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Strong connectivity hypothesis and

generative power in TAG
Alessandro Mazzei, Vincenzo Lombardo and
Patrick Sturt †

Abstract
Dynamic grammars are relevant for psycholinguistic modelling and speech
processing. However, formal treatments of dynamic grammars are rare, and
there are few studies that examine the relationship between dynamic and
phrase structure grammars. This paper introduces a TAG related dynamic
grammar (DVTAG) together with a study of its expressive power. We also
shed a new perspective on the wrapping operation in TAG.

Keywords Dynamic grammars, TAG, wrapping, incremental-

ity

15.1 Introduction

Incrementality is a feature of human language analysis that is very
relevant for language modeling and speech processing. An incremen-
tal processor takes a string in left-to-right order and starts to build a
syntactic and semantic representation before reaching the end of the
sentence. The strong connectivity hypothesis is a parsimonious way
to formalize the incrementality of the syntactic process: people incor-
porate each word into a single, totally connected syntactic structure
before any further words follow (Stabler, 1994). Strong connectivity
is supported by some psycholinguistic evidence (Kamide et al., 2003,
Sturt and Lombardo, 2005).
Some traditional approaches to syntactic processing (both derivation
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and parsing) use a generative grammar and implement connectivity in
the derivation/parsing algorithm (Abney and Johnson, 1991). An al-
ternative approach is to change the perspective of investigation and
model the strongly connected syntactic process in the grammar for-
malism. Dynamic systems model cognitive processes as sequences of
states connected through transitions (Gelder, 1998). Like in automata
theory, a state encodes the syntactic process until some point in the
input string; then a string (one or several words) realizes the transition
to the subsequent state. However, in dynamic approaches the automa-
ton is not the result of a compilation of a generative grammar, but the
formalism itself (cf. Woods (1986)), without any necessary involvement
of generative rules.
The dynamic approach is not new in mathematical linguistics. Both
left-associative grammars (Hausser, 1992) and dynamic dependency
grammars (Milward, 1994) are examples of dynamic grammars. The
common traits of dynamic grammars are the definition of a (non nec-
essarily finite) recursive set of states, a finite subset of initial states,
a finite set of axioms or rules. In addition to these, the definition of
a dynamic grammar includes a way to assembly multiple applications
of the axioms (or rules), usually an explicit or implicit specification of
sequencing. However, an interesting abstraction in Milward’s specifica-
tion, called a deduction rule, allows several possibilities of assembling,
and so provides a dynamic account of non–constituent coordination
(Milward, 1994). In order to specify what are the legal strings of a lan-
guage, both Hausser and Milward indicate a finite set of final states (in
fact both approaches originate in a categorial grammar paradigm). We
can say that left-associative grammars and dynamic dependency gram-
mars incorporate the derivation process entirely. However, this is not
strictly necessary if we design the axioms (or rules) on a generative ba-
sis. In this paper we take a hybrid dynamic–generative approach: states
are partial structures that are licensed by a recursive process from a
finite basic lexicon; transitions extend the basic structures through a
finite number of generative operations. A state Si represents a partial
structure that spans the left fragment of a sentence w1...wi...wn. In
particular, we propose a Dynamic Version of TAG (DVTAG). DVTAG
is a dynamic grammar that fulfills the strong connectivity hypothesis,
has interesting consequences for constituency definition and linguistic
descriptions, and shares basic tenets with LTAG (i.e. lexicalization, ad-
joining and extended domain of locality) (Mazzei, 2005). We provide
a formal definition of DVTAG and a study of its expressive power.
We show that DVTAG is a mildly context-sensitive formalism and is
strongly equivalent to a restricted LTAG formalism, called dynamic
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FIGURE 1: The DVTAG derivation of the sentence John loves Mary
madly.

LTAG. Moreover we show that the introduction of wrapping operation,
an alternative view of adjoining based on flexible composition of the
derivation tree (Joshi, 2004), increases the generative power of DVTAG
and dynamic LTAG.

15.2 Informal introduction to DVTAG

In Fig. 1 we can see the DVTAG derivation of the sentence John loves
Mary madly. Like LTAG (Joshi and Schabes, 1997), a Dynamic Version
of Tree Adjoining Grammar (DVTAG) consists of a set of elementary
trees, divided into initial trees and auxiliary trees, and attachment op-
erations for combining them. Lexicalization is expressed through the
association of a lexical anchor with each elementary tree. To encode
lexical dependencies, each node in the elementary tree is augmented
with a feature indicating the lexical head that projects the node. The
head variable is a variable in logic terms: _v3 will be unified with the
constant loves in the derivation of Fig. 1. The derivation process in
DVTAG builds a constituency tree by combining the elementary trees
via operations that are illustrated below. DVTAG implements the in-
cremental process by constraining the derivation process to be a series
of steps in which an elementary tree is combined with the partial tree
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FIGURE 2: The DVTAG derivation of the sentence Bill often pleases
Sue.

spanning the left fragment of the sentence. The result of a step is an
updated partial structure. Specifically, at the processing step i, the el-
ementary tree anchored by the i-th word in the sentence is combined
with the partial structure spanning the words from 1 to i−1 positions;
the result is a partial structure spanning the words from 1 to i. In DV-
TAG the derivation process starts from an elementary tree anchored by
the first word in the sentence and that does not require any attachment
that would introduce lexical material on the left of the anchor (such as
in the case that a Substitution node is on the left of the anchor). This
elementary tree becomes the first left-context that has to be combined
with some elementary tree on the right. At the end of the derivation
process the left-context spans the whole sentence, and is called the de-
rived tree: the last tree of Fig.1 is the derived tree for the sentence John
loves Mary madly.
In DVTAG we always combine a left context with an elementary tree,
then there are seven attachment operations. Adjoining is split into two
operations: adjoining from the left and adjoining from the right. The
type of adjoining depends on the position of the lexical material in-
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troduced by the auxiliary tree with respect to the material currently
dominated by the adjoined node (which is in the left-context). In Fig. 1
we have an adjoining from the right in the case of the left auxiliary tree
anchored by madly, and in Fig. 2 we have an adjoining from the left in
the case of the left auxiliary tree anchored by often. Inverse operations
account for the insertion of the left-context into the elementary tree. In
the case of inverse substitution the left-context replaces a substitution
node in the elementary tree; in the case of inverse adjoining from the
left and inverse adjoining from the right, the left-context acts like an
auxiliary tree, and the elementary tree is split because of the adjoining
of the left context at some node. In Fig. 1 we have an inverse substitu-
tion in the case of the initial tree anchored by John. Finally, the shift
operation either scans a lexical item which has been already introduced
in the structure or derives a lexical item from some predicted preter-
minal node. The grounding of the variable _v1 in Fig. 2 is an example
of shift.
It is important to notice that, during the derivation process, not all
the nodes in the left-context and the elementary tree are accessible for
performing operations: given the i − 1-th word in the sentence we can
compute a set of accessible nodes in the left-context (the left-context
fringe); also, given the lexical anchor of the elementary tree, that in
the derivation process matches the i-th word in the sentence, we can
compute a set of accessible nodes in the elementary tree (the elemen-
tary tree fringe). To take into account this feature, the elementary tree
in DVTAG are dotted tree, i.e. a couple 〈γ, i〉 formed by a tree γ and
an integer i denoting the accessible fringe1 of the tree (Mazzei, 2005).
The DVTAG derivation process requires the full connectivity of the
left-context at all times. The extended domain of locality provided by
LTAG elementary trees appears to be a desirable feature for imple-
menting full connectivity. However, each new word in a string has to
be connected with the preceding left-context, and there is no a pri-
ori limit on the amount of structure that may intervene between that
word and the preceding context. For example in the sentence Bill often
pleases Sue there is an intervening modifier between an argument and
its predicative head (Fig.2). The elementary tree Bill is linguistically
motivated up to the NP projection; the rest of the structure depends on
connectivity. These extra nodes are called predicted nodes. A predicted
preterminal node is referred by a set of lexical items, that represent a
predicted head. So, the extended domain of locality available in LTAG
has to be further extended. In particular, some structures have to be

1In the figures we represent the integer using a dot.
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predicted as soon as there is some evidence from arguments or modifiers
on the left.

15.3 Formalizing DVTAG

Now we provide a formal definition of DVTAG using strings of a for-
mal language (a, b c, etc). In the definitions and proofs presented here,
we use DVTAG elementary trees without defining the notions of un-
derspecified heads and without the specification of the head-variable
(see previous section). In fact these two features are important for lin-
guistic description, but are irrelevant with respect to the generative
power. First, we provide some general terminology. Let Σ be an alpha-
bet of terminal symbols, and V an alphabet of non–terminal symbols.
a, b, c, d, ... ∈ Σ indicate terminal symbols, where ε is the null string.
A, B, C, D, ... ∈ V indicate non–terminal symbols, x, y, w, z ∈ Σ∗ are
strings of terminals: |x| is the length of the string x. We use wi to
denote the i-th word in the sentence w. We denote initial trees with
α, auxiliary trees with β, derived and generic trees with γ, δ, ζ, Λ2; N
denotes a node belonging to a tree, label(N ) the label of this node.
foot(β) returns the foot node of an auxiliary tree β. Y IELD(γ) is a
function that returns the frontier of γ with the exception of foot nodes
(i.e. overt terminal nodes and substitution nodes). Finally, Y IELDi(γ)
is the function that returns the i–th element of the Y IELD(γ) whether
1 < i < |Y IELD(γ)|, otherwise it is undefined. As usual in TAG, to de-
note the position of a node N in a tree, we use its Gorn Address. Since
DVTAG is a lexicalized formalism, each elementary tree is anchored by
some lexical element. We refer to the leftmost lexical element in a tree
with the expression left-anchor. We call a tree γ direct if Y IELD1(γ)
is its left-anchor, moreover we call γ inverse if Y IELD1(γ) is a sub-
stitution node and Y IELD2(γ) is its left-anchor. While initial trees
are not different from the ones in LTAG, we distinguish three types of
auxiliary trees: left auxiliary trees AL as auxiliary trees where the foot
node is the rightmost node of the frontier, right auxiliary trees AR as
auxiliary trees where the foot node is the leftmost node of the fron-
tier, wrapping auxiliary trees AW as auxiliary trees where the frontier
extends on both the left and the right of the foot node. We introduce
two useful notions that are borrowed from parsing algorithm tradition,
namely dotted tree and fringe.

Definition 35 A dotted tree is a pair 〈γ, i〉 where γ is a tree and i
is an integer such that i ∈ 0...|Y IELD(γ)|.

2Conventionally we always use Λ to indicate the left-context.
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Given a set of (LTAG) elementary tree E with 〈E , 0〉, we will indicate
the set of dotted trees such that if γ ∈ E , then 〈γ, 0〉 ∈ E ; we represent a
generic element of 〈E , 0〉 with the underspecified dotted tree 〈·, 0〉. The
fringe of 〈γ, i〉 is a set of nodes (split in a left fringe and a right fringe)
that includes all the nodes that are accessible for operating upon, that
is the fringe defines the domain of the attachment operations.

Definition 36 The left-fringe (Lfringe) of 〈γ, i〉 is the set difference
between the set of nodes on the path from Y IELDi(γ) to root and the
set of nodes on the path from Y IELDi+1(γ) to root. The right-fringe
(Rfringe) of 〈γ, i〉 is the set difference between the set of nodes on the
path from Y IELDi+1(γ) to root, and the set of nodes on the path from
Y IELDi(γ) to root. Moreover, if there is a null lexical item ε on the left
(on the right) of Y IELDi(γ) (Y IELDi+1(γ)), all the nodes from ε up
to the lowest common ancestor of ε and Y IELDi(γ) (Y IELDi+1(γ)),
belong to the right and left fringes.

In Fig. 3 left and right fringes are depicted as ovals in the dotted trees.
Now we define seven attachment operations on dotted trees: two sub-
stitutions (similar to LTAG substitution), four adjoinings (similar to
LTAG adjoining), and one shift.
The Shift operation Shi(〈γ, i〉) is defined on a single dotted tree 〈γ, i〉
and returns the dotted tree 〈γ, i + 1〉. It can be applied only if a ter-
minal symbol belongs to the right fringe of 〈γ, i〉: the dot is shifted on
the right of the next overt lexical symbol of the yield Y IELDi+1(γ)
(Fig. 3-a).
The Substitution operation Sub→(〈α, 0〉, 〈γ, i〉) is defined on two dot-
ted trees: a dotted tree 〈γ, i〉 and an initial direct dotted tree 〈α, 0〉. If
there is in the right fringe of 〈γ, i〉 a substitution node Nand label(N ) =
label(root(α)), the operation returns a new dotted tree 〈δ, i + 1〉 such
that δ is obtained by grafting α in N (Fig. 3-b).
The Inverse Substitution operation Sub←(〈ζ, 0〉, 〈γ, i〉) is defined on
two dotted tree: a dotted tree 〈γ, i〉 and an inverse elementary dotted
tree 〈ζ, 0〉. If root(γ) belongs to the left fringe of 〈γ, i〉, and there is a
substitution node N belonging to the right fringe of 〈ζ, 0〉 such that
label(N ) = label(root(γ)), the operation returns a new dotted tree
〈δ, i + 1〉 such that δ is obtained by grafting γ in N (Fig. 3-c).
The Adjoining from the left operation ∇→

L (〈β, 0〉, 〈γ, i〉, add) is de-
fined on two dotted trees: a dotted tree 〈γ, i〉 and a direct left or wrap-
ping auxiliary dotted tree 〈β, 0〉. If there is in the right fringe of 〈γ, i〉
a non-terminal node N such that label(N ) = label(root(β)), the op-
eration returns a new dotted tree 〈δ, i + 1〉 such that δ is obtained by
grafting β in N (Fig. 3-d).



174 / Alessandro Mazzei, Vincenzo Lombardo and Patrick Sturt

The Adjoining from the right operation ∇→
R (〈β, 0〉, 〈γ, i〉, add) is de-

fined on two dotted trees: a dotted tree 〈γ, i〉 and a direct right auxiliary
dotted tree 〈β, 0〉. If there is in the left fringe of 〈γ, i〉 a non-terminal
node N such that label(N ) = label(root(β)), the operation returns a
new dotted tree 〈δ, i + 1〉 such that δ is obtained by grafting β in N
(Fig. 3-e).
The Inverse adjoining from the left operation ∇←

L (〈ζ, 0〉, 〈γ, i〉, add)
is defined on two dotted trees: a dotted tree 〈γ, i〉 and a direct ele-
mentary dotted tree 〈ζ, 0〉. If foot(γ) belongs to the fringe of 〈γ, i〉,
and there is a node N belonging to right fringe of 〈ζ, 0〉 such that
label(N ) = label(foot(γ)), the operation returns a new dotted tree
〈δ, i + 1〉 such that δ is obtained by grafting γ in N (Fig. 3-f).
Inverse adjoining from the right operation ∇←

R (〈ζ, 0〉, 〈γ, i〉, add)
is defined on two dotted tree: 〈γ, i〉 and the direct elementary dotted
tree 〈ζ, 0〉. 〈ζ, 0〉 has a null lexical item (ε node) as first leaf. If root(γ)
belongs to the fringe of 〈γ, i〉, and there is a node N belonging to left
fringe of 〈ζ, 0〉 such that label(N ) = label(root(γ)), the operation re-
turns a new dotted tree 〈δ, i + 1〉 such that δ is obtained by grafting γ
in N (Fig. 3-g).
Using the definitions given above, we can formally define DVTAG.

Definition 37 Let 〈E , 0〉 be a finite set of elementary dotted trees, a
DVTAG G(〈E , 0〉) is a triple consisting of:
(1) Set of initial left-context: the finite set of direct dotted trees
〈Λ0, 0〉 ∈ 〈E , 0〉.
(2) Set of axiom schemata: there are three kinds of schemata to
update the left-contexts:
1.

〈·, 0〉
a

−−−−−−−−→
Shi(〈Λ1,0〉)

〈Λ1, 1〉

where the terminal symbol a is the left-anchor of the initial left-context
〈Λ1, 0〉.
2.

〈Λi, i〉
a

−−−−−−−−→
Shi(〈Λi,i〉)

〈Λi+1, i + 1〉

where the terminal symbol a belongs to the right fringe of 〈Λi, i〉 and i
ranges over the natural numbers.
3.

〈Λi, i〉
a

−→
opa

〈Λi+1, i + 1〉
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Shi(〈γ, 2〉)

L R
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∇→
L (〈β, 0〉, 〈γ, 1〉, 1)

L R

R

(d)

FIGURE 3: Operations in DVTAG.
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where

opa =

8
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>

>

>

>

>

<

>

>

>

>

>

>

:

Sub→(〈α, 0〉, 〈Λi, i〉)
Sub←(〈ζ, 0〉, 〈Λi, i〉)
∇→

L (〈β, 0〉, 〈Λi, i〉, add)
∇→

R (〈β, 0〉, 〈Λi, i〉, add)
∇←

L (〈ζ, 0〉, 〈Λi, i〉, add)
∇←

R (〈ζ, 0〉, 〈Λi, i〉, add)

and a is the left-anchor of 〈α, 0〉, 〈ζ, 0〉, 〈β, 0〉, 〈ζ, 0〉 respectively. For
∇→

L ,∇→
R ,∇←

L ,∇←
R , add is the Gorn address of the adjoining node, and

where i ranges over the natural numbers.
(3) Deduction rule that specifies the sequentiality of the derivation
process

〈Λi, i〉
a1...an

−−−−−−−−→
opa1 ...opan

〈Λj , j〉 〈Λj , j〉
b1...bm

−−−−−−−−→
opb1

...opbm

〈Λk, k〉

〈Λi, i〉
a1...anb1...bm

−−−−−−−−−−−−−−−→
opa1 ...opan opb1

...opbm

〈Λk, k〉

DVTAG defines implicitly the infinite space of derivable left-contexts,
i.e. the (recursive) set of left-contexts that are reachable with a finite
number of operations starting from an initial left-context. In order to
define the language generated by a DVTAG we have to define the notion
of final left-context. Both dynamic dependency grammars (Milward,
1994) and left-associative grammars (Hausser, 1992) explicitly define
the finite set of the final state. In contrast, in our hybrid dynamic–
generative approach we define the set of final left-contexts on the basis
of their structure. We call a left-context 〈Λn, n〉 final if Λn has no
substitution or foot nodes in the yield.

Definition 38 A string w1...wn (n natural number) is generated by
a DVTAG G(〈E , 0〉) if and only if 〈·, 0〉

w1...wn

−−−−−−−−→
opw1 ....opwn

〈Λn, n〉 is derivable in

G(〈E , 0〉) and 〈Λn, n〉 is final. Moreover, a tree Λn (n natural number)

is generated by a DVTAG G(〈E , 0〉) if and only if 〈·, 0〉
Y IELD(Λn)
−−−−−−−−→

opw1 ....opwn

〈Λn, n〉

is derivable in G(〈E , 0〉) and 〈Λn, n〉 is final.

In contrast to the standard definition of generative grammars, the Def-
inition 37 describes the derivation process as part of the definition of
the grammar. Note that the notion of left-context corresponds to the
notion of sentential form of the usual generative grammars. A dynamic
grammar explicitly includes the derivability of a left-context, whereas
this notion is outside of the grammar in the standard generative for-
malization. The dynamic approach allows us to define several deduc-
tion rules for derivation: Milward used this feature to take into account
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〈Λ1, 1〉
Shi(〈α1, 0〉)

〈Λ2, 2〉

〈Λ3, 3〉 〈Λ4, 4〉

〈Λ0, 0〉 a c

b d

(1) (2)

(3) (4)

Sub←(〈ζ(c), 0〉, 〈Λ1, 1〉)

∇→
R (〈β(e), 0〉, 〈Λ3, 3〉, 0)Sub→(〈α(b), 0〉, 〈Λ2, 2〉)

FIGURE 4: A DVTAG derivation for the sentence “abcf”.

the non-constituent coordination in the dynamic dependency grammars
(Milward, 1994). Finally, we formalize the notion of derivation chain:

Definition 39 Given a string w1...wn derivable by G(〈E , 0〉), a deriva-
tion chain d is the sequence of left-contexts 〈Λ0, 0〉〈Λ1, 1〉...〈Λn, n〉
such that 〈Λ0, 0〉 is an initial left-context, 〈Λn, n〉 is a final left-context
and 〈Λi−1, i − 1〉

wi−→
opwi

〈Λi, i〉 i ∈ 1...n.

In Fig. 4 there is a DVTAG derivation chain for the sentence “abcf”,
using some elementary dotted tree of Fig. 3

15.4 Generative power of DVTAG

In this section we show that for each DVTAG there exists a LTAG that
generates the same tree language, i.e. L(DV TAG) ⊆ L(LTAG); then
we show that L(CFG) ⊂ L(DV TAG); the consequence of these results
is that DVTAG is a mildly context-sensitive formalism (Vijay-Shanker
et al., 1990). In the proof of the second result we introduce a restricted
LTAG formalism called dynamic LTAG (dLTAG). For the proofs that
follow it is useful recall the notion of derivation tree in LTAG. Given a
G1(E) LTAG, a derivation tree D for G1 is a tree in which each node
of the tree is the identifier of an elementary tree γ belonging to E , and
each arc linking a parent γ to a child γ′ and labeled with Gorn address
t, represents that the tree γ′ is an auxiliary tree adjoined at node t of
the tree γ, or that γ′ is an initial tree substituted at the node t in γ
(Joshi and Schabes, 1997). The constituency tree that results from the
derivation described by a derivation tree D is called the derived tree
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derived(D). In LTAG there are no constraints about the order in which
the elementary trees are combined in the derivation tree. In order to
compare DVTAG and LTAG derivations we introduce the notion of
partial derivation tree. Given a derivation tree D, we define a partial
derivation tree PD as a connected subgraph of D; a partial derived
tree derived(PD) is yielded from a partial derivation tree PD.

Theorem 41 Let3 G1(E) be a LTAG, let G2(〈E , 0〉) be a DVTAG
and let D be a derivation tree of G1(E) that derives the string w1...wn

from the elementary trees γ1...γn. There exists a sequence of par-
tial derivation trees PD1, PD2, ...., PDn of D such that each PDi

is composed by the trees γ1...γi if and only if there exists a deriva-
tion chain d of G2(〈E , 0〉 such that d = 〈Λ0, 0〉〈Λ1, 1〉...〈Λn, n〉 with
Λi = derived(PDi) ∀i ∈ 1...n.

Proof (sketch) From the definitions of partial derivation tree, PDi+1

is equal to PDi but the node γi+1. Since LTAG operations preserve
precedence and dominance relations among two nodes of the partial de-
rived tree4, we have that w1...wi is a prefix of Y IELD(derived(PDi)).
As a consequence, in derived(PDi+1) there are no substitution nodes
on the left of the left-anchor of γi+1. Since G1 and G2 use the same
trees, we can show that there is a bijection between all the possible
ways of inserting γi+1 into PDi in LTAG and the DVTAG operations
that implement the transition between 〈Λi, i〉 and 〈Λi+1, i + 1〉. This is
shown for each i through an induction process. !

A corollary of this theorem shows that a LTAG G1 generates only
derivation trees D such that exists a sequence of partial derivation
trees of PD1, PD2, ...., PDn such that each PDi is composed by the
trees γ1...γi, if and only if there is a DVTAG G2 that generates the
same tree languages.
Given a partial derivation tree PD we write wi < wj if on the yield of
derived(PD) wi precedes wj and we write γi < γj if wi < wj , where
wi and wj are the left-anchors of γi and γj respectively.
Now we define dLTAG and then we show that dLTAG respects the
hypotheses of the theorem 41.

Definition 40 A partial derivation tree PD is dynamic if: (1) Each
node γi in PD has at most one child γj such that γj < γi, (2) If a
node γi in PD has a child γj such that γi < γj , then γj does not have
a child γk such that γk < γj .

3For space reasons in the proof sketch of this theorem we assume that each γi is
anchored by only one lexical item wi.

4I.e. the precedence and dominance relations among the nodes N1 and N2 in
PDi will be the same in PDi+j∀j ≥ 0.
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We define dLTAG by constraining the derivation trees to be dynamic,
thus satisfying the hypotheses of theorem 41 as shown in the the fol-
lowing theorem.

Theorem 42 Let D be a derivation tree formed by the nodes γ1...γn

of LTAG G1(E) that generates the string w1...wn. A sequence of partial
derivation trees PD1, PD2, ...., PDn of D exists and PDi is formed by
γ1...γi (∀ i ∈ 1...n) if and only if D is dynamic.

Proof (sketch) We can prove the theorem by reductio ad absurdum.
Supposing that D is dynamic, we can show that if the strong connec-
tivity of the sequence of partial derivation tree is not fulfilled by a node
γi (hypotheses of theorem 42) we arrive at the absurdum that on the
node γi, D does not fulfill the dynamic definition. Similarly, supposing
that D fulfills the strong connectivity hypothesis, we can show that the
two conditions of the Definition 40 cannot be violated. !

A corollary of the theorems 41 and 42 states that DVTAG class of
grammars generate the same tree languages of dynamic LTAG class
of grammar. Given the constraints in the definition 40 we have that
L(dLTAG) ⊆ L(LTAG)5, since DVTAG is equivalent to dLTAG we
have that L(DV TAG) ⊆ L(LTAG). Now we show that L(CFG) ⊂
L(DV TAG) by showing that L(CFG) ⊂ L(dLTAG). This fact is
proved by exploiting the notion of normal form for derivation tree in
LTIG (Schabes and Waters, 1995). LTIG is a particular LTAG that is
strongly equivalent to CFG, with some limitations on the elementary
trees and some limitations on the operations. It is possible to transform
a derivation tree for a LTIG in normal form into a dynamic derivation
tree with a simple algorithm (Mazzei, 2005). As a consequence, for
each CFG there is dynamic LTIG that generates the same tree lan-
guage, then there is a DVTAG that generates the same tree language.
Now we use the results described above to prove that DVTAG is a
mildly context-sensitive formalism, i.e. DVTAG generates cross-serial
dependencies (1), generates the context-free languages (2), is parsable
in polynomial time (3), has the constant-growth property (4). DVTAG
fulfills properties (3) and (4) as a direct consequence of the inclu-
sion in LTAG. Moreover we have sketched the proof that L(CFG) ⊂
L(DV TAG), then DVTAG can generate all the context-free grammars.
About (1) we need to introduce the wrapping perspective in DVTAG
(next section).

5We can define a procedure that takes as input a dLTAG and returns a LTAG
that using selective adjoining constraints generates the same tree language.
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FIGURE 6: Derivation tree for the sentence “abcbc” in adjoining (b) and
wrapping (c) perspective.

15.5 Wrapping and DVTAG generative power

Figure 5 shows the two perspectives for the adjoining operation, either
inserting an auxiliary tree β into γ (Fig. 5-a) or splitting γ into γ1 and
γ2 to include β (wrapping perspective, Fig. 5-b) (Joshi, 2004). If γ is an
elementary tree, the wrapping operation does not change the weak and
strong generative power of LTAG. However, since the wrapping opera-
tion can generate a wider set of derivation tree, on the subclass of dL-
TAG it does increase the strong generative power. A LTAG derivation
that is not a dynamic derivation in standard LTAG can be a dynamic
derivation in LTAG with wrapping operation. The LTAG elementary
trees in Fig. 6-a generate the cross-serial dependencies (Joshi, 2004),
but the derivation tree of Fig. 6-b for the string “abcbc” is not dynamic.
As a consequence, we cannot derive the cross-serial dependencies in
DVTAG. But if we rewrite this derivation tree by using wrapping, we
obtain the tree of figure 6-c. In fact the adjoining of βb in βc becomes
the wrapping of βc in βb. We can define a dynamic wrapping in DV-
TAG that maintains the strong equivalence between dynamic LTAG
with wrapping and DVTAG with dynamic wrapping, and so we can
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produce a derivation chain that derives cross-serial dependencies. Then
DVTAG is mildly context-sensitive.

15.6 Conclusions

In this paper we have defined a dynamic version of TAG. We have
sketched the basic issues of the formalism, and using these notions we
have proved that DVTAG is mildly context sensitive. We have shown
that DVTAG can generate cross-serial dependencies using a dynamic
wrapping.
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