
Towards a Methodological Approach to Specification
and Analysis of Dependable Automation Systems

Simona Bernardi1, Susanna Donatelli1, and Giovanna Dondossola2 �

1 Dipartimento di Informatica, Università di Torino, Italy, �susi,bernardi�@di.unito.it
2 CESI Automation & Information Technology, Milano, Italy, dondossola@cesi.it

Abstract. The paper discusses a constructive approach to the temporal logic
specification and analysis of dependability requirements of automation systems.
The work is based on TRIO formal method, which supports a declarative tem-
poral logic language with a linear notion of time, and makes use of UML class
diagrams to describe the automation system. The general concepts presented for
the automation system domain are here instantiated on a case study application
taken from the energy distribution field.

1 Introduction

The design of critical systems is faced with the need of devising appropriate “depend-
ability strategies”, that is to say the need of choosing and specifying a set of steps that
allow to improve the reliability of the system. In the project DepAuDE [6] 3 this issue
has been investigated and a methodology to support the analyst in collecting and analyz-
ing system dependability requirements, aimed at designing appropriate Fault Tolerance
(FT) solutions, has been devised through a collaboration between the CESI 4 company
and the University of Torino.
The application domain for the methodology is that of distributed cyclic control sys-
tems, while the specific application considered in the case study presented here is re-
lated to the automation system for primary substations of electricity distribution net-
work (called PSAS in the following), proposed by CESI within the DepAuDE project [5].
The PSAS provides the tele-control and protection functions of the Primary Sub-stations
(PSs), where PSs are nodes of the electric distribution grid connecting the High Voltage
transportation network to the Medium Voltage distribution. The aspects of PSAS that
are relevant for this paper concern the cyclic behavior and the synchronization issues
of the distributed automation systems local to the PS and they will be introduced, when
needed, in Section 4.

Three different formalisms collaborate in a synergic manner in the methodology:
UML Class Diagrams [21] (CDs from now on), a static paradigm, TRIO [12] temporal

� Partially funded by Italian Ministry of Productive activities - Rete 21 - SITAR project
3 EEC-IST-2000-25434 DepAuDE (Dependability for embedded Automation systems in Dy-

namic Environment with intra-site and inter-site distribution aspects) project.
4 CESI is an Italian company providing services and performing research activities for the Elec-

tric Power System.

logic, and Stochastic Petri nets [19] (PN), an operational paradigm aimed at perfor-
mance and dependability evaluation. A multi-formalism approach during the depend-
ability process is also advocated by emerging standards like IEC 60300 [4].

Class Diagrams are the “entry level” in the methodology that provides a set of pre-
defined CDs for the automation system domain, called “the generic scheme”, and guide-
lines on how to produce from it an instantiated one, that refers to the target application.
Diagrams are meant as a support for the requirements collection and/or for structur-
ing and/or reviewing for completeness already available requirements. In DepAuDE
we have studied how the information available in the scheme can be used as a starting
point for the modelling efforts with TRIO and SPN. The role of Stochastic Petri nets
in the DepAuDE approach is to evaluate the reliability of the candidate dependability
strategies [7, 1], while in this paper we discuss the role of TRIO and its links to the CDs.

TRIO is a linear temporal logic that finds its origins in the nineties as a joint effort of
Politecnico di Milano and ENEL as a formal declarative language for real-time systems.
Since then several TRIO dialects and validation tools have been prototyped (e.g., [18],
[10]) and used in several projects. We use Modular TRIO Language [3] and a tool set
developed in the FAST project5, implemented over the Prover Kernel [9].

In DepAuDE TRIO has been used for specifying and analysing dependability re-
quirements and fault tolerance strategies in a temporal logic framework. The choice of
a declarative language, and in particular a logic formalism like TRIO, has been driven
by the analysis methods followed at CESI, where TRIO is a common practise for sys-
tem analysis of timed properties. Other choices are indeed possible, like that of using
an operational formalism using extended State-charts, as proposed, for example in the
embedded system field, in [14]: the advantages and disadvantages of operational versus
declarative formalisms are well established, and we shall not discuss them here.

The work on CDs and TRIO in DepAuDE takes its basis from the preliminary work
in [11], in which the first ideas on the use of CD in the context of dependability analysis
of automation systems and the possibilities of cooperation of TRIO specification with
CD models were discussed. The work presented in this paper represents a step forward,
by introducing a three steps incremental specification: the derivation of the TRIO spec-
ification structure from the UML Class Diagrams, a first completion of the specification
with domain dependent knowledge and the full formalisation with application depen-
dent knowledge. Goal of this three steps procedure is to provide the user with a more
structured approach to the construction of logic specifications, and to allow reuse of
partial specifications.

This paper describes the three steps and demonstrate their efficacy through the
PSAS case study. Due to space constraints, the paper concentrates the analysis only
on timing properties, while the complete case study can be found in [7].

The paper is structured as follows. Section 2 recalls the language TRIO and its
analysis capability, Sect. 3 summarizes the CD scheme proposed in DepAuDE, Sect. 4
introduces the three steps procedure and its application to the PSAS, while Sect. 5
discuss the analysis methodology with examples from the PSAS.

5 ESPRIT FAST Project No. 25581 (Integrating Formal Approaches to Specification, Test case
generation and automatic design verification)

2 Basic TRIO Methodology

A TRIO specification is structured into classes, and each class includes a declaration
session followed by a formulae session. The declaration session defines the signature of
TRIO items (atomic propositions, predicates, values and functions), which are grouped
into Time Independent (TI) and Time Dependent (TD) items, and the types for the value
domains of predicates, values and functions.

TRIO formulae are expressed in a temporal logic language that supports a linear
notion of discrete time. Beyond the propositional operators and, or, xor, implies, iff
(&, �, ��, �, � in TRIO syntax) and the quantifiers ���� � � (all� ex� nex in TRIO),
TRIO formulae can be composed using the primitive temporal operator Dist, and de-
rived temporal operators. Dist allows to refer to events occurring in the future or in the
past with respect to the current, implicit time instant. If F is a TRIO formula and δ is a
term of time type, then Dist�F�δ� is satisfied at the current time instant if and only if F
holds at the instant laying δ time units ahead (or behind if t is negative) the current one.
Derived temporal operators can be defined from Dist through propositional composition
and first order quantification on variables representing a time distance [3]. The intuitive
semantic of the operators used in this paper is as follows: Alw�F� (F is always true),
AlwF�F� (F will be always true in the future),AlwP�F� (F has been always true in the
past), Becomes�F� (F is true now and it was false in the instant immediately preceding
the current one), NextTime�F�δ� (F will become true exactly at δ time and from now
till that instant it will be false). TRIO is linear and time is implicit: all properties refer
to a single execution observed at the current time.

The formulae session may include: definitions, axioms, properties and Abstract Test
Cases (ATC): they are all temporal logic formulae, but they play a different role in
the analysis. Definitions are a macro-expansion mechanism, axioms express system re-
quirements (the description of the system), properties express requirements that have
to be derivable from the set of axioms (the system properties of interest), and ATC are
formulae compatible with the axioms that are used to focus the analysis on relevant,
more restricted, contexts (a particular behavior of the system).

The TRIO tool supports automatic proof sessions based on three proof techniques:
model generation, property proof, and test case generation. Model generation produces
a set of temporal logic models (called TRIO histories) for the selected properties: a
model is graphically represented by a set of up/down functions plotting the truth value
of a Time Dependent (TD) proposition/predicate on the time line. Property proof com-
putes the validity of a property. If the property is not valid then counter models are
produced. Test case generation allows the automatic generation of a set of test cases
according to a number of testing criteria. The analysis requires the setup of the “proof
session” to specify the portion of the specification to be used for the proof, the choice
of the proof technique, and the setting of the time interval considered.

3 UML Class Diagrams for Automation Systems

The DepAuDE “generic scheme” consists of a set of UML Class Diagrams (CDs) cap-
turing generic issues considered relevant for a wide class of dependable automation

applications. From the generic scheme, an instantiation activity (described in [2]) al-
lows to derive an instantiated CD scheme, that specifies a given application (system
description and associated dependability requirements).

Methodology

DE Model Strategy
Model

System Model

Composition Functions

Time
Requirements

Dependability
Attributes

Fault
Model

Error
Model

Failure
Model

DE Step
 Model

DE
 Mechanism

Model

depend depend

depend

dependdepend
depend

depend

depend depend depend

Fig. 1. Hierarchical Structure of the packages.

The set of CDs are grouped into the hierarchical structure of UML packages rep-
resented in Fig. 1, where each non-leaf package encapsulates a set of inner packages
together with their dependency relationships, that indicates a suggested order of use. For
each innermost package one or more CDs are provided that constitute different views
on the system being described, focusing on aggregation, generalization/specialization,
and class definition (associations and attributes) aspects of a portion of the system. In
the scheme the class attributes are stereotyped to represent either parameters provided
as input to the specifications or measures to be evaluated or upper/lower bounds to be
validated. Let us now provide an overview of the scheme, following Fig. 1.
System Model addresses the system requirements. It specifies 1) the conceptual struc-
ture of an automation system ; 2) the association of automation functions to system
components; 3) the association of (real) time requirements to system components and/or
functions; and, finally, 4) the association of dependability attributes to system compo-
nents and/or functions. The CDs that are most relevant for the presented case study are
the CD Structure in which the whole automated system is decomposed into automation
sites connected by an automation communication infrastructure. An automation system
residing on a given site is defined as an aggregation of automation components and of
automation functions. An automation component may control directly a (set of) plant
components through association control. The CD Constraints allows to identify those
temporal attributes which are considered relevant for the specification of automation
systems, such as cycle time that refers to the time required by the automation system
to execute a complete cycle (i.e., read a sample input from the plant, elaborate to pro-
duce the future state and provide output to the plant). The attribute cycle time is defined
as a bound to be validated in the generic CD, and as a specific value (100ms) on the
instantiated CD.

Figure 2(C) shows a very small portion of the CD that describes the PSAS automa-
tion system, made of three Automation Components and with two relevant attributes.

PS Automation
Component

1
3

PS Automation
System (from Composition)

/$cycle_time: 100ms, [60,100]ms
/availability

PSAS Dependability Step

PSAS Dependability
 Strategy

3

1

PSAS Error Detection PSAS Error Recovery

PSAS Error Processing Step PSAS Fault Treatment

PSAS Reconfiguration
1

PSAS Fault Passivation

(A) (B)

PS Automation Component
(from PSAS Composition)

PS Automation Function
(from PSAS Function)

PS Communication Function
(from PSAS Function)

PS Error
(from PSAS Error Model)

PSAS Physical Faults
(from PSAS Fault Model)

cause

effect

cause

effect

1..n

0..n

1..n

0..n

Ecause

Eeffect

0..n
0..n

cause

effect

0..n

affect

affect

affect

0..n
0..n

0..n 1..n

1..n

1..n

PS Failure
(from PSAS Failure Model)

affect

1
1..n

1..n

1..n

1..n

perform

perform

0..n

PSAS Fault
(from PSAS Fault Model)0..n

(C)

Fig. 2. View of the instantiated CD Strategy (A) FEF chain (B), and Strategy (C).

Dynamic Environment Model. The package DE Model captures several concepts on
the fault theory expressed in the literature [16], and its extension to malicious faults, as
developed by the European MAFTIA project [24] and partially modified upon CESI ex-
perience. It contains three sub-packages (Fault Model, Error Model and Failure Model)
each one characterizing a different view of a fault evolution, from its appearance to its
recovery and/or repair. The CDs are connected so as to reflect the propagation effect
linking faults to errors and errors to failures (FEF chain).

Once customized on a specific application, the CD of the FEF chain shows which
faults provoke which errors and which (set of) errors provoke a failure. The diagram also
connects each type of fault, error and failure with the corresponding system components
affected by it: a fault may affect an automation component (elaboration, memory or
communication unit), and an error may affect an automation function performed by the
faulty component. If a function is affected by an error, the error can be propagated to
another function thus provoking an error in another function. If errors are not recovered
in due time failures may appear. The FEF chain for the PSAS is given in Fig. 2(B).
Strategy Model. This package concerns the representation of the dependability strat-
egy. A dependability strategy is defined as an aggregation of (temporal) steps in which
actions have to be undertaken in order to stop the fault evolution. The Dependability
Step CD supports a classification of those steps and connects them to the fault, error,
and failure elements addressed by the step. The PSAS strategy consists of three steps:

an error detection followed by an attempt of error recovery and, eventually, a system
reconfiguration: the correspondent CD is shown in Fig. 2(A).

4 TRIO Scheme in DepAuDE

The TRIO formalization is aimed at describing and analyzing the logic of a depend-
ability strategy following the requirements collected and structured according to the
UML scheme. The analysis concerns the temporal evolution of an automation system
integrating a dependability strategy. The TRIO specification is built incrementally, and
each partial specification is validated by several proof sessions.

In the DepAuDE Methodology the TRIO formalisation of dependability require-
ments is an extension of their representation in UML Class Diagrams. The relation
between UML class diagrams and TRIO forms is a partial one: only a subset of the
UML class attributes and associations is related with elements of the TRIO scheme
and, vice-versa, which is not surprising since the two formalisms play quite different
roles in the development of a system. In particular, TRIO classes introduce new time
relationships, which are not present in the correspondent CDs.

The approach used to develop a TRIO specification is a three-steps procedure. The
first step consists of deriving a basic TRIO specification structure, using a set of pre-
defined actions that are applied using information from the instantiated UML scheme
(Sect. 4.1). In the second step, domain specific knowledge is introduced leading to
partially defined classes that include item declarations and formulae of general usage
(Sect. 4.2). In the third step the specification is completed using application dependent
knowledge and design level information (Sect. 4.3).

4.1 Deriving the Skeleton of the TRIO Scheme from UML Class Diagrams

As a starting point a number of syntactic links have been identified between CDs ele-
ments and TRIO elements:
L1 Reuse of the structured organization into classes;
L2 The objects instances of UML classes are mapped into TRIO types;
L3 Class attributes are mapped into TRIO time (in)dependent items;
L4 The value of a class attribute is mapped into a TRIO axiom, if the value is unique,

or into a TRIO type, otherwise;
L5 Associations are mapped into TRIO time (in)dependent predicates and axioms;
L6 UML constraints are mapped into TRIO properties.

Each first level package of the UML Dependability Scheme given in Fig. 1 maps to
a TRIO class, leading to a TRIO Scheme with three classes: System, Dynamic Envi-
ronment and Strategy. In this paper we only provide a partial derivation for the three
classes: their full description can be found in [7].

The construction of the classes is described through a set of numbered actions that
we have defined following the information available in the generic scheme, and that can
be applied by the modeller on the specific application using the information available in
the instantiated scheme. In the following we present a few examples of actions (again
the full set is in [7]), where the numbering respects the original one in [7], for ease of
reference, and their application to the PSAS case.

Derivation of the class System. Sys Action 1: in the CD Structure the class Automation
System is composed of a set of Automation Component Ci. This set is represented as
the domain type Automation Component Set which is an enumerative range identifying
class objects (application of L1 and L2). The type Automation Component Set is then
used to define predicates characterising the class Automation Component.
Sys Action 2 The attribute cycle time of the UML class Automation System in the Class
Diagram Structure is translated into the TRIO Time Independent (TI) value cycle time
taking values over the type cycle value (application of L3). The range of values of
the UML cycle time attribute defines the type cycle value (application of L4). Since a
single value is also present for the UML attribute, then the axiom cycle time setting is
introduced assigning that value to the item cycle time. Let us now apply the previous
actions to the PSAS case, by considering the set of CDs customised over the PSAS
application.
Application of Sys Action 1 According to the customised CD of Fig. 2(A) the PSAS
system is composed of three Primary Substation Automation Components. Therefore
the domain type PS Automation Component Set is introduced which ranges over three
values: N1, N2 and N3.
Application of Sys Action 2 According to the instantiated CD of Fig. 2(A) the PSAS
cycle time is set to 100 ms and the range from 60 to 100 ms. Therefore the domain
type PS cycle value and the TI item cycle time are introduced, as well as the axiom cy-
cle time setting. Fig. 3 shows the partial specification of the class System for the PSAS
obtained by applying all the actions.

Derivation of the class DE For what concern the class DE, 9 actions have been defined
to specify faults, errors, failures, propagation in the FEF chain and relationship with the
affected system elements. As an example we present here only those relative to faults
and to their propagation into errors.
DE Action 1 and its application Enumerative types should be introduced for speci-
fying the possible types of faults, errors, and failure. The application of this action for
faults, using the information from the Fault model in the PSAS instantiated CDs leads
to the enumerative type PS Fault Categories = � perm physical, temp physical �.
DE Action 2, 3 and their application These actions relate FEF elements to system
elements, following the information of the affect CD association, and require to intro-
duce three TI predicates with associated axioms to formalize the predicate. For faults the
predicate is called fault affect component (Fault Categories, Automation Component Set),
and its application to the PSAS leads to the predicate fault affect component (PS Fault -
Categories, PS Automation Component Set). Assuming component is a variable of
PS Automation Component Set type, the axiom is:

fault model: all component
(fault affect component(perm physical, component) &
fault affect component(temp physical, component));

DE Action 7 The axiom error causes is introduced: it traces back to the cause-effect
association in the CD of the FEF chain. An error can be directly caused by a fault, or
by the propagation of an error. The axiom states that, at a given instant, an error can
affect function1 performed by component1 if some t time units before a fault occurred

Fig. 3. Skeleton of the PSAS System class

(a fault of a type that can affect component1), or if some t time units before an error
occurred to a function2 of component2, and component1 and component2 communicate
(thus allowing error propagation).
error causes: Alw(all component1, function1

(Becomes(error(function1,component1)) ��
((perform(component1,function1) &
ex fault cat, t (fault affect component(fault cat,component1) &

Dist(Becomes(fault(fault cat,component1),-t))) ��
ex component2, function2 (communicate(component1,component2) &

perform(component2,function2)) &
ex t Dist(Becomes(error(function2, component2),-t))))));

Derivation of the class Strategy The set of derivation actions for this class introduces
a label for each dependability step in the strategy (error recovery, error detection, and
fault treatment), an axiom (cycle number) setting the number of cycles needed to per-
form the whole strategy, and the property performance establishing the duration of the
strategy in terms of cycle number.

4.2 Completing the Skeleton with Domain Dependent Knowledge

Once the modeller has derived the TRIO skeleton, the methodology proposes a number
of completion actions, that provide a set of pre-defined predicates and axioms pertinent

to the automation system domain. The modeller will then select the actions that he con-
sider relevant for the application, leading to an enrichment of the partial specification
produced in the previous step. Again, only a subset of the actual completion steps are
shown here, the full description being in [7].
Sys Completion1 In a fault tolerant system, any Automation Component Ci may be
operational or not (that is to say it is included in the current configuration). The pred-
icate included(C) is therefore introduced: it is a TD predicate since a given Automa-
tion Component may change its operational status over time.
Sys Completion2 The axiom cycle boundary is introduced: it formalises which event
determines the cyclic evolution of the distributed system. If the cycle is determined by
the reception of a periodic signal, the axiom is naturally expressed by the TRIO opera-
tor NextTime(F,t), where F is the cycle signal, representing for instance the starting of
a new cycle, and t is a term set equal to cycle time:

cycle boundary: Alw(periodic signal received ��
ex cycle t (cycle t = cycle time & NextTime (periodic signal received, cycle t)));

Sys Completion3 The (initial, normal, abnormal) behaviour of a distributed automa-
tion system is based on message exchange protocols which are formalised by two enu-
merative types Received Messages and Sent Messages and two TD predicates: mes-
sage received(Received Messages, Automation Component Set) and send message(Sent
Messages, Automation Component Set).
Sys Completion4 The axiom label normal behavior is introduced which formalises
what the system should do in normal conditions. The actual definition of the axiom will
be done at a later stage, when considering application dependent information.

All the completion rules above are considered relevant for the PSAS case and the
correspondent axioms and predicates are therefore inserted in the skeleton. This results
in the (uncomplete) formalisation of the PSAS System class of Fig. 4.

For the completion of the class DE we have chosen to show the definition of tem-
porary fault, that is done in terms of an attribute of faults, called fault duration. A fault
is temporary if, given that it occurs at the current time, it will disappear before a time
t1 smaller than the fault duration parameter, and for all times t2 from the current time
to t1 the fault is active. In TRIO terms:

temporary faults persistence: Alw(all component (
Becomes(fault(temp physical,component)) ��

(ex t1 (t1 � 0 & t1 � fault duration(temp physical) &
Dist(Becomes(�fault(temp physical, component)),t1) &
all t2 (t2 � 0 & t2 � t1� Dist(fault(temp physical, component),t2))))));

For the completion of the class Strategy we consider the definition of the error detection
axiom stating that a component is faulty if there is a potential transient fault in the com-
ponent, or a permanent fault has been detected.

error detection: Alw (all component faulty(component) ��
potential transient fault(component) � permanent fault detected(component));

Fig. 4. Completion of the PSAS system class

4.3 Completing the specification with application dependent knowledge

The last phase of the TRIO specification construction includes the full definition of ax-
ioms introduced only as labels in the previous phase, so as to obtain a complete (or
closed) TRIO formalisation, and possibly the addition of new axioms and properties
which are application-specific. Observe that in the first step we have already used ap-
plication dependent information, but it was information readily available in the instan-
tiated CD scheme (for example the types of faults and components), while in this final
step also design level information is needed. As an example consider the following:
(Re)application of Sys Action2 The application of this action in step one led to the
assignment of 100 time units to the TRIO item cycle time (see Fig. 3). Considering that
the corresponding attribute of the CD has an assigned value of 100ms, a choice of 100
is indeed correct, but it is definitely not the most convenient one from a computational
point of view. In TRIO, as in all temporal logic, it is wise to choose the coarsest possible
granularity for time. By considering all the events that involve the item cycle time in
the design, a choice of 20ms per time unit has been considered appropriate, resulting in
an assignment of 5 time units to the item, through the axiom cycle time setting.
(Re)application of Completion2 The definition of axiom cycle boundary is modified,
based on a proposition synch signal received, that represents the external synchronisa-
tion signal received by a task coordinating the activities of the PS Components:
cycle boundary: Alw (synch signal received��

ex cycle t (cycle t = cycle time & NextTime (synch signal received, cycle t)));

(Re)application of Completion4 The normal behaviour of the PSAS is described in
terms of a message exchange protocol assuring its correct and consistent evolution. On
reception of each synch signal the PSAS component with the master role must receive
an end cycle OK message from each slave component at a time t which is within a cy-
cle time (Dist(message received(end cycle OK, component),t)). If the end cycle OK
message is received by each component, then the master component performs a con-
firm cycle procedure. The confirmation of the last elaborated cycle consists of send-
ing the orders of release outputs and perform cycle to all the slave Automation Com-
ponents. As formalised in Fig. 5 the order of starting elaboration on a new cycle is
sent if and only if each component confirms the correct emission of its output via re-
leased outputs OK messages within 20 ms (i.e., at Dist equal to 1 time unit).

Fig. 5. Formalization of the normal behavior protocol.

5 How to analyze the TRIO specification

In the previous section we have shown how the logic specification of an application
in the automation domain field can be produced re-using the information present in a
Class Diagram description of the application, selecting a number of predicates and ax-
ioms among a set of predefined ones, and completing the specification with application
dependent knowledge made available by the system designers.

Although the construction of a specification is a relevant step in the definition of
a dependable automation system, it is also very important to be able to analyze the

specification: in TRIO this is realized through model generation and property proof. In
this section we show a few examples of model generation. Model generation produces
a timed diagram in which the truth values of the selected predicates are plotted against
time, and can be considered as an abstract trace of the system execution, concentrating
on the predicates of interest, while property proof amount to proving that a property is
valid (that is to say, true for any model) for a given temporal window.

In order to perform the analysis of the PSAS behaviour the TRIO models consistent
with the specification may be generated automatically by setting up proof sessions in
which a subset of axioms, properties and ATC is selected.

For what concerns the class System we consider an example on analysis of the nor-
mal behaviour of the PSAS (showing its intended functionality in a fault-free setting),
specified by the the axiom normal behavior of Fig. 5, and we ask TRIO to generate all
models that represents an execution compatible with the axiom normal behavior. This
may lead to too many models: to concentrate on the most interesting ones it is neces-
sary to restrict the focus of the analysis, using Abstract Test Cases. ATCs may be both
domain dependent and application dependent. For normal behaviour model generation
we concentrate on an initial state characterized by all components being operational, at
the instant of time in which the synchronization signal is received (ATC 1), we consider
only configurations that are stable (ATC 2) and in a scenario in which all messages are
received normally (ATC 3).
(ATC 1) normal initialisation: sets the initial truth-values of system primary attributes,
including system configuration (predicates included). The PSAS initialisation estab-
lishes that: before the evaluation instant no PS Automation Components is included and
the synchronization signal is false and that at the evaluation instant all the PS Automa-
tion Components are included and synchronization signal becomes true.
normal initialisation:

AlwP(all components �included(components) & �synch signal received) &
all components included (components) & synch signal received ;

(ATC 2) stable configuration: it is used to restrict the analysis to models in which the
components of the system, once included, will not be removed:
stable configuration: all components

(included(components) �� AlwF (included(components)));

(ATC 3) normal scenario: it focuses the generation process only on cases in which each
component sends the expected messages in due time, and it chooses a specific timing
for message reception. An example temporally confined to the first cycle is given by the
following ATC in which all the end cycle OK messages are received at time 4 and all
the released output OK messages at time 6:
normal scenario : all components

(included(components)��
(Dist(message received(end cycle OK, components), 4) &
Dist (message received (released outputs OK , components) , 6) &
all t (t �� 4�� Dist (�message received (end cycle OK , components) , t)) &
all t (t�� 6��Dist (�message received (released outputs OK , components) , t)))) ;

The set-up of the model generation for the normal behaviour case is done through
the TRIO graphical interface. Three axioms have been selected: normal behavior as
expected, and cycle time setting and cycle boundary that define the notion of cycle, and

whose definition is given in Fig. 4. The three ATCs defined above are selected, so that
only models compatible with the three axioms and the three ATCs will be generated.

At this point the TRIO tool asks for the temporal window of reference of the proof:
obviously the larger the window, the more expensive is the analysis. Since with this
proof we want to observe the normal behaviour of the system, and since the whole
system behaviour is defined in term of cycles, it is a natural choice to choose a temporal
domain size that is a multiple n of cycle time (that is set to a cycle value equal to 5
for the PSAS). For this proof a value of n � 2 has been chosen, leading to a temporal
window of 10 time units, that allows to check the behaviour of the system upon the
reception of two successive synchronization signal. In general the value of n should
be the minimal number of cycles needed to check a certain behaviour, for example
when checking a complex dependability strategy the value of n could be given by the
system requirements (recovery has to terminate in within k cycle), and we can use model
generation to check that this requirement is indeed met.

The model generation of TRIO produces then an execution depicted in Fig. 6: the
simulation window shows the truth values over the timeline of the time dependent items
of the proof that the modeller has selected for visualization. The model that has been
generated corresponds to a “normal behavior” execution in which each included com-
ponent has sent an end cycle OK message, the order released output has been sent to
each component, the acknowledge has been received in 20 ms (one time unit) and finally
the order to perform the next cycle has been sent to all components.

Fig. 6. The generated model for the normal behavior proof

The TRIO formalisation of the class Dynamic Environment allows to study the effect
of faults on a system in which a dependability strategy has been deployed, while the
analysis of this class together with the class Strategy allows to study the effectiveness
of the dependability strategy in limiting the damage due to faults.

As an example we consider the case in which PSAS faults are considered (axiom
fault model), there is a full communication structure among components (axiom com-
ponent interaction defined in Fig. 4) each component can perform any function (axiom
functions of components defined in Fig. 4), and the relationship between faults and er-
rors is set according to axiom error causes (defined in the previous section as a result
of DE Action7). Since we want to study the effect of faults we concentrate the focus of
this first proof on executions that experience a single fault. The model produced (whose
window is not shown here for space reasons) depicts a behaviour in which a single fault
propagates to all components, and therefore to all functionalities so that the system is
not able to deliver the expected service.

The analysis of this class allows therefore to make explicit the global effect of a
chain of local actions (as expressed by the communicate, perform, and cause effect
associations that were already present on the UML CDs and that have been translated
into TRIO predicates and axioms) under different fault occurence settings.

6 Conclusions

In this paper we have presented, with the help of a case study, a support to the specifi-
cation and analysis of dependable automation systems which makes use of UML class
diagrams and of the declarative temporal logic TRIO. In the context of formal analysis
tools the peculiarity of TRIO lays on the possibility of analysing temporal scenarios
underlying the specification in a uniform framework which makes use of the same lan-
guage for both specifying and querying the system. The TRIO tool may be classified as
a temporal theorem prover, like PVS is for higher order logics.

The combined use of UML with formal methods in the functional specification and
analysis of software systems has received a great attention by the research community,
with the goal of giving a formal semantics to the UML diagrams, usually through trans-
lation into another formal language (there is a very large body of literature on the topic,
see for example the work of the Precise UML group [23]).

In this paper we do not propose a translation, but a pre-defined set of temporal logic
specifications that have been associated to a pre-defined description of an automation
system through a set of UML Class Diagrams. The proposed approach is meant to pro-
vide requirement reuse, a topic that, following the work on patterns [8] for design reuse,
is gaining increasing interest: in [14] UML based patterns (mainly CD and Statecharts)
are defined for embedded system requirements, and the work is extended in [15] to
include properties specified in the linear temporal login LTL of SPIN [13].

The novelty of our contribution is in identifying a three-steps approach in which the
costruction of the formal specification follows partially a derivative style, and partially
a selective style. It is assumed that the analysist still needs to play an important decision
role in the analysis, whilst the tool provides him with a methodological support.

The specification support provided here is three steps: the TRIO class structure and
a number of initial TRIO items and types are (manually) derived from a UML CD de-
scription of the system; this partial specification is then augmented in a second step
with a number of domain dependent information; while in the third step the specifi-
cation is completed using application dependent knowledge. The role of the modeller
increases in the three steps: in the first one he only has to apply the predefined actions
by extracting information from the instantiated CD diagrams, in the second step he will
have to select the subset of predicates and axioms that are considered relevant for the
application, while in the third step he has to apply his expertise to define all axioms and
additional predicates needed to complete the specification.

Writing TRIO formulae requires indeed a certain skill. To make the use of TRIO
transparent to the user the work in [17] proposes the automatic generation of TRIO for-
mulae from annotated UML Statecharts (in the context of real-time systems): this result
could be integrated in our approach, especially when the modeller is fluent in UML
Statecharts, so that certain parts of the specification can be automatically produced.

The paper also provides a (limited) support to the formal analysis, an activity which
requires skill not only to define the system, but also to drive the proof sessions to avoid
an explosion of complexity. The methodological lines presented in the paper represents
a preliminary result: a support to the identification and definition of ATC, and to the
definition of the appropriate temporal window for the analysis is an interesting topic
for future research. In particular it is still to be investigated to which extent the “guided
approach to specification” described in this paper can be coupled with a “guided ap-
proach to analysis”. In the paper we have presented examples of analysis: analysis of a
logic specification is an incremental activity, and the space limitations allows only the
exemplification of limited steps of the analysis activity.

The methodological approach has been exemplified on a case study taken from con-
trol systems of electric distribution network. However, it seems reasonable to consider
the proposed three steps methods applicable also to other applications in the automation
system domain, given the generality of the closed loop execution model considered.

Finally, the TRIO specification has been built starting from an ad-hoc description of
the dependability aspects of an automation systems. Following the work on the UML
profiler for Performance and Schedulability [20] it is likely that an extension to include
dependability aspects will be made available in the near future [22]: it will then be
necessary to adapt the proposed CD scheme to the new standard.

References

1. S. Bernardi and S. Donatelli. Building Petri net scenarios for dependable automation sys-
tems. In Proc. of the 10th International Workshop on Petri Nets and Performance Models,
pages 72–81, Urbana-Champain, Illinois (USA), September 2003. IEEE CS.

2. S. Bernardi, S. Donatelli, and G. Dondossola. Methodology for the generation of the mod-
eling scenarios starting from the requisite specifications and its application to the collected
requirements. Technical report. Deliverable D1.3b - DepAuDE Project 25434, June 2002.

3. A. Bertani, E. Ciapessoni, and G. Dondossola. Modular TRIO Manual and Guidelines, Tu-
torial Package. Part I-II, Deliverable D3.4.1 of the FAST Project No. 25581, May 2000.

4. International Electrotechnical Commission. IEC-60300-3-1: Dependability Management.
IEC, 3 rue de Varembé CH 1211 Geneva, Switzerland, 2001.

5. G. Deconinck, V. De Florio, R. Belmans, G. Dondossola, and J. Szanto. Integrating recov-
ery strategies into a Primary Substation Automation System. In Proc. of the International
Conference on Dependable Systems and Networks (DSN’03), pages 80–85, San Francisco,
California (USA), June 2003. IEEE Computer Society ed.

6. DepAuDE. EEC-IST project 2000-25434. http://www.depaude.org.
7. G. Dondossola. Dependability requirements in the development of wide-scale distributed

automation systems: a methodological guidance. Technical report. Deliverable D1.4 - De-
pAuDE IST Project 25434, February 2003.

8. Gamma E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

9. The FAST toolkit homepage. http://www.prover.com/fast.
10. M. Felder and A. Morzenti. Validating real-time systems by history-checking trio specifica-

tions. ACM Trans. Softw. Eng. Methodol., 3(4):308–339, October 1994.
11. Dondossola G. and Botti O. System fault tolerance specification: Proposal of a method

combining semi-formal and formal approaches. In Fundamental Approaches to Software
Engineering, FASE 2000, volume 1783, pages 82–96. Springer, January 2000.

12. C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: a logic language for executable specifica-
tions of real-time systems. Journal of Systems and Software, 12(2):107–123, May 1990.

13. J. Gerard Holzmann. SPIN Model Checker: the Primer and Reference Manual. Addison
Wesley Professional, 2004.

14. S. Konrad and B.H.C. Cheng. Requirements Patterns for Embedded Systems. In In Proc. of
the Joint International Conference on Requirements Engineering (RE02), Essen, Germany,
September 2002. IEEE CS.

15. Sascha Konrad, Laura A. Campbell, and Betty H. C. Cheng. Adding formal specifications
to requirements patterns. In C. Heitmeyer and N. Mead, editors, Proceedings of the IEEE
Requirements for High Assurance Systems (RHAS02), Essen, Germany, September 2002.

16. J. C. Laprie. Dependability – Its attributes, impairments and means. In B. Randell, J.C.
Laprie, H. Kopetz, and B. Littlewood, editors, Predictably Dependable Computing Systems,
pages 3–24. Springer Verlag, 1995.

17. L. Lavazza, G. Quaroni, and M. Venturelli. Combining UML and formal notations for mod-
elling real-time systems. In Proc. of the 8th European software engineering conference held
jointly with 9th ACM SIGSOFT Int. symposium on Foundations of software engineering,
pages 196–206, Vienna, Austria, 2001. ACM Press.

18. D. Mandrioli, S. Morasca, and A. Morzenti. Generating test cases for real-time systems from
logic specifications. ACM Trans. Comput. Syst., 13(4):365–398, November 1995.

19. M.K. Molloy. Performance analysis using Stochastic Petri Nets. IEEE Transaction on
Computers, 31(9):913–917, September 1982.

20. OMG. UML Profile for Schedulability, Performance, and Time Specification.
http://www.omg.org, March 2002.

21. OMG. UML Specification: version 1.5. http://www.omg.org, March 2003.
22. A. Pataricza. From the General Ressource Model to a General Fault Modeling Paradigm ?

In J. Jürjens, M.V. Cengarle, E.B. Fernandez, B. Rumpe, and R. Sandner, editors, Critical
Systems Development with UML – Proceedings of the UML’02 workshop, pages 163–170.
Technische Universität München, Institut für Informatik, 2002.

23. The Precise UML Group. http://www.puml.org.
24. The European MAFTIA Project. Web page: http://www.research.ec.org/maftia.

