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Abstract

Background Muscle wasting, a prominent feature of cancer cachexia, is mainly caused by sustained protein hypercatabolism.
The enhanced muscle protein degradation rates rely on the activity of different proteolytic systems, although the Adenosine
triphosphate (ATP)-ubiquitin-proteasome-dependent pathway and autophagy have been shown to play a pivotal role.
Bortezomib is a potent reversible and selective proteasome and NF-κB inhibitor approved for the clinical use, which has been
shown to be effective in preventing muscle wasting in different catabolic conditions. The aim of the present study has been to
investigate whether pharmacological inhibition of proteasome by bortezomib may prevent skeletal muscle wasting in experi-
mental cancer cachexia.

Methods Cancer cachexia was induced in rats by intraperitoneal injection of Yoshida AH-130 ascites hepatoma cells and in
mice by subcutaneous inoculation of C26 carcinoma cells. Animals were then further randomized to receive bortezomib. The
AH-130 hosts were weighted and sacrificed under anaesthesia, on Days 3, 4, 5, and 7 after tumour inoculation, while C26-
bearing mice were weighted and sacrificed under anaesthesia 12 days after tumour transplantation. NF-κB and proteasome
activation, MuRF1 and atrogin-1 mRNA expression and beclin-1 protein levels were evaluated in the gastrocnemius of controls
and AH-130 hosts.

Results Bortezomib administration in the AH-130 hosts, although able to reduce proteasome and NF-κB DNA-binding activity
in the skeletal muscle on Day 7 after tumour transplantation, did not prevent body weight loss and muscle wasting. In addi-
tion, bortezomib exerted a transient toxicity, as evidenced by the reduced food intake and by the increase in NF-κB DNA-
binding activity in the AH-130 hosts 3 days after tumour transplantation. Beclin-1 protein levels were increased by bortezomib
treatment in Day 3 controls but were unchanged on both Days 3 and 7 in the AH-130 hosts, suggesting that an early compen-
satory induction of autophagy may exist in healthy but not in tumour-bearing animals. Regarding C26-bearing mice,
bortezomib did not prevent as well body and muscle weight loss 12 days after tumour implantation.

Conclusions The results obtained suggest that proteasome inhibition by bortezomib is not able to prevent muscle wasting in
experimental cancer cachexia. Further studies are needed to address the issue whether a different dosage of bortezomib alone
or in combination with other drugs modulating different molecular pathways may effectively prevent muscle wasting during
cancer cachexia.
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Introduction

Muscle wasting is by far the most clinically relevant feature of
cancer cachexia, a life-threatening syndrome associated with
poor prognosis and impaired quality of life.1 The mechanisms
underlying muscle wasting in cancer cachexia are not yet fully
understood, but studies performed in experimental models as
well as in neoplastic patients have shown that a prominent role
is played by sustained protein hypercatabolism.2 The enhanced
muscle protein degradation rates result from hyperactivation of
different proteolytic systems, but the degradative pathways de-
pendent on proteasome and autophagy have been shown to
play a prominent role.3,4 The former relies on ubiquitylation
of target proteins, which are subsequently degraded by the
26S proteasome, a multicatalytic complex, that contains a core
(20S proteasome), which is characterized by five different
peptidase activities: trypsin-like, chymotrypsin-like, peptidyl-
glutamyl peptidase, branched-chain amino acid-preferring,
and small-neutral amino acid-preferring activities.5

Several chemical compounds able to inhibit proteasome
activity have been described including peptide analogues of
substrates with different C-terminal groups such as alde-
hydes, epoxyketones, boronic acids, and vinyl sulfones.6,7 In-
terestingly, different proteasome inhibitors have proved
effective in preventing muscle wasting in many experimental
conditions such as sepsis, burn injury, cancer, immobilization,
and denervation atrophy.8–12 However, in recent years,
bortezomib has attracted particular attention, as it was the
first proteasome inhibitor approved for clinical use.13

Bortezomib is a selective dipeptide boronic acid analogue
that works primarily by reversible inhibition of the
chymotrypsin-like site in the β5-subunit of the 20S protea-
some, but it can also inhibit the caspase-like site (β1-subunit)
at high concentration and minimally affect the trypsin-like
site (β2-subunit).14–16 Proteasome blockade by bortezomib
results in many effects such as inhibition of angiogenesis, of
NF-κB activation, and of cytokine and growth factor
production, apoptosis induction, cell cycle arrest.17,18

