
A Novel Incremental Approach to Association Rules
Mining in Inductive Databases�

Rosa Meo, Marco Botta, Roberto Esposito, and Arianna Gallo

Dipartimento di Informatica, Università di Torino, Italy
{meo, botta, esposito, gallo}@di.unito.it

Abstract. Constraints-based mining languages are widely exploited to enhance
the KDD process. In this paper we propose a novel incremental approach to ex-
tract itemsets and association rules from large databases. Here incremental is used
to emphasize that the mining engine does not start from scratch. Instead, it ex-
ploits the result set of previously executed queries in order to simplify the mining
process. Incremental algorithms show several beneficial features. First of all they
exploit previous results in the pruning of the itemset lattice. Second, they are able
to exploit the mining constraints of the current query in order to prune the search
space even more. In this paper we propose two incremental algorithms that are
able to deal with two — recently identified — types of constraints, namely item
dependent and context dependent ones. Moreover, we describe an algorithm that
can be used to extract association rules from scratch in presence of context de-
pendent constraints.

1 Introduction

The problem of mining association rules and, more generally, that of extracting frequent
sets from large databases has been widely investigated in the last decade [1,2,3,4,5,6].
These researches addressed two major issues: on one hand, performance and efficiency
of the extraction algorithms; on the other hand, the exploitation of user preferences
about the patterns to be extracted, expressed in terms of constraints. Constraints are
widely exploited also in data mining languages, such as in [5,7,8,9,10,11] where the
user specifies in each data mining query, not only the constraints that the items must
satisfy, but also different criteria to create groups of tuples from which itemsets will be
extracted. Constraint-based mining languages are also the main key factor of inductive
databases [12], proposed in order to leverage decision support systems. In inductive
databases, the user explores the domain of a mining problem submitting to the system
many mining queries in sequence, in which subsequent queries are very often a refine-
ment of previous ones. This might be, if not properly addressed, a huge computational
workload. This problem becomes even more severe considering that these queries are
typically instances of iceberg queries [13], well-known to be expensive on very large
databases such as common data warehouses. In such systems the intelligent exploitation
of user constraints becomes the key factor for a successful exploration of the problem
search space [14]. The same occurs also in “dense” datasets, in which the volume of

� This work has been funded by EU FET project cInQ (IST-2000-26469).

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 267–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of...

https://core.ac.uk/display/301858483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

268 R. Meo et al.

the result set (the frequent itemsets) compared to the input data is particularly large. In
these cases, constraints are exploited to make a problem tractable that otherwise would
require a non affordable computational workload [15].

In this application context, in order to speed up the query execution time, it makes
sense to exploit the effort already done by the DBMS with previous queries. In fact,
inductive databases can materialize the result of (some of the) previous queries. In this
way, previous results are available to the mining engine which can “reuse” some of the
information contained in them in order to reduce the workload. Indeed, since nowadays
the storage space is critic to a lesser extent, our aim is to reduce as much as possible
the computational work of the data mining engine. Furthermore, we suppose that the
mining engine works in an environment similar to a data warehouse, in which database
content updates occur rarely and in known periods of time. This greatly simplifies the
task, since previous results are considered up to date and can be usefully exploited to
speed up the execution of current queries. Therefore, we suggest that the execution plan
of a constraint-based query should take into consideration also the results of previous
queries, already executed and readily available. The necessity of storing and exploitiong
a collection of query results, has been recognized previously also in [16] in which they
propose a rule query language for the postprocessing of rules based on their statistical
properties or elements.

We present here an incremental approach (originally proposed in [17]) that computes
the result of a query starting from the result of a previous, more general query. The
new result is computed by enforcing on the previous result set the new constraints. We
notice that several “incremental” algorithms have been developed in the data mining
area [18,19,20,21], but they address a different issue: how to efficiently revise the result
set of a mining query when the database source relations get updated with new data. In
this Chapter we show that the new incremental query evaluation technique is beneficial
and reduces the system response time. First of all because previous results allow pruning
of the itemset lattice. Secondly, because the mining constraints of the current query
allow to prune the search space even more. Of course, we assume that the system relies
on an optimizer who is entitled to recognize query equivalence and query containment
relationships in order to identify the most convenient result from which starting the
incremental computation. [22] describes a prototype of such an optimizer and shows
that its execution time is negligible (in the order of milliseconds) for most practical
applications.

Our main contributions here, are two incremental algorithms that provide a fast so-
lution to the case of query containment. The first one exploits the somewhat implicit
assumption made in almost all previous works in constraint-based mining: properties
on which users define constraints are functionally dependent on the item to be extracted,
i.e., the property is either always true or always false for all occurrences of a certain item
in the database. In this case, it is possible to establish the satisfaction of the constraint
considering only the properties of the item itself, that is, separately from the context of
the database in which the item is found (e.g., the purchase transaction). In [22], we char-
acterized the constraints that are functionally dependent on the item extracted and called
them item dependent (ID) constraints. The exploitation of these constraints proves to be
extremely useful for incremental algorithms. Indeed, ID constraints allow the selection

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 269

of the valid itemsets in advance, based on their characteristics, that hold separately from
the transactions in which itemsets are found. Similar reasoning occurs also for succinct
constraints [23] with the difference that these latter consist in properties to be evaluated
on each single item separately from the other items of the itemset. In other words, they
do not foresee aggregate properties on itemsets.

In [22], another class of constraints, namely the context dependent (CD) constraints,
was introduced as well. Context dependent constraints occur very often in many impor-
tant application domains, such as in business (e.g., analysis of stock market data) [24]
in science (e.g., meteorological forecast) [25] but also in the traditional applications of
data mining, such as in market basket analysis [26].

In order to offer a first grip to the intuition about this novel concept, let us explain
it by means of a simple example which applies to the analysis of stock market data. To
this purpose, we assume that the database to be analyzed contains the attributes:

date — the date of interest;
stock — the name of the stock;
price — a categorical attribute assuming values in {increased, not varied,

decreased}.

In such a context, the user may be interested in whether there exists any (negative)
correlation between groups of stock items. For instance, it may want to associate stocks
for which price=increased with ones for which price=decreased instead.
As an example of the result, he/she may find useful to discover that �when price of
AT&T and Microsoft stocks increase, then the price of Sun Microsystems decreases
with a probability of 78% �.

In this case, the stock price, which is the feature on which constraints are evalu-
ated, does not depend only on the stock, but it also depends on another variable (time).
Time and stock together provide the context in which price is determined. Therefore, in
contrast to ID constraints, the satisfaction of CD constraints cannot be decided without
reading the contextual information present in the database transaction. While, in the
simplest situations, the problem may be solved by filtering the database relation before
the mining process, such a filtering is not possible when different predicates are given
for the body part and the head part of the rules or when constraints on aggregates must
hold on the sets. In this latter cases, CD constraints proved to be very difficult to be
dealt with. In fact, a CD constraint is not necessarily satisfied by a certain itemset in
all its instances in the database. And this fact has big influence on the possibilities of
pruning that constraints allow on the lattice search space. In fact, even if an itemset,
satisfying a CD constraint within a transaction, satisfies one of the well studied prop-
erties of monotonicity or anti-monotonicity over the itemset lattice, the same properties
do not necessarily hold for that itemset in the whole database. Unfortunately, most of
the state of the art algorithms [4,23,27], are based instead on the principle that those
properties hold for a certain pattern database wide.

As far as incremental mining is concerned, the presence of a CD constraint in a
query implies that one needs to carefully check whether the constraints are satisfied by
scanning the transaction table. In the following, we present a new algorithm which is
able to deal with context dependent constraints. We show that incremental algorithms
are valuable tools even in this setting.

