trees is the very well known ID3 [8].
Its basic top-down learning strategy is followed in most other methods. Initially,
the tree is empty and an attribute need be selected for the root node. All positive
and negative examples are associated to the root node of the tree. Among the
possible attributes, ID3 chooses one that maximizes an information-theoretic
quantity called the gain.

The gain of an attribute a is computed as follows. Suppose the father node
is associated to p positive and n negative examples, with p + n = t. Define the
information represented by this partitioning of positive and negative examples as

I(p, n) = −p

t
log2

p

t
− n

t
log2

n

t
(1)

The information after attribute a has been selected is then computed as the
weighted sum of the information corresponding to the children nodes:

I(a) =
s∑

i=1

ti

t
I(pi, ni) (2)

where there are s possible values of a, and pi (ni) out of the p positive examples
have the i-th value for attribute a. Again, ti = pi + ni. The gain of attribute a
is then defined as I(p, n) − I(a).

An important topic in decision tree learning, that is very relevant to the
present study, goes under the name of pruning. Decision trees that are learned
with the above technique will correctly classify all given examples, if the at-
tributes are sufficient to discriminate one class from the other. In other words,
the observed error rate will be 0. However, if the tree is large, it may happen that
some leaves, or even large subtrees, are only useful for a limited set of examples.

In the given domain, predictive power of pruned decision tree has been
showed to perform well in case of noisy password in [1], for instance, only 0.99%
of the words of a file with 150,000 noisy words were classified as good pass-
words. Other experiments lead also to very encouraging results. Moreover, if
pessimistic pruning is adopted at its best, compression rate can be further re-
duced [2].

Previous experiments performed on ProCheck showed that this approach be-
haves well in terms of classification time (i.e., linear w.r.t. the password length),
compression and error rate: a decision tree classifier of size 24, 161 bytes was ob-
tained from a dictionary of “bad” passwords of about 28 MB, with an error-rate
of 0.5%. Using an exception file of 171 KB containing the words in the dictionary
that are incorrectly classified as good passwords by the decision tree classifier,
ProCheck reduces the error to one-sided and is equal to 0.32 (i.e., misclassified
randomly generated password not belonging to the dictionary, but given to the
learner).

EnFilter: A Password Enforcement and Filter Tool 79

4 EnFilter: How It Works

EnFilter maintains security and reliability properties of ProCheck, but com-
ing through the deficiencies located above. EnFilter1 is: (1) Highly scalable;
(2) Designed for Microsoft Windows 2K/XP/2003; (3) Manageable by a sim-
ple GUI.

Once EnFilter has been installed, the user can select one of the following
options:

1. Activating or deactivating EnFilter controls that are executed when a pass-
word change request is sent to the Notification Package (i.e., a user is at-
tempting to change his/her own password).

2. Testing the strength of a password accordingly the current activated filters.
3. Setting up the installed filters, including those based on different language

dictionaries.

The user interacts with an application that can be run from the Windows
control panel. This application is a GUI implemented with Microsoft Visual
J++. EnFilter calls a procedure contained in a DLL that implements a decision
tree classifier. This is a classification procedure, which reads the stored deci-
sion trees, each for a given dictionary. Enfilter.dll is also responsible of checking
if the password under test can be considered strong against all the activated
filters. It implements (and exports) the PasswordChangeNotify, PasswordFil-
ter e InitializeChangeNotify functions, as requested to the developers [5]. As
a consequence, EnFilter is activated also when an user asks for a password
change.

At the present time, together with the dictionary filter, that allows the user
to check the passwords against a set of different language dictionaries, EnFilter
supports a configuration filter checking for at least n (with n > 0) alphabetical
letters, a filter checking for at least n (with n > 0) digits, and a filter checking for
at least n (with n > 0) special characters. EnFilter can also check for a minimum
length of the password. In this way, the system administrator is able to set up
different access control policies against attacks based on password guessing. In
Table 12, we show some examples of passwords that can be accepted or rejected
by EnFilter depending on the different filters that can be activated.

5 Filters Description

The system administrator is responsible of enabling the given filters and, when
needed, of configuring them. For brevity, we do not discuss other simpler (but
effective) filters, e.g. ones based on lexicographical rules.
1 You can find further detail and the instruction to download EnFilter at

http://security.di.unito.it.
2 Values in the table must be interpreted as it follows: “NO” - the password is filtered

out; “OK” - the password passes the test defined by the given filter. As a consequence,
it is considered strong.

80 G. Ruffo and F. Bergadano

Table 1. En example of different password tests of the user “scrooge”

Applied Filters
Windows At least 1

Password Standard Italian English special At least 2
Check dictionary dictionary character digits

Scrooge NO NO NO NO NO
2Skulls OK OK NO NO NO
xltrk9u OK OK OK NO NO
xltr+k9u OK OK OK OK NO
Xty89’ad76 OK OK OK OK OK
S(r0oge1 OK OK OK OK OK

5.1 Dictionary Filter

This filter is strongly based on the decision tree approach described in Section
3, with the following important differences w.r.t. ProCheck:

1. a new set of attributes was used. Learned decision tree is able to classify
words using an attribute ai (where i = 1, ..., 12) for each letter i in the word.
Each attribute can have 27 different values, given by the corresponding letter
(e.g., ai = 1, if the i-th character is ‘a’ or ‘A’, ai = 2, if the i-th character
is ‘b’ or ‘B’, ..., else ai = 0). For example, password Scr0ge1 is represented
with the following attribute-value vector: < 19, 3, 18, 0, 7, 5, 0, 0, 0, 0, 0, 0 >.

2. We included a different decision tree for each dictionary. In the current dis-
tribution we compressed four natural language dictionaries: Italian, English,
Spanish and German.

The second feature comes from the scalability and configurability requirements
that can be addressed from a typical system administrator, and therefore it
is just a direct consequence of making EnFilter practical and usable in the real
world. The first difference is more evident if we recall (one of) the attribute-value
representation that has been adopted in ProCheck:

an = value of letter number n in the word (for n between 1 and 12), where
values are as follows: 1 for vowels; 2 for n, m, r, l, c, g, k, x, j, q, and h; 3
for t, d, b, p, f, v, w, s, and z ; 4 for digits; 5 for all other characters

a13 = 0 if the word contains a special character, 1 otherwise;
a14 = number of capital letters in the word.

This set of attributes results in a big compression (i.e., characters are grouped
together, and therefore the number of arcs in the final decision trees is dramat-
ically reduced), but it has two heavy drawbacks:

1. The learning phase is strongly biased on attributes a13 and a14: randomly
generated words contain much more upper case letters and special characters
than strings listed in a crack dictionary. The learned decision tree is too
restrictive, because we wish to let words such as xltrk9u pass the dictionary
filter and leave to the administrator the choice of limiting the minimum
number of upper case and special characters using the lexicographical filters
introduced early in this section.

EnFilter: A Password Enforcement and Filter Tool 81

2. Too many words collapse in the same description, creating misleading colli-
sions. For example, the word Teorema has the same ProCheck-representation
(i.e., < 3, 1, 1, 2, 1, 2, 1, ?, ?, ?, ?, ?, 1, 1 >3) of the string woIxaku, that it does
not belong to any of the used dictionaries.

With the new set of attributes, EnFilter performed well in terms of compression
and error rate. In fact, we observed an average of 0.5% of false positives4, with a
confidence interval of [0.35, 3.84]. These results are comparable with ProCheck,
with its average of 0.53% of false positives, and with a confidence interval of
[0.25, 0.67]. Moreover, we have an identical false negatives rate in both systems.
Despite to these encouraging results in terms of error percentage, the compres-
sion, as expected, decreased from a rate of 1000 to 1, to a ratio of 100 to 1.

It goes without saying that the compression factor is not so important as
some years ago, because of the bigger capacity and lower cost of current mem-
orization devices. Nevertheless, the EnFilter distribution is very small in size.
It includes the following decision trees: English.tree (394 KB), Italian.tree (241
KB), Spanish.tree (55 KB), German.tree (69 KB), that can be further com-
pressed in a zipped archive. Finally, the entire installation package is sized 621
KB.

5.2 Directory Service Filter

Another filter currently under testing is based on another information theoretic
quantity called Levenshtein distance [4]. It returns the distance between two
strings, which is given by the minimum number of operations needed to trans-
form one string into the other, where an operation is an insertion, deletion, or
substitution of a character.

Let s and t be two strings of length n and m, respectively. Given two charac-
ters si and tj , which are respectively the i-th and the j-th character of s and t,
let us define function r as follows: r(si, tj) = 0, if si = tj ; r(si, tj) = 1, otherwise.
Now, we build a matrix D of integers, with dimension (n + 1)(m + 1). Values in
T are defined recursively as it follows:

D(i, 0) = i, i = 0, 1, ..., n
D(0, j) = j, j = 0, 1, ..., m
D(i, j) = min(D(i − 1, j) + 1, D(i, j − 1) + 1, D(i − 1, j − 1) + r(si, tj)), i �= 0 ∧ j �= 0

The element D(n + 1, m + 1) gives the Levenshtein distance d(s, t) between
strings s and t. For example:
d(”scrooge”, ”scrooge”) = 0, d(”scrooge”, ”S(r0oge1”) = 5, and so on.

We used this distance in order to validate the password against the many
values retrievable from the user’s entry of a given Directory Service (e.g., LDAP,

3 The value ? is used when the corresponding attribute is undefined. In this exam-
ple, the word “Teorema” is 7 character long, and therefore attributes a8, ..., a12 are
undefined.

4 false negatives, i.e., words in the dictionary erroneously classified as good passwords,
are not considered, because we use an exception file for them.

82 G. Ruffo and F. Bergadano

Microsoft Directory Service). The filter accepts only the passwords having a
Levenshtein distance greater than a given threshold ε from all the string values
contained in the user’s entry of the local directory server. Such information usu-
ally contains many user’s personal information, like birthdate, phone numbers,
address, and so on. Observe that the degree of variation can be properly config-
ured, i.e., threshold ε can be set by the system administrator, even if a default
value of 3 is given if this filter is activated.

6 Conclusion

EnFilter, a proactive password checker designed and implemented for Microsoft
Windows platforms, has been introduced. It is a configurable and scalable tool,
which leaves the administrator the responsibility of adequating filters to the
password policies. In particular, the “Dictionary Filter” improves the previous
results obtained with ProCheck, reducing false alarms caused by the absence of
special characters or upper cases in the checked password. Moreover, EnFilter
does not increase the false negative rate, that is anyhow reduced to zero by
adopting small sized exception files.

Acknowledgements

The authors wish to thank the anonymous referees for helping them to signif-
icantly improve the quality of the presentation. This work has been partially
financially supported by the Italian FIRB 2001 project number RBNE01WEJT
“Web MiNDS”.

References

1. Bergadano, F., Crispo, B., and Ruffo, G. High Dictionary Compression for proac-
tive password checking on ACM TISSEC, 1(1), Nov. 1998.

2. Blundo C., D’Arco P., De Santis A., Galdi C., Hyppocrates: a new proactive pass-
word checker, The Journal of Systems and Software, N. 71, 2004.

3. Davies, C. and Ganesan, R. Bapasswd: a new proactive password checker In Proc.
of 16th NIST-NCSC National Computer Security Conference (1993).

4. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Sov. Phys. Dokl., 6:707-710, 1966.

5. Microsoft Knowledge Base HOWTO: Password Change Filtering & Notification in
Windows NT - article n. 151082

6. Muffett, A. Crack 4.0, 5.0 11.
7. Nagle, J. B., An obvious password detector. In USENET news - comp.sources.unix

16 (60), 1988.
8. Quinlan, J. R. C4.5: Programs for Machine Learning Morgan Kaufmann, San Ma-

teo, CA.
9. Spafford, E.H. OPUS: Preventing Weak Password Choices Computers and Security,

11, (1992) pp.273-278.
10. Yan, J. A Note on Proactive Password Checking, ACM New Security Paradigms

Workshop, New Mexico, USA, September 2001.

	Introduction
	Password Filters and Proactive Checking
	Dictionary Filter Based on Decision Tree Classification
	EnFilter: How It Works
	Filters Description
	Dictionary Filter
	Directory Service Filter

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