Bortezomib has been approved by the Food and Drug Adminis-
tration in 2003 as a third-line treatment for relapsed and refrac-
tory multiple myeloma,19 in 2005 for multiple myeloma
progressing after at least one prior therapy,20 and in 2008, it
has been evaluated in a phase III clinical trial also as front-line
treatment for newly diagnosed multiple myeloma patients.21,22

Bortezomib is also approved for mantle cell lymphoma,23 and
trials in other conditions are in progress.24–28

Bortezomib has been reported to effectively prevent mus-
cle wasting in different experimental catabolic conditions as-
sociated with proteasome hyperactivation such as burn
injury,29 denervation atrophy,30 diaphragm weakness in
COPD,31 and Duchenne muscular dystrophy.32,33 However,
bortezomib has been shown to only partially attenuate mus-
cle atrophy caused by hindlimb casting34 and to prevent
endotoxin-induced diaphragm weight loss but not specific

force reduction.35 As for cancer cachexia, bortezomib has
been recently reported to be unable to restore muscle mass
in mice implanted with LP07 adenocarcinoma,36,37 and a
subanalysis from two clinical trials suggested that bortezomib
does not attenuate weight loss in patients with advanced
pancreatic cancer.38 These observations, however, do not rule
out that bortezomib may be effective in treating cancer-
related muscle wasting as differences in the level of protea-
some activity may exist among different tumour stages as
well as in different tumour types.39–42 Indeed, while protea-
some activity is increased in the skeletal muscle of gastric
cancer patients and correlates with disease severity,39,40 it is
not modified in the skeletal muscle of esophageal41 and
non-small cell lung cancer patients.42 This would suggest that
proteasome inhibition may differentially affect cancer-related
muscle wasting; hence, the role of bortezomib in the treat-
ment of cancer cachexia is still incompletely understood.

In the present study, we therefore investigated whether
pharmacological inhibition of proteasome by bortezomib may
attenuate skeletal muscle wasting in rats bearing the Yoshida
AH-130 ascites hepatoma, a well-described model of cancer
cachexia associated to hyperactivation of the ubiquitin-
proteasome pathway.43–46 Additional experiments were per-
formed to evaluate bortezomib effectiveness in preventing
body and muscle weight loss in mice implanted with the C26
colon adenocarcinoma, another experimental model of cancer
cachexia associated to severe muscle wasting.47,48

Material and methods

Animals

Experimental animals were cared for in compliance with the
Italian Ministry of Health Guidelines (no. 86609 EEC, permit
number 106/2007-B) and the Policy on Humane Care and
Use of Laboratory Animals (NIH 1996). The experimental pro-
tocol was approved by the Bioethical Committee of the Uni-
versity of Turin (Turin, Italy).

Male Wistar rats weighing approximately 150 g and male
Balb-c mice weighing approximately 20 g were obtained from
Charles River Laboratories (Calco, Italy) and were maintained
on a regular dark-light cycle (light from 8 a.m. to 8 p.m.), with
free access to food and water during the whole experimental
period.

Tumour-bearing rats received an i.p. inoculum of approx-
imately 108 Yoshida AH-130 ascites-hepatoma cells whereas
tumour-bearing mice were inoculated s.c. dorsally with
5 × 105 C26 carcinoma cells. Control rats and mice were in-
oculated with a correspondent volume of vehicle (saline).
Animals (rats or mice) were then further randomized to re-
ceive bortezomib (Velcade®, Millennium Pharmaceuticals,
Cambridge MA, USA) or corresponding volume of vehicle
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(saline). In particular, two days after transplantation, rats
were administered bortezomib (0.25mg/kg, i.v., single dose),
while mice received the drug (0.5mg/kg, i.v.) on Day 7 after
tumour transplantation and 4 h before sacrifice. The dose
was chosen in view of results obtained in dose-response ex-
periments (data not shown).

Animal weight and food intake were recorded daily
throughout the entire experiment.

As for the AH-130 hosts, on Days 3, 4, 5, and 7 after tumour in-
oculation, rats were weighted and sacrificed under anaesthesia;
mice were sacrificed under anaesthesia 12days after C26 trans-
plantation. Muscles and organs were rapidly excised, weighed,
frozen in liquid nitrogen, and stored at �80°C until analysis.

Western blot

Approximately 50mg of gastrocnemius muscle was homoge-
nized in 80mmol/L Tris-HCl, pH 6.8, containing 100mmol/L
dithiothreitol, 70mmol/L Sodium dodecyl sulfate (SDS), and
1mmol/L glycerol, with freshly added protease and phospha-
tase inhibitor cocktails; kept on ice for 30min; centrifuged at
15 000 g for 10min at 4°C and the supernatant collected. Pro-
tein concentration was assayed according to Bradford using
bovine serum albumin as working standard. Equal amounts
of protein (30mg) were heat denaturated in sample-loading
buffer (50mmol/L Tris-HCl, pH 6.8, 100mmol/L dithiothreitol,
2% SDS, 0.1% bromophenol blue, 10% glycerol), resolved by
SDS-PolyAcrylamide Gel Electrophoresis (PAGE), and transferred
to nitrocellulose membranes (Bio- Rad Laboratories, Hercules,
CA). The filters were blockedwith Tris-buffered saline containing
0.05% Tween and 5% non-fat dry milk and incubated overnight
with an antibody directed against beclin-1 (B6186, Sigma, St.
Louis, MO, USA). A mouse monoclonal anti-rat α-tubulin anti-
body (T5168, Sigma-Aldrich, St. Louis, MO) was used for loading
control. Peroxidase-conjugated IgG (Bio-Rad Laboratories) were
used as secondary antibodies. Immunoreactive protein bands
were detected by enhanced chemoluminescence. Quantifica-
tion of the bands was performed by densitometric analysis using
specific software version 2006c (TotalLab; Nonlinear Dynamics,
Newcastle on Tyne, UK).

Proteasome activity

Proteasome chymotrypsin-like activity in the gastrocnemius
was determined by cleavage of a specific fluorogenic sub-
strate as previously described.43,40

Briefly, gastrocnemius was homogenized in 20mM Tris–HCl,
pH7.2, containing 0.1mM EDTA, 1mM 2-mercaptoethanol,
5mM ATP, 20% glycerol, 0.04% (v/v) Nonidet P-40. Muscle ho-
mogenates were then centrifuged at 13000g for 15min at 4°C.
The supernatant was collected and protein concentration de-
termined as described in the previous text. Aliquots of 50μg

protein were then incubated for 60min at 37°C in the presence
of the fluorogenic substrate succinyl-Leu-Leu-Val-Tyr-7-amino-
methyl-coumarin (LLVY, Sigma, St. Louis, MO, USA). The
incubation buffer was 50mM Hepes, pH8.0, containing 5mM
Ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid
(EGTA). Fluorescence was read with a spectrofluorometer
(excitation: 380nm, emission: 460nm; Perkin–Elmer,Norwalk,
CT, USA). The activity, expressed as nkatal/mg protein, was
calculated by using free amino-methyl-coumarin as working
standard.

Electrophoretic mobility shift assay

To prepare nuclear extracts, gastrocnemius (100mg) was ho-
mogenized in ice-cold 10mm 4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid (HEPES), pH7.5, containing 10mM MgCl2,
5mM KCl, 0.1mM EDTA pH8.0, 0.1% Triton X-100, 0.1mM
phenylmethanesulfonyl fluoride, 1mM DL-Dithiothreitol (DTT),
2μg/ml aprotinin, 2μg/ml leupeptin. Samples were centrifuged
(5min, 3000g), pellets resuspended in ice-cold 20mM HEPES,
pH7.9, containing 25% glycerol, 500mM NaCl, 1.5mM MgCl2,
0.2mM EDTA, pH8.0, 0.2mM phenylmethanesulfonyl fluoride,
0.5mMDTT, 2μg/ml aprotinin, 2μg/ml leupeptin, and incubated
on ice for 30min. Cell debris were removed by centrifugation
(5min, 3000g), the supernatant collected and stored at �80°C.
NF-κB oligonucleotides were purchased from Promega Italia
(Milano, Italy). Oligonucleotide labelling and binding reactions
were performed by using the Gel Shift Assay System (Promega,
Milan, Italy). Binding reaction mixtures, containing nuclear pro-
teins (10μg) and gel shift binding buffer [10mm Tris-HCl,
pH7.5, containing 1mM MgCl2, 0.5mM EDTA, 0.5mM DTT,
50mM NaCl, 0.05μg//μL poly(dI-dC)·poly(dI-dC), 4% glycerol],
were incubated (10min) at room temperature in the presence
of 0.035pmol 32P-ATP end-labelled double-stranded oligonucleo-
tide. After incubation, samples were electrophoresed in 0.5× Tris-
Borate-EDTA buffer at 350V for 40min on a 4% non-denaturing
acrylamide gel. The gel was dried (45min) and exposed overnight
or longer to an autoradiography film (GE Healthcare, Milan, Italy)
at �80°C with intensifying screens. Bands specificity was con-
firmed by adding an excess amount of a specific oligonucleotide
(1.75pmol) to a control gastrocnemius sample. HeLa cell nuclear
extract was used as positive control (Promega, Milan, Italy).