270 R. Meo et al.

Despite the lack of studies on algorithms dealing with contextual characteristics of
itemsets, CD constraints have revealed to be of a certain importance in the extraction
of knowledge from databases. For instance, in [26] the authors claim it is important to
identify the contextual circumstances in which patterns hold. They propose to reason
on circumstances organizing them in a lattice and searching there the most general cir-
cumstances in which patterns hold. Their work, however, restricts reasoning on circum-
stances to conjunctive statements and makes no use of available query results. On the
contrary, CD constraints proposed here can be organized with no restriction and queries
are allowed to contain general boolean predicates. Secondly, the proposed approach
makes a significant usage of available results of previous queries (if the incremental ap-
proach results effective with respect to a conventional execution, i.e., by scratch). The
incremental option for a data mining algorithm is of course preferable in an inductive
database system, since it allows the exploitation of all the available informations in the
system in order to speed up the response time.

The rest of the paper is organized as follows. Section 2 presents some preliminary
definitions, discusses the properties of queries of the containment relationship. Section 3
and Section 4 present two incremental algorithms able to deal with item dependent and
context dependent constraints respectively. Section 5 shows a first set of experimental
assessments of the incremental algorithms. In order to fully evaluate the validity of the
incremental algorithms in general and with a fair comparison, since in literature there
are no algorithms that extract association rules with context dependent constraints, we
propose in Section 6 a baseline miner algorithm (called CARE) that is non-incremental
and is able to extract association rules with item or context dependent constraints. Fi-
nally, in Section 7 we study the worthiness of the incremental approach using the CARE
algorithm as a baseline miner. Section 8 draws some conclusions.

2 Preliminary Definitions and Notation

Let us consider a database instance D and let T be a database relation having the schema
TS={A1, A2, . . . , An}. A given set of functional dependencies Σ over the attribute
domains dom(Ai), i = 1..n is assumed to be known.

As a running example, let us consider a fixed instance of a market basket analy-
sis application in which T is a Purchase relation that contains data about customer
purchases. In this context, TS is given by {tr, date, customer, product,
category, brand, price, qty}, where:tr is the purchase transaction identi-
fier, customer is the customer identifier,date is the date in which the purchase trans-
action occurred, product is the purchased product identifier, category is the cate-
gory to which the product belongs, brand is the manufacturer of the product, price
is the product price, and qty is the quantity purchased in transaction tr. The Σ rela-
tion is {product→ price, product→ category, product→ brand, {tr,
product} → qty, tr → date, tr → customer}. It should be noted, however,
that the validity of the framework is general, and that it does not depend on either the
mining query language or the running database example.

Of course, the above schema could also be represented over a set of relations and di-
mensions adopting the usual data warehouse star schema. However, the non-normalized

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 271

form is more readily explained as well as more common in a data mining environment.
In fact, data mining practitioners usually preprocess the data warehouse in order to ob-
tain a database schema similar to the one introduced.

As above mentioned, the system tries to exploit past results in order to react more
promptly to user requests. In order to work, such a system must be able to recognize
that syntactically different queries are, actually, similar. The following definition, which
introduces the notion of grouping equivalence, allows the system to recognize that two
ways of partitioning the database are equivalent. Clearly, this could be done by building
the partitions and checking whether they are identical. However, this approach is clearly
too costly. Instead, our approach is to exploit known domain knowledge in order to
obtain an answer without actually accessing the database.

Definition 1. Grouping equivalence relationship.
Two sets of attributes K1 and K2 are said to be grouping equivalent if and

only if for any relation T defined on TS:

∀t1, t2 ∈ T : t1[K1] = t2[K1] ⇔ t1[K2] = t2[K2]

where t1[K1] is the projection of the tuple t1 on the attributes in K1.

Put in other words: K1 and K2 are grouping equivalent if and only if K1 ↔ K2

(where ↔ denotes a bidirectional functional dependence).

Example 1. As we pointed out, the grouping equivalence relation has been intro-
duced as a tool to distinguish whether two set of attributes partition the database in
the same way. The following table reports a case where the set of attributes {tr}
and {date,customer} are grouping equivalent, while, for instance {date} and
{product} are not.

tr data customer product

1 10/1/2005 CustomerA Milk
1 10/1/2005 CustomerA Bread
1 10/1/2005 CustomerA Beer
2 10/1/2005 CustomerB Meat
2 10/1/2005 CustomerB Biscuits
3 12/1/2005 CustomerA Milk
3 12/1/2005 CustomerA Biscuits

Let us notice, however, that this example is an oversimplification of what expressed in
Definition 1. In fact, here it is reported only a single database instance and we asked to
check the grouping equivalence relationship on it. The definition, instead, requires the
relation to hold for all database instances of a given database schema. This actually
implies that the relation must be checked using known functional dependencies.

Sets of attributes that are grouping equivalent form a grouping equivalence class
E. As an example of the usefulness of this concept, let us notice that if two queries
differ only for the way the relations are grouped and the grouping attributes used in

272 R. Meo et al.

the two queries are in the same equivalence class, then the two queries are bound to be
equivalent.

We assume to know about a set of grouping equivalence classes E1 . . . Ej .

Example 2. In the Purchase example, the following non trivial equivalence class
may be found:

E1= {{tr}, {date, customer}, {tr, date}, {tr, customer}, {tr,
date, customer}}.

In writing a mining query, the user must specify, among the others, the following
parameters:

– The item attributes, a set of attributes whose values constitute an item, i.e., an el-
ement of an itemset. The language allows one to specify possibly different sets of
attributes, one for the antecedent of association rules (body), and one for the con-
sequent (head).

– The grouping attributes needed in order to decide how tuples are grouped for the
formation of each itemset. The grouping attributes, for the sake of generality and
expressiveness of the language, can be decided differently in each query according
to the purposes of the analysis.

– The mining constraints specify how to decide whether an association rule meets the
user needs. In general, a mining constraint takes the form of a boolean predicate
which refers to elements of the body or of the head (possibly on the values of any
of the attributes in TS, e.g., kind of product, price or quantity). Since we want to
allow different constraints on the body and on the head of the association rules, we
admit two separate constraint expressions for each part of the rule.

– An expression over a number of statistical measures used to reduce the size of the
result set and to increase the relevance of the results. This evaluation measures are
evaluated only on the occurrences of the itemsets that satisfy the mining constraints.

Usually in market basket analysis, when the user/analyst wants to describe by means
of itemsets the most frequent sales occurred in purchase transactions, the grouping at-
tribute is tr (the transaction identifier) and the itemsets are formed by the projection
on product of sets of tuples selected from one group. However, for the sake of gen-
erality and of the expressive power of the mining language, grouping can be decided
differently in each query. For instance, if the analyst wants to study the buying behavior
of customers, grouping can be done using the customer attribute, or if the user wants
to study the sales behaviour over time he/she can group by date or by week or month
in the case these attributes were defined.

Users may exploit the mining constraints in order to discard uninteresting itemsets
and to improve the performances of the mining algorithm.

More formally, a mining query for the extraction of association rules is described as
the 7-tuple:

Q = (T, G, IB, IH , ΓB, ΓH , Ξ)

where: T is the database table; G is the set of grouping attributes; IB and IH are the set
of item attributes respectively for the body and the head of association rules; ΓB and

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 273

ΓH are boolean expressions of atomic predicates specifying constraints for the body
and for the head of association rules; Ξ is an expression on some statistical measures
used for the evaluation of each rule.

We define an atomic predicate to be an expression in the form:

AiθvAi

where θ is a relational operator such as <,≤, =, >,≥,
=, and vAi is a value from the
domain of attribute Ai.

Ξ is defined to be a conjunction in which each term has the form

ξθv

where ξ is a statistical measure for the itemset evaluation, v is a real value, and θ is
defined as above.

For the sake of simplicity, in this paper we focus on the support count and confi-
dence statistical measures. The extension to other measures should be straightforward.
The support count is the number of distinct groups containing both the itemsets in the
association rule. Confidence is the ratio between the association rule support and sup-
port of the body.

Example 3. The query

Q=(Purchase, {tr}, {product}, {product},
price>100, price≥200,

support count≥20 AND confidence≥0.5)

over the Purchase relation (first parameter) extracts rules formed by products in
the body (third parameter) associated to products in the head (fourth parameter),
where all the products in the rule have been sold in the same transaction (second pa-
rameter). Moreover, the price of each product in the body must be greater than 100
(fifth parameter) and the price of each product in the head must be greater or equal
to 200 (sixth parameter). Finally, the support count of the returned rules must be at
least 20 and the confidence of the rules at least 0.5. Even if the query syntax we gave
is best suited for the purposes of this paper, it is quite unfriendly when it comes to un-
derstandability. Many languages have been proposed in the literature that can easily
express the kind of constraints we introduced in this paper. For instance, query Q could
be expressed in the Minerule [8] language as follows:

MINERULE Q
SELECT DISTINCT 1..n product AS BODY, 1..n product AS HEAD, SUP-

PORT, CONFIDENCE

WHERE BODY.price> 100 AND HEAD.price≥ 200
FROM Purchase
GROUP BY tr
EXTRACTING RULES WITH SUPPORT COUNT:20, CONFIDENCE: 0.5

Now that we have seen how constraint-based mining queries are formed, let us de-
fine two particular types of constraints: the item dependent constraints and the context
dependent ones. In the following, we will denote by X → Y a functional dependency
(FD) between two attribute sets X (LHS) and Y (RHS) in the database schema TS.

274 R. Meo et al.

Definition 2. Dependency set.
A dependency set of a set of attributes X contains all the possible RHS that can be

obtained from X following a FD X → Y in Σ (direct or transitive) such that there is
no X ′ ⊂ X such that X ′ → Y .

As we did for equivalence classes, we assume to know about a set of dependency
sets.

Example 4. The dependency set of {product} is {category, price,
brand}.The dependency set of {tr} is {customer, date} while the dependency
set of {tr, product} is {qty}. As a consequence, one can safely assume that:

– the value of product can be used to determine the values of attributes
category, price, and brand;

– the value of tr and product uniquely determines the value of qty.

Definition 3. Context dependent and item dependent constraints.
Given a query

Q = (T, G, IB, IH , ΓB, ΓH , Ξ)

let us consider an atomic predicate P(A) ∈ ΓB (respectively ΓH). P(A) is defined to be
an item dependent constraint if and only if A belongs to the dependency set of I ′, where
I ′ ⊆ IB (respectively, I ′ ⊆ IH). If P(A) is not an item dependent constraint, then it is a
context dependent constraint.

A query Q is said to be item dependent if all atomic predicates in ΓB and ΓH are
item dependent constraints. If Q is not item dependent, then it is context dependent.

We notice that an itemset I satisfies an item dependent constraint either in any
database group in which it occurs, or in none. This immediately implies the following:

Lemma 1. Statistics for itemsets with item dependent constraints.
An itemset I that satisfies an item dependent constraint in a mining query has a

statistical measure that is a function of the total number of groups in which I occurs in
the given database instance.

On the contrary, a context dependent constraint might possibly be satisfied by some,
but not all, occurrences of itemset I. Then, the statistical measure cannot be evaluated
on the number of groups in which the itemset appears. In fact, this number may dif-
fer from (i.e., be larger than) the number of groups in which the itemset satisfies the
constraint.

We now give some properties that allow to identify the existence of the contain-
ment relationship between two mining queries. These conditions provide the theoretical
ground supporting the algorithms that we discuss in Section 3 and 4. Through all the
discussion we will denote with Q the query issued by the user at the present time and
that we want to “optimize”, and with Qi the ones in the past queries repository.

To begin with, we notice that not all Qi are suitable candidates for testing the con-
tainment relationship. In fact, many of them may be built using features which imme-
diately hinder the possibility of finding the relationship to hold. In the following, we

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 275

present a simple test which can be used to filter out those queries very efficiently. Fur-
ther work is probably needed under this viewpoint, but for the moment we consider this
aspect as future work. For the time being, we define the concept of candidate queries
for containment of Q (that is those queries that may contain Q) as follows.

Definition 4. Candidates for query containment of Q.
Let us consider

Qi = (T, Gi, Ii
B, Ii

H , Γ i
B, Γ i

H , Ξi)
Q = (T, G, IB , IH , ΓB, ΓH , Ξ)

A previous query Qi is a candidate for containment of Q, if the following conditions
hold:

1. Gi is in the same grouping equivalence class of G
2. Ii

B is in the same grouping equivalence class of IB

3. Ii
H is in the same grouping equivalence class of IH

Therefore, a first criterion for selecting the candidate queries for containment of Q
can be based on testing the above three conditions. That is, we require that the queries
are “grouping equivalent” (i.e., both the queries partition the input data in the same
groups) and that they use an “equivalent” description for the items in the body and in
the head part of the association rules.

Let us denote by R the set of association rules returned by Q and by Ri the set of
association rules returned by Qi.

Theorem 1. Properties of Query Containment.
Given

Qi = (T, Gi, Ii
B, Ii

H , Γ i
B, Γ i

H , Ξi)
Q = (T, G, IB , IH , ΓB, ΓH , Ξ)

Let Qi be a candidate for containment of Q.
Let the following hypothesis of entailment between constraints of Q and Qi be ful-

filled:

ΓB ⇒ Γ i
B

ΓH ⇒ Γ i
H

Ξ ⇒ Ξi

Under these conditions, R ⊆ Ri. Furthermore, the support count (sup count) of
an association rule r ∈ R is upper bounded by the support count (sup counti) of the
same rule in Ri.

Proof. Assuming that Qi is a candidate for containment of Q implies that Q and Qi

partition the database in the same groups and extract from them the same sets of po-
tential association rules. That is, if the two queries did not contain any constraint, then
their result sets would be identical. Let us call the result set of the unconstrained query

276 R. Meo et al.

R′. In order to prove the containment relation, it is left to show that any rule r which
is selected from R′ by Q is also selected by Qi. This is actually immediate, in fact, for
any such rule: r ∈ R ⇒ ΓB(r)∧ΓH (r)∧Ξ(r) ⇒ Γ i

B(r)∧Γ i
H (r)∧Ξi(r) ⇒ r ∈ R′.

Here, the first and the last implications hold since, by definition, a rule belongs to the
result set of a query Q′ if and only if it belongs to the unconstrained version of Q′ and
satisfies all the constraints in it. The middle entailment, instead, is directly implied by
the assumptions of the theorems.

Moreover, any itemset which satisfies ΓB in a database group also satisfies Γ i
B in the

same group. The same holds for the head constraints. In addition, there might exist some
database groups in which Γ i

B and Γ i
H are satisfied, but ΓB or ΓH are not. Therefore,

the support count of any rule r in Ri is bound to be not lower than the support count of
r in R.

The following lemma specializes the previous theorem for queries with item depen-
dent constraints.

Corollary 1. Query containment with item dependent constraints.
Under the same hypotheses of Theorem 1, let us also assume that the queries are

item dependent. Then, a rule r ∈ R∩Ri has the same support count in both Q and Qi.
A rule r, such that r ∈ Ri but r
∈ R, has a support count equal to zero in Q.

Proof. By definition, an item dependent constraint is satisfied by all the occurrences of
a given itemset in the database or by none. Thus, an association rule in R that satisfies
ΓB and ΓH satisfies also Γ i

B and Γ i
H in the same number of groups (and thus satisfies

both Ξ and Ξi). Therefore its support count will be the same in both the result sets.
However, a rule in Ri which does not satisfy ΓB and ΓH will not satisfy them in all

the database groups in which it occurs. Thus, it will have a support count equal to zero
in Q.

3 An Incremental Algorithm for Item Dependent Constraints

In a previous work [22], we showed that item dependent constraints are particularly
desirable from the viewpoint of the optimization of languages for data mining. In par-
ticular, we showed that we can obtain the result of a newly posed query Q by means of
set operations (unions and intersections) on the results of previously executed queries.
We qualify this approach to itemset mining as incremental because instead of comput-
ing the itemsets from scratch it starts from a set of previous results. In this paper, we
are interested in studying the situation of query containment, that is, to consider situa-
tions in which query Q imposes a more restrictive set of constraints with respect to a
previous query, here denoted with Qi. In this paper, we show that item dependent con-
straints can also be exploited to simplify the problem of incremental mining. In fact, it
turns out that, in order to retrieve the desired rules, it suffices to identify the rules in the
previous results that satisfy the new constraints. As the results in Section 2 imply, this
is not generally true in a situation involving context-dependent constraints. In fact, in
the latter case, one needs to carefully update the statistical measures of the rules as well
(see Section 4).

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 277

In Section 2, we showed that under the item dependency assumption, whenever a
query Qi is found to contain Q, it is rather easy to extract the new results from past
ones. In fact, it suffices to search in Ri those rules which satisfy the requirements of Q
and to copy them verbatim (along with their support counts) into the new result set.

A sketch of this incremental approach is reported in Algorithm 1. The algorithm is
very simple: it checks which of the rules in Ri satisfy the constraints in Q and updates
R accordingly. It is important to notice that testing ΓB and ΓH is a feasible and effi-
cient operation. In fact, since the constraints are item dependent, their evaluation does
not require to access the whole (possibly huge) facts table. On the contrary, it merely
requires to access the dimension tables and to check the constraints using the informa-
tions found therein. Since those tables does usually fit into the main memory or in the
DBMS buffer memory, this rarely becomes a demanding operation. In addition, the Ξ
constraint is also easily checked by using the statistical measures stored together with
the rules in the past result.

Algorithm 1: Item Dependent (ID) incremental algorithm

Data : Ri = {b→ h} : old result set;
Q = (T, G, IB , IH , ΓB , ΓH , Ξ) : the query issued by the user;

Result : R : the set containing the rules satisfying Q

R← ∅;
foreach r ∈ Ri do

if ΓB(r) ∧ ΓH(r) ∧Ξ(r) then
R← R ∪ {r};

end
end

4 An Incremental Algorithm for Context Dependent Constraints

In this section we propose an incremental algorithm which is able to construct the
result of a new mining query Q starting from a previous result Ri even when the
mining constraints are not item dependent. At the best of our knowledge this is the
first attempt to write a mining algorithm able to deal with context dependent con-
straints [3,4,11,28,29,30].

The algorithm is best described by considering two separate steps. In the first one, the
algorithm reads rules from Ri and builds a data structure which keeps track of them. We
call this structure the BHF (Body-Head Forest) and describe it in Section 4.1. We notice
that since the BHF is built starting from a previous result set and represent only rules
found therein, this corresponds to a first pruning of the search space. In fact, subsequent
operations will simply disregard rules that do not appear in it (the correctness of this
approach is implied by Theorem 1).

In the second step, the algorithm considers two relations Tb = {< i, g > |i ∈
IB , g ∈ G, ΓB is true} and Th = {< i, g > |i ∈ IH , g ∈ G, ΓH is true}, containing
the items and the group identifiers (GIDs) that satisfy the mining constraints in query
Q. Tb and Th are obtained by evaluating the constraints on the fact table. Their role is

278 R. Meo et al.

to keep track of the context in which the itemsets appear. In fact, the context dependent
constraints require that their validity is checked group by group. The two relations fullfil
this purpose. We notice that this is another point in which the search space is pruned.
In fact, the constraints are evaluated on the database and the items which do not satisfy
the mining constraints are removed, once and for all, from the input relations.

Finally, the algorithm updates the counters in the BHF data structure accordingly to
the itemsets found in Tb and Th. The counters are then used to evaluate the statistical
measures needed to evaluate whether the constraint Ξ is satisfied.

4.1 Description and Construction of the BHF

A BHF is a forest containing a distinguished tree (the body tree) and a number of
ancillary trees (head trees). The body tree is intended to summarize the itemsets which
will be found in the body part of the rules. Importantly, in any tree, an itemset B is
represented as a single path and vice versa. In the node corresponding to the end of a
path, it is stored a head tree and the (body) support counter.

Analogously, the head tree (associated to the itemset B) is intended to summarize
the itemsets that will appear in the head part of the rules (having the body equal to B).
A head tree is similar in structure to a body tree with the exception that there are no
head trees associated to the end of any path. A path in a head tree corresponds to an
itemset H and is associated to a counter which stores the support of the rule.

Figure 1 gives a schematic representation of a BHF.
In the following, we will make use of the following notation: given a node n belong-

ing to a body tree or to a head tree, we denote with n.child(i) the body (respectively
the head) tree rooted in the node n in correspondence of the item i. For instance, in the
root node of the BHF reported in Figure 1, there are four items, and three non-empty
children; root.child(a) denotes the body node containing the items c, d, and z. In a sim-
ilar way we denote the head tree corresponding to a particular item i in a node n using
the notation n.head(i). We also assume that both body elements and head elements are
sorted in an unspecified but fixed order. We denote with B[k] (respectively with H [k])
the k-th element of the body B (respectively head H) w.r.t. this ordering. Finally, in
many places we adopt the standard notation used for sets in order to deal with BHF
nodes. For instance, we write i ∈ n in order to specify that item i is present in node n;
we write n ∪ i in order to denote the node obtained from n by the addition of item i.

Procedure insertRule
Data : root : the BHF root node

B → H : the rule to be inserted
headTree← insertBody(root, B, 1) ;
insertHead(headTree, H, 1);

Procedure insertRule describes how a rule is inserted in the BHF structure. The
procedure consists in two steps. In the first one, the body B of the rule is inserted in the
body tree (see Function insertBody) and the node n corresponding the end of the path

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 279

associated to B is determined. In the second one, the head is inserted and attached to n
(see Procedure insertHead).

We notice that the hierarchical structure of the BHF describes a compressed version
of a rule set. In fact, two rules B1 → H1 and B2 → H2 share a sub path in the body
tree provided that B1 and B2 have a common prefix. Analogously they share a sub path
in a head tree provided that B1 ≡ B2 and H1 and H2 have a common prefix.

Function insertBody
Data : n : a BHF node

B : an itemset
k : an integer

if B[k] �∈ n then
n← n ∪B[k]

end
if k < size(B) then

insertBody(n.child(B[k]), B, k + 1)
else

return n.head(B[k])
end

Procedure insertHead
Data : n : a BHF node

H : an itemset
k : an integer

if H [k] �∈ n then
n← n ∪H [k]

end
if k < size(H) then

insertHead(n.child(H [k]), H, k + 1)
end

4.2 Description of the Incremental Algorithm

Here, we assume that a BHF has been initialized using the rules in the previous result
set Ri (but with their support count equal to zero: it will adjusted in the following step).
We will show how the BHF is updated and the rules are extracted in order to build the
novel result set R.

In the following we will denote with:

– T ITEM
b [g] ≡ {i | (g, i) ∈ Tb} and with T ITEM

h [g] ≡ {i | (g, i) ∈ Th} the set of
items in group g that satisfy the body and the head constraints, respectively.

– T GID
b ≡ {g | (g, i) ∈ Tb} and with T GID

h ≡ {g | (g, i) ∈ Th} the set of GIDs in
Tb and in Th, respectively.

– T GID
b [i] ≡ {g | (g, i) ∈ Tb} and with T GID

h [i] ≡ {g | (g, i) ∈ Th} the set of group
identifiers in which item i satisfies the body and the head constraints, respectively.

280 R. Meo et al.

a

c

d

z

c

d

z

d

z

d

z

z

body tree head trees

f

g

m

Fig. 1. Example of BHF

– τ the support threshold chosen by the user
– r.body the body of rule r and with r.head the head of rule r

For the sake of readability, we reported in Algorithm 5 a simplified version of the
incremental algorithm which has the advantage of making its intended behavior clear.
We believe it is self explanatory. Instead, the implemented version greatly improves on
the simple, reported one. Let us now assume that the working of Algorithm 5 is clear.
We now try to give an idea of how the implemented version works and improve on it.
The main difference is that in order to avoid the checking of each and every rules in the
BHF (see Procedure incrRuleSupp), the algorithm performs a depth first search in the
BHF. In this way it is able to find all the rules which need their support to be updated
for a given group g without actually enumerate all possible rules.

Let us illustrate the way the implemented algorithm proceeds by means of an ex-
ample. Let us assume that the BHF in Figure 1 is given, and for group g it holds
T ITEM

b [g] = {a, c, z} and T ITEM
h [g] = {f, l}. In order to update the support counters

in the BHF tree, the algorithm proceeds as follows. The root of the body tree is exam-
ined in order to check which of the items it contains are in {a, c, z}. The item “a” is
found and its support counter is therefore incremented (we recall that the supports of
the body part of the rules are needed in order to evaluate the rules confidence values).
Since T ITEM

h [g]
= ∅, the head tree associated to “a” is examined. As a result, the al-
gorithm increments the support counters associated to the items in T ITEM

h [g]. That is

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 281

the ones corresponding to the rules having “a” in their body and any subset of {f, l} in
their head.

Once the updating of the counters in the head tree rooted in “a” is complete, the
algorithm examines the rest of the body tree. In the root node of the sub tree rooted in
“a”, the algorithm searches whether it contains items belonging to {c, z}. It finds item
“c” and increments its support. As in the previous case, the algorithm examines the head
tree associated to this item and updates the support counters accordingly.

Then, the sub tree rooted in “c” is examined in a similar way. Whenever a body tree
node does not contain any items in T ITEM

b [g], the algorithm backtracks to its ancestor
looking for items in T ITEM

b [g] that have not been “visited” yet in that node.

Algorithm 5: Context Dependent (CD) incremental algorithm

Data : Tb, Th

Result : R2

for all GID g ∈ T GID
b do

incrRuleSupp(BHF, T ITEM
b [g], T ITEM

h [g])

end
for all rule r ∈ BHF do

if Ξ(r) then
R2 ← R2 ∪ r

end
end

5 Results

The two incremental algorithms presented in this paper have been assessed on a
database instance, describing retail data, generated semi-automatically. We generated
a first approximation of the fact table (purchases) using the synthetic data genera-
tion program described in [31]. The program has been run using parameters |T | = 25,
|I| = 10, N = 1000, |D| = 10, 000, i.e., the average transaction size is 25, the average

Procedure incrRuleSupp
Data : a BHF,

Tb, Th

Result : It updates the support counters in the BHF
for all r ∈ BHF do

if r.body⊆ T ITEM
b [g] then

r.body.support++;
if r.head⊆ T ITEM

h [g] then
r.support++;

end
end

end

282 R. Meo et al.

size of potentially large itemsets is 10, the number of distinct items is 1000 and the total
number of transactions is 10.000. Then, we updated this initial table by adding some
attributes which provide the details (and the contextual information) of each purchase.
We added some item dependent features (such as “category of product” and “price”)
and some context dependent features (such as “discount” and “quantity”). The values
of the additional attributes have been generated randomly using uniform distributions
on the respective domains1.

We note here how a single fact table suffices for the objectives of our experimen-
tation. While, in fact, the characteristics of the database instance (e.g., total database
volume and data distribution) are determinant in order to study the behavior of mining
algorithms, this is not so when we are up to study incremental algorithms. Indeed, as
simple complexity considerations point out, the important parameters from the view-
point of the performance study of incremental algorithms are the selectivity of the min-
ing constraints (which determine the volume of data to be processed from the given
database instance) and the size of the previous result set.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ec

on
ds

Predicate Selectivity

Mining
Preprocessing

(a) Constraint selectivity vs execution time

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000 2500 3000

S
ec

on
ds

Number of rules in R1

Mining
Preprocessing

(b) Volume of previous result vs execution
time

Fig. 2. Empirical evaluation of the item dependent (ID) incremental algorithm

In Figure 2(a) we report the performances of the item dependent incremental al-
gorithm (ID) as the selectivity of the mining constraints changes. We experimented
different constraints on the item dependent attributes, letting the constraints selectivity
vary from 0% to 100% of the total number of items. In Figure 2(a) we sampled twenty
points. Figure 2(b) tests the same algorithm, but it lets vary the number of rules in the
previous result set. Again we sampled twenty points (in the range 0 . . . 3220). The two
figures report the total amount of time needed by the algorithm to complete. In partic-
ular, the bars, which represent the single experiments, are divided in two components:
the preprocessing time (spent in querying the database to retrieve and store in main
memory the items that satisfy the constraints), and the core mining time (needed by the
algorithm to read the previous result set and to filter out those rules that do not satisfy
the constraints any more).

1 The dataset can be downloaded from www.cinq-project.org

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 283

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ec

on
ds

Predicate Selectivity

Mining
Preprocessing

(a) Constraint selectivity vs execution time

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000

S
ec

on
ds

Number of rules in R1

Mining
Preprocessing

(b) Volume of the previous result vs execu-
tion time

Fig. 3. Empirical evaluation of the CD incremental algorithm

Figures 3(a) and 3(b) report the performances of the context dependent (CD) algo-
rithm. The figures report again the total execution time, specifying how much time was
spent for preprocessing and for the core mining task. It is worth noticing, that the CD
incremental algorithm performs a greater amount of work with respect to the ID algo-
rithm because the problem it solves is far more complex. In fact, in the preprocessing
phase the algorithm must retrieve all the group/item pairs satisfying the constraints and
access to them in order to build and update the BHF data structure. Only then, it can
retrieve the results from the BHF structure.

A couple of points are worth noting. The execution times of both algorithms increase
almost linearly with the increase of the two parameters (constraint selectivity and pre-
vious results), but, as it was expected, the item dependent incremental algorithm runs
much faster than its counterpart.

Moreover, as the experiments in Section 7 will show, both the algorithms are faster
than CARE, a new algorithm (that we introduce in the following section) which, nev-
ertheless, is capable of solving a class of more difficult problems - mining association
rules in presence of context-dependent constraints.

CARE, as the most of the algorithms, operates starting from scratch. We emphasize
here, that, at the best of our knowledge, CARE is the only mining algorithm capable
of dealing with context dependent constraints. Hence, comparisons with other mining
algorithms on the field of context dependent constraints are difficult to be made. Our
guess is that any state of the art mining algorithm should be able to outperform CARE,
on problems defined in terms of item dependent constraints, due to the lower generality
of the problem they face.

Interestingly, nevertheless, thanks to the good performances of incremental algo-
rithms also on problems with context dependent constraints, one has always the choice
of avoiding the use of CARE. This is done by running first the mining algorithm of his
choice (on the problem defined by the query but without the context dependent con-
straints) and then applying the incremental algorithm on top of it (with the addition of
context dependent constraints). The issue of which choice is the most promising is out
of the scope of this paper. However, we believe that the answer is likely to depend on
the problem at hand. In particular, whenever the mining constraints select a very small

284 R. Meo et al.

part of the original dataset, CARE is likely to be very fast. On the contrary, whenever
the result set is small, the incremental algorithm seems more efficient.

6 The Constrained Association Rules Extractor Algorithm

CARE (Constrained Association Rules Extractor) is an algorithm which has been de-
signed to extract association rules in presence of context dependent constraints. Con-
text dependent constraints do not allow the classical two phases algorithms (first, find
frequent itemsets, second, extract association rules), because frequency count and con-
straint satisfaction interact. In principle, a levelwise algorithm, such as Apriori [31],
might be used, provided that at each iteration the constraint is checked on the database.
We decided to develop CARE starting from Partition [32], since it has been shown to
perform better than Apriori on many databases.

Even if CARE can work with item dependent constraints, its main purpose is to pro-
vide a first and simple solution to the problem posed by CD constraints, thus providing a
baseline comparison for incremental algorithms. However, it is necessary to notice that
CARE is still under development in order to overcome its limitations: it is not able to
deal with cross mining constraints, such as BODY.feature1 < HEAD.feature1,
or aggregate constraints, such as sum(BODY.quantity) > val. Its main features
are the following:

– in contrast with any published algorithm we are aware of, CARE uses two separate
structures for storing items to be put in the body and items to be put in the head of
an association rule. This is needed because constraints on the body items might be
different from constraints on the head items.

– It maintains for each item a list of group identifiers (gidlists) of the transactions in
which the item appears, as done, for instance, in Partition [32]. This allows, on one
hand, to scan the database only twice, and on the other hand, to keep all needed
information to combine body items and head items. In a future implementation, on
dense databases, bitmaps will be used to efficiently store and operate on gidlists.

In a constrained mining framework, items must be frequent and satisfy the additional
mining constraints. In the general settings we are considering, items in the body of a
rule should satisfy a mining constraint ΓB , whereas items in the head of a rule should
satisfy a possibly different mining constraint ΓH . Such constraints can be evaluated a
posteriori, i.e., at the time rules are extracted from frequent itemsets, only if the con-
straints are item dependent.

In the general case of context dependent constraints (e.g., BODY.qty > 2 ∧
HEAD.qty = 1), items might satisfy the constraints ΓB or ΓH in some transactions
and not in others, thus influencing the frequency with which an item that satisfies the
mining constraints occurs. Moreover, as already said, since the same item in a transac-
tion might satisfy only one of the two constraints ΓB and ΓH , it is necessary to maintain
separate structures for storing body itemsets and head itemsets. In particular, there is a
structure (named BH) for the items satisfying the constraints on the body. Each entry
of this structure contains a triple < i, Bgids, HH >, where i is an item, Bgids is a list
of group identifiers (gidlists) in which the item is found in the source table, and HH is a

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 285

structure containing the items satisfying the constraints on the head. In this way, every
item that can be in the body of a rule is associated with the set of items that can be put in
the head of such a rule. This structure is very similar to the BHF previously described,
as it only contains the root nodes of the forest. In the following, we will use set nota-
tion for the abstract description of the algorithms, while in the actual implementation
of these structures we used hashmaps, for efficiency reasons.

Algorithm 7: The CARE algorithm

Data Structures:
Data : Tb, Th;

ε minimum support threshold;
Result : R

BH = { < i, Bgids, HH > |i ∈ IB,
Bgids = T GID

b [i], |Bgids| ≥ ε,
HH = {< j, Hgids > |j ∈ IH ,
Hgids = Bgids ∩ T GID

h [j], |Hgids| ≥ ε}
}

R = buildRules(BH, ε);
return R;

CARE works in two steps: in the first step, BH is initialized by scanning the tables
Tb and Th. Then, the rules are extracted through a recursive process.

The full sketch of CARE is reported in Algorithm 7.
Rules are extracted from the BH structure by first creating a body itemset (see func-

tion buildRules that in turn calls buildBody), then creating the corresponding head
itemsets for that body (see function buildHead), and repeating the process recursively
for all items in the BH structure. Note that each itemset in the body (head) is obtained
by union of the current body (head) with another item in the BH structure (HH struc-
ture). The gidlist of the candidate itemset is obtained by intersection of the respective
gidlists of the two “ancestor” itemsets and its cardinality is finally tested to verify the
support constraint.

Function buildRules
Data : BH the BH structure ;

ε minimum support threshold;
Result : R
while (BH �= ∅) do

let e =< i, Bgids, HH >∈ BH;
BH = BH− {e};
R = R ∪ buildBody(({i}, Bgids), BH, HH, ε);

end
return R;

286 R. Meo et al.

Function buildBody
Data : (CurrentBodyItemset, CurrentGids) current body information ;

BH the body-head structure ;
ε minimum support threshold;

Result : R the rules extracted
R = buildHead(CurrentBodyItemset, HH, (∅, CurrentGids), ε);
while (BH �= ∅) do

let e =< i, Bgids, HH >∈ BH;
BH = BH− {e};
newgids = Bgids ∩ CurrentGids;
if |newgids| ≥ ε then

newBody = CurrentBodyItemset ∪ {i};
R = R ∪ buildHead(newBody, HH, (∅, newgids), ε);
R = R ∪ buildBody((newBody, newgids), BH, ε);

end
end
return R;

Function buildHead
Data : CurrentBodyItemset current body items ;

HH the Head structure ;
(CurrentHeadItemset, CurrentGids) current head information ;
ε minimum support threshold;

Result : R the rules extracted
R = ∅;
while (HH �= ∅) do

let e =< i, Hgids >∈ HH;
HH = HH− {e};
newgids = Hgids ∩ CurrentGids;
if |newgids| ≥ ε then

newHead = CurrentHeadItemset ∪ {i};
R = R ∪ {CurrentBodyItemset→ newHead};
R = R ∪ buildHead(CurrentBodyItemset, HH, (newHead, newgids), ε);

end
end
return R;

Let us illustrate the process through a simple example. Suppose we are given the
source table reported in Table 1 and that we want to extract rules that satisfy the follow-
ing constraints:

– BODY.qty≥1 ∧ HEAD.qty≥5
– minimum support count = 2

After reading the source table filtered by body constraints and head constraints,
CARE builds the BH structure as reported in Table 2.

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 287

Table 1. Example of a source table

gid item qty
A 2

1 B 7
C 8
A 1

2 C 6
A 1

3 B 6
C 1

Table 2. The BH structure built from the source table in Figure 1

body item gidlist HH structure

A 1,2,3
head item gidlist

B 1,3
C 1,2

C 1,2,3
head item gidlist

B 1,3

It should be noted that there is no entry for body item B, because, even though item
B is frequent, there are no frequent items for the head associated to B, i.e., no rules with
B in the body can be extracted.

Afterwards, buildRules is called and rules are extracted in the following order:

– A → B
– A → C
– AC → B
– C → B

i.e., for every body, buildHead is called to build the corresponding heads. Then,
buildBody is called recursively to build larger and larger bodies. Finally, the next item
in the BH structure is taken into consideration and the process repeated.

Of course, a number of optimizations might be implemented by accurately com-
puting gidlist intersections and storing intermediate results. However, the current im-
plementation is sufficiently efficient to be used for comparison with the incremental
algorithms presented in the following sections.

7 Comparison Between the CD Incremental Algorithm and CARE

In this section we compare the performances of the CD incremental algorithm with
CARE. In the experiments, we want to observe how the dimensions of the problem
impact on the performances of the two algorithms. Thus, we designed the experiments
by varying one dimension at a time, so that the influence of each dimension is observed

288 R. Meo et al.

separately with respect to the other ones. The dimensions are (as already pointed out
in Section 5): the selectivity of the mining predicates, the support threshold, and the
volume (number of rules) of the previous result set. For each experiment, we report the
running time of the two algorithms. We notice that, in general, the problem parameters
have a different impact on the two algorithms. For instance, the support threshold is
probably the parameter which has the highest impact on CARE running time, but the
same time, it affects the running time of the incremental algorithm only in a marginal
way. Moreover, the size of the result set of a previous (more general) query usually
is not an interesting parameter for mining algorithms although it is probably the most
important one for the incremental algorithm.

The two algorithms have been assessed on the purchases database we introduced
in the previous section. Some preliminary considerations on the influence that the ty-
pology of the dataset has on the incremental algorithms are necessary.
purchases is a sparse dataset. In sparse data, roughly speaking, the volume of re-

sults of a mining query, compared with the volume of the original database, is reduced
and lower with respect to dense datasets at equal conditions (such as support threshold
and constraints selectivity). We believe the main results on the behavior of the incre-
mental algorithm we present in this Section with experiments on a sparse dataset should
be still valid on a dense dataset with some differences. First, on a dense dataset the im-
pact of I/O operations for reading the source database is less important if compared with
the I/O required for reading the previous result set. This would constitute a disadvan-
tage for the incremental algorithm. Second, in a dense dataset, the larger previous result
set would allow a minor pruning on the search space which, on the other side, would be
larger because data in a dense dataset are much more correlated. As a conclusion, the
volume of the previous result set and that one of the search space should be two issues
that should counterbalance each other. However, more insights on dense datasets are
reserved for further work.

Extensive preliminary results on purchases showed that the incremental algo-
rithm is substantially faster than CARE when a reduced previous result set is available.
Indeed, this latter one allows incremental algorithms to do much pruning on the itemsets
search space which finally results in a decisive advantage for the incremental algorithm.
Hence, here, we want to test the incremental algorithms in a more stressing situation.
We assumed that we have a single previous query available, which contained a very
low support threshold (namely: 0.0085) and very loose predicates. As a result, the in-
cremental algorithms have at their disposal in the BHF data structures a previous, very
large (and thus not filtering) result set, composed of 158,336 rules. In the experiments,
the current query is representative of a typical business-value scenario with a medium
volume (6056 rules): find all the rules which appeared in 1.2 percent of the transactions
and that contained costly to average priced items (“price ≥ 1000”).

In the first pool of experiments, we varied just the size of the previous result set. We
started from a previous result set which contained 7,931 rules (i.e., 5% of the total), and
increased this number repeatedly until the whole volume of the 158,336 rules is reached.
Figure 4 reports the result of the experiments. The number (N) of rules contained in
the previous result set is plotted against the total running time of the two algorithms
(y-axis). Here, we stress the fact that the two algorithms solve the same problem, but

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 289

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000 120000 140000 160000

R
un

ni
ng

 ti
m

e
(s

)

Number of previous rules

CARE Incr

Fig. 4. CARE vs Incremental algorithm, as the cardinality of the previous query result set varies

while the incremental algorithm exploits the result of a previous query, CARE starts
from scratch. As we can see, the running time of the incremental algorithm is very
low in correspondence to low values of N (the number of rules in the previous result
set). Then it increases linearly with N. We want to remark here this linear behavior is
desirable, i.e., the scalability of incremental algorithms with respect to one of the main
dimensions of the problem. On the other side, since the running time of CARE does not
change with the tested parameter, the time spent by the incremental algorithm to solve
the problem is bound to overcome the running time of CARE in the limit (i.e., when
only a large volume of the previous result is available). In the experiment, this happens
for N = 65, 998 (accordingly to the line which interpolates the displayed data), but it
should be noted that this value highly depends on the running time of CARE, i.e., on
the support value and on the constraints of the current query. One may wonder why
the incremental algorithm does not succeed in showing a better behavior than CARE in
all situations (since the incremental algorithm has at its disposal more information than
CARE). The answer is that the incremental algorithm has been thought and optimized
in order to be extremely fast whenever a good (i.e., restricted and thus filtering) previous
answer could be found in the system memory. In order to achieve the desired filtering of
the search space, it mainly enforces the initial pruning provided by the results it reads
from the disk. This, on one side, allows the algorithm to benefit from a very fast support
counters update schema (and allows also a single pass over the database). On the other
side, however, it forces the algorithm to read from disk another complete source of
information that reveals a choice less competitive when its volume is large (and the
pruning not sufficient). In conclusion, the incremental algorithm is a desirable strategy
when a reduced previous result is available (if compared with the search space).

290 R. Meo et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.005 0.01 0.015 0.02 0.025 0.03

R
un

ni
ng

 ti
m

e
(s

)

Minimum support

CARE Incr

Fig. 5. CARE vs Incremental algorithm, as the support threshold of the current query varies

The trade off between the two algorithms is made evident once again by the re-
sults reported in the second set of experiments, shown in Figure 5, where the support
threshold (x-axis) is plotted against the running time of the algorithms (y-axis). The pre-
vious result set contains the total volume of the large, above mentioned, previous result
(158,336 rules). The mining constraints in current query are the same as the ones in the
previous set of experiments but the support threshold in the current query varies between
0.0085 (the value set in the adopted, previous query) and 0.03. As it was expected, the
incremental algorithm is much less affected by changes of the support threshold than
CARE. In particular, we can see that its running time drops almost immediately to about
260 seconds and then it does not change very much. The reason for the drop in the ex-
ecution time is that as the support threshold decreases, the number of rules given as
output increases. Hence, it turns out that, in the current settings, the algorithm takes
about 260 seconds to update the 158,336 support counters in BHF structure, while the
rest of the time is spent in saving the result on the database. On the contrary, CARE
by exploiting the antimonotonicity property of the constraints on minimum support,
outperforms the incremental algorithm as the support threshold becomes high enough
(reaching the lower bound of 100 seconds). Notably, according to the results reported in
Figure 4, the chances are that if the previous query had contained less than 50,000 rules
(instead of the 158, 336 present in the current setting), then the incremental algorithm
would have outperformed CARE (with execution times lower than 100) no matter the
value of the support threshold!

In the last pool of experiments, we set the support threshold equal to 0.0085, the
previous results contain 158,336 rules, and let the selectivity of the constraints vary
from 0.9010 to 0.9849. Figure 6 reports the results. As usual, the y-axis reports the total

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 291

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

R
un

ni
ng

 ti
m

e
(s

)

Constraint selectivity

CARE Incr

Fig. 6. CARE vs Incremental algorithm, as the constraints in the current query vary

running time of the algorithms, while the x-axis reports the percentage of the source
table selected by the mining constraints (i.e., it reports the ratio between the number
of rows that satisfy the constraints and the cardinality of the source table). As we can
see the running time of both algorithms increases with the percentage of selected rows.
Interestingly, this result suggests that the incremental algorithm, despite being faster on
larger datasets, does not run as fast when the size of the database become smaller. This
is probably due to the overhead the incremental algorithm suffers in order to build the
BHF data structure. In order to check this hypothesis, we plotted in Figure 7 the total
time needed by the algorithms in order to build the result once the preprocessing steps
were completed2. As it can be seen, the “core” operations are consistently cheaper in
the case of the incremental algorithm (this is expected, since it avoids the costly opera-
tions needed to manage the gid lists which are necessary in case of context dependent
constraints).

In summary, the use of the incremental algorithm, is very often a winning choice
when a suitable past result can be found. However, the choice between an incremental

2 Which steps of each algorithm contribute to the preprocessing is hard to be stated objectively
since the two algorithms make rather different choices in their early steps. However, we de-
cided to consider as preprocessing the steps that are performed before the exploration of the
itemsets search space occurs, which is usually a typical operation of the core data mining
algorithm. In the case of CARE, we considered the time spent in reading the database as a
preprocessing step since it is needed to fill the data structures used later on. In the case of the
incremental algorithms we considered as pre-processing the time spent in building the BHF
data structure, but not the time spent reading the DB since this one is interleaved with the
“navigation” and management of the search space.

292 R. Meo et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

R
un

ni
ng

 ti
m

e
(s

)

Constraint selectivity

CARE Incr

Fig. 7. CARE vs Incremental algorithm, as the constraints of the current query vary (times re-
ported without the preprocessing time)

strategy and a non-incremental one should be made taking into account how the change
of the problem dimensions affect the two strategies. In particular, it seems to be clear
that whenever a very small previous result can be found, the incremental algorithm is
hardly outperformed: it searches a small space and it builds the information needed to
find the rules very efficiently. However, when the size of the previous result set grows
larger, a “traditional” miner may win, especially when the support threshold is high.
In this case, in fact, one looses both the advantages of the incremental algorithm: the
algorithm will spend a large part of the time in building the BHF structure out of the
previous result, and will probably search a larger space w.r.t. the space searched by
algorithms which exploit the antimonotonicity of support.

8 Conclusions

In this paper we proposed a novel “incremental” approach to constraint-based mining
which makes use of the information contained in previous results to answer new queries.
The beneficial factors of the approach are that it uses both the previous results and the
mining constraints, in order to reduce the itemsets search space.

We presented two incremental algorithms. The first one deals with item dependent
constraints, while the second one with context dependent constraints. We note how the
latter kind of constraints has been identified only recently and that there is very little
support for them in current mining algorithms. However, the difficulty to solve mining
queries with context dependent constraints can be partially overcome by combining

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 293

the “traditional” algorithms proposed so far in the literature, and the context dependent
incremental algorithm proposed in this paper.

Moreover, we described a non-incremental algorithm (CARE) for the extraction of
constrained association rules, in order to provide a direct comparison for the incremen-
tal ones. CARE is specifically designed to deal with context dependent constraints on
both the body and the head of association rules and is, to the best of our knowledge, the
only one of this type.

In Section 5 and in Section 7, we evaluated the incremental algorithms on a pretty
large dataset. The results show that the approach reduces drastically the overall execu-
tion time. Whenever we have a small previous result to exploit, or when the support
threshold is small, we believe the improvement is absolutely necessary in many practi-
cal data mining applications, in data warehouses and inductive database systems.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in
large databases. In: Proc.ACM SIGMOD Conference on Management of Data, Washington,
D.C., British Columbia (1993) 207–216

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of as-
sociation rules. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., eds.:
Knowledge Discovery in Databases. Volume 2. AAAI/MIT Press, Santiago, Chile (1995)

3. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: Pro-
ceedings of 1997 ACM KDD. (1997) 67–73

4. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning opti-
mizations of constrained associations rules. In: Proc. of 1998 ACM SIGMOD Int. Conf.
Management of Data. (1998) 13–24

5. Tsur, D., Ullman, J.D., Abiteboul, S., Clifton, C., Motwani, R., Nestorov, S., Rosenthal, A.:
Query flocks: A generalization of association-rule mining. In: Proceedings of 1998 ACM
SIGMOD Int. Conf. Management of Data. (1998)

6. Chaudhuri, S., Narasayya, V., Sarawagi, S.: Efficient evaluation of queries with mining
predicates. In: Proc. of the 18th Int’l Conference on Data Engineering (ICDE), San Jose,
USA (2002)

7. Imielinski, T., Virmani, A., Abdoulghani, A.: Datamine: Application programming interface
and query language for database mining. KDD-96 (1996) 256–260

8. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules. In:
Proceedings of the 22st VLDB Conference, Bombay, India (1996)

9. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query language
for relational databases. In Proc. of SIGMOD-96 Workshop on Research Issues on Data
Mining and Knowledge Discovery (1996)

10. Wang, H., Zaniolo, C.: User defined aggregates for logical data languages. In: Proc. of
DDLP. (1998) 85–97

11. Perng, C.S., Wang, H., Ma, S., Hellerstein, J.L.: Discovery in multi-attribute data with user-
defined constraints. ACM SIGKDD Explorations 4 (2002) 56–64

12. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communica-
tions of the ACM 39 (1996) 58–64

13. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.: Computing iceberg
queries efficiently. In: Proceeding of VLDB ’98. (1998)

14. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proc. of the 26th Int’l
Conference on Very Large Databases (VLDB), Cairo, Egypt (2000) 307–316

294 R. Meo et al.

15. Jeudy, B., Boulicaut, J.F.: Optimization of association rule mining queries. Intelligent Data
Analysis 6 (2002) 341–357

16. Tuzhilin, A., Liu, B.: Querying multiple sets of discovered rules. In: KDD ’02: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining. (2002)

17. Baralis, E., Psaila, G.: Incremental refinement of mining queries. In: Proc. of First Interna-
tional Conference on Data Warehousing and Knowledge Discovery. Volume 1676 of Lecture
Notes in Computer Science., Springer (1999) 173–182

18. Cheung, D.W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of discovered association rules
in large databases: an incremental updating technique. In: ICDE96 12th International Con-
ference on Data Engineering, New Orleans, Louisiana, USA (1996)

19. Lee, S.D., Cheung, D., Kao, B.: A general incremental technique for maintaining discovered
association rules. In: Proceedings of the 5th International Conference On Database Systems
For Advanced Applications, Melbourne, Australia (1997) 185–194

20. Thomas, S., Bodagala, S., Alsabti, K., Ranka, S.: An efficient algorithm for the incremental
updation of association rules in large databases. In: KDD. (1997) 263–266

21. Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., Widom, J.: Performance issues in incremen-
tal warehouse maintenance. In: Proceedings of Twenty-Sixth International Conference on
Very Large Data Bases. (2000) 461–472

22. Meo, R., Botta, M., Esposito, R.: Query rewriting in itemset mining. In: Proceedings of the
6th International Conference On Flexible Query Answeringd Systems. LNAI 3055, Springer
(2004)

23. Leung, C.K.S., Lakshmanan, L.V.S., Ng, R.T.: Exploiting succinct constraints using fp-trees.
ACM SIGKDD Explorations 4 (2002) 40–49

24. Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: mining multidimen-
sional intertransaction association rules. ACM Trans. Inf. Syst. 18 (2000) 423–454

25. Feng, L., Dillon, T.S., Liu, J.: Inter-transactional association rules for multi-dimensional con-
texts for prediction and their application to studying meteorological data. Data Knowledge
Engineering 37 (2001) 85–115

26. Grahne, G., Lakshmanan, L.V.S., Wang, X., Xie, M.H.: On dual mining: From patterns
to circumstances, and back. In: Proceedings of the 17th International Conference on Data
Engineering. (2001)

27. Bucila, C., Gehrke, J., Kifer, D., White, W.M.: Dualminer: a dual-pruning algorithm for
itemsets with constraints. In: Proceedings of 2002 ACM KDD. (2002) 42–51

28. Bayardo, R., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense
databases. In: Proceedings of the 15th Int’l Conf. on Data Engineering, Sydney, Australia
(1999)

29. Lakshmanan, L.V.S., Ng, R., Han, J., Pang, A.: Optimization of constrained frequent set
queries with 2-variable constraints. In: Proceedings of 1999 ACM SIGMOD Int. Conf. Man-
agement of Data. (1999) 157–168

30. Raedt, L.D.: A perspective on inductive databases. ACM SIGKDD Explorations 4 (2002)
69–77

31. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Proceedings of the 20th VLDB Conference, Santiago, Chile (1994)

32. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association
rules in large databases. In: Proceedings of the 21st VLDB Conference, Zurich, Switzerland
(1995)

	Introduction
	Preliminary Definitions and Notation
	An Incremental Algorithm for Item Dependent Constraints
	An Incremental Algorithm for Context Dependent Constraints
	Description and Construction of the BHF
	Description of the Incremental Algorithm

	Results
	The Constrained Association Rules Extractor Algorithm
	Comparison Between the CD Incremental Algorithm and CARE
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