Semi-quantitative reverse transcriptase (RT)-PCR

Total RNA was extracted from the gastrocnemius muscle with
the TriPure reagent (Roche, Indianapolis, USA), and quantified
spectrophotometrically. RNA integrity was checked by electro-
phoresis on 1.2% agarose gel, containing 10% 3-(N-morpholino)
propanesulfonic acid (MOPS) 0.2M and 18% formaldehyde.

Atrogin-1 and MuRF1 mRNA levels were analysed by semi-
quantitative reverse-transcription polymerase chain reaction
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using the kit ‘Ready-to-Go RT-PCR Beads’ (Hybond C,
Amersham Italia, Milano, Italy). Aliquots of total RNA
(0.5μg) were added to a RT-PCR reaction mixture containing
PCR buffer (10mM Tris-HCl pH 9.0, 60mM KCl, 1.5mM
MgCl2), Taq DNA-polymerase 2.0 units, 10μM of each primer,
and 200μM deoxynucleotide triphosphate (dNTP). Primers
for atrogin-1, MuRF1, and Glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH), described in Table 1, were obtained ac-
cording to published sequences (Invitrogen, Milano, Italy).

Amplification conditions consisted of 1min denaturation at
95°C, 1min annealing at 60°C, and 2min polymerization at 72°C
for each step for 25cycles and extension at 72°C for 7min. Posi-
tive and negative controls have been performed. PCR products
were electrophoresed on 2% agarose gels and visualized with
ethidium bromide. A standard DNA ladder was used to estimate
the length of each PCR product. Quantification was performed
by densitometric analysis: individual product bands and represen-
tative background were excised from each gel lane and analysed
by means of a specific software (Phoretix). The results
were normalized according to 18S ribosomal subunit expression,
amplified with the following conditions: denaturation (95°C,
30 s), annealing (55°C, 1min), polymerization (72°C, 2min), for
10cycles, and extension (72°C, 7min). Comparisons among
groups have been made in the linear phase of amplification.

Statistical analysis

Results are reported as means ± SD. Statistical analysis was
performed by using the Student’s t-test or one-way analysis
of variance followed by Tukey’s post-hoc test as appropriate.
P< 0.05 was considered statistically significant.

Results

The growth of the Yoshida AH-130 hepatoma determined in
the hosts a progressive body and gastrocnemius weight loss
(Figure 1A and B), consistent with previous studies using
the same experimental model.45,49 Treatment with
bortezomib did not affect cancer-induced body and muscle
weight loss on Day 3 after tumour inoculum, while on Day
7, it worsened the cachectic phenotype (Figure 1A and B).
As for the liver (Figure 2A), it was reduced in size in tumour
hosts starting from Day 5 after transplantation. Bortezomib
treatment lead to an increase of liver mass in Day 4 controls

only. No effect of bortezomib administration could be observed
in controls at Days 3, 5, and 7 or in the tumour hosts (Days 3–7).
No significant differences in spleen weight were observed in
control and tumour-bearing rats treated with bortezomib
(Figure 2B). Food consumption in control rats was not modified
by bortezomib (Figure 3A). In contrast, the drug exerted a
marked reduction of food intake on Day 3 in tumour-bearing
rats (24 h after the first administration), when tumour-induced
anorexia is not yet detectable in this experimental model. Such
a reduction was likely due to a transient toxic effect of the drug.
Indeed, at the subsequent time points (Days 5 and 7), the
reduced food intake that characterizes tumour-bearing rats was
not further affected by bortezomib treatment (Figure 3A). No
significant changes were observed for water intake among all
the experimental groups (Figure 3B).

Tumour growth, evaluated as total cell number, was re-
duced by bortezomib treatment on Days 4 and 5 after implan-
tation, but on Day 7, it was comparable in treated and
untreated tumour-bearing rats (Figure 4), suggesting the de-
velopment of chemoresistance.

Table 1 Oligonucleotide sequences

Gene Primer sequence NCBI reference sequence

Atrogin-1 5′-CCATCAGGAGAAGTGGATCTATGTT-3′ 3′-GCTTCCCCCAAAGTGCAGTA-5′ AY059628.1
MuRF-1 5′-GGACGGAAATGCTATGGAGA-3′ 3′-AACGACCTCCAGACATGGAC-5′ AY059627.1
GAPDH 5′-GGTGAAGGTCGGAGTCAACG-3′ 3′-CAAAGTTGTCATGGATGACC-5′ M17701.1

NCBI, National Center for Biotechnology Information

Figure 1 Bortezomib does not prevent body and gastrocnemius muscle
weight loss in AH-130-bearing rats. (A) Body and (B) gastrocnemius
weight were evaluated in controls (C) and tumour-bearing rats (AH-
130) treated or untreated with bortezomib (BTZ) at Day 3 (d3) and
Day 7 (d7) after AH-130 cell inoculation. Results (means ± SD) are
expressed as percentage of controls (C and C + BTZ: n = 4; AH-130, AH-
130 + BTZ: n = 8). *P< 0.05, **P< 0.01, ***P< 0.001 vs. control.
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Bortezomib inhibitory activity is mainly exerted by blocking
proteasome chymotrypsin-like sites.17 In this regard, previous
studies showed that chymotrypsin-like activity is increased in
the gastrocnemius of rats bearing the AH-130 hepatoma.44,46

In the present study, chymotrypsin-like activity in the gastrocne-
mius of treated rats was significantly reduced compared with
those of untreated animals (treated controls: 25% residual activ-
ity vs. untreated rats, P< 0.0001; treated AH-130: 70% residual
activity vs. untreated tumour hosts, P< 0.05), demonstrating
that the bortezomib dosage adopted was indeed effective.

Data previously reported in the literature show that the inhi-
bition of proteasome activity prevents IκB degradation and sub-
sequent activation and nuclear translocation of NF-κB.7

Consistently, the results shown in Figure 5 demonstrate that
bortezomib treatment at Day 7 after tumour implantation signif-
icantly reduced NF-κB DNA-binding activity in the gastrocnemius
of AH-130 hosts (Figure 5). Surprisingly enough, a significant in-
crease in NF-κB DNA-binding activity was observed on Day 3 in
tumour-bearing rats treated with bortezomib (Figure 5).

At any observation time,mRNA levels for atrogin-1 andMuRF1
were not affected by bortezomib administration (Figure 6).

Because bortezomib has been proposed to stimulate autoph-
agy,50–53 although not consistently,54,55 the levels of beclin-1, an

acceptedmarker of autophagic sequestration56 were evaluated.
Bortezomib treatment induced a significant increase of beclin-1
levels in control animals (Day 3). In contrast, beclin-1 expression
was slightly, although not significantly, increased in tumour
hosts and was not modified by bortezomib (Figure 7).

Finally, in order to assess if results obtained with
bortezomib treatment were model-dependent, the experi-
ment was repeated on mice bearing the colon 26 (C26). Con-
sistently with previous experiments,57 the growth of the C26
tumour induced in the host mice a significant reduction of
food intake, body weight, and gastrocnemius weight; all these
parameters were not affected by bortezomib treatment
12 days after tumour implantation (Figure 8). Spleen and
tumour weight were also not significantly modified by
bortezomib treatment in the C26 hosts, while liver mass
was significantly reduced (see Supporting Information).

Discussion

The results obtained in the present study show that
bortezomib administration in vivo, although able to reduce

Figure 2 Effects of bortezomib on liver and spleen weight. (A) Liver and (B) spleen weight were evaluated in controls (C) and tumour-bearing rats
(AH-130) treated or untreated with bortezomib (BTZ) at Day 3 (d3), Day 4 (d4), Day 5 (d5), and Day 7 (d7) after AH-130 cell inoculation. Results
(means ± SD) are expressed as percentage of controls (C and C + BTZ: n = 4; AH-130, AH-130 + BTZ: n = 8). *P< 0.05, **P< 0.01 vs. control;
¶P< 0.05 vs. C + BTZ.
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proteasome and NF-κB activity in the skeletal muscle, does
not prevent body weight loss and muscle wasting in experi-
mental cancer cachexia. These findings are in agreement with
results obtained in LP07-bearing mice, where treatment with
bortezomib failed in preventing cancer-related body and
muscle weight loss.36,37 These observations would suggest

that inhibition of a single proteolytic system is not effective
in counteracting muscle wasting in cancer cachexia. Indeed,
enhanced muscle protein breakdown in cancer cachexia has
been demonstrated to depend on the activity of different
degradative mechanisms besides proteasome, such as the
autophagic-lysosomal pathway and the calcium-dependent
proteases (calpains).58,59

Moreover, inhibition of a degradative pathway can have a
negative impact on protein quality control and muscle perfor-
mance. Indeed, the use of protein degradation inhibitors
could have major drawbacks such as promoting the accumu-
lation of misfolded or aggregate-prone proteins.60 This could
be very toxic for the cell, in particular, if other degradative sys-
tems, such as autophagy, are not contemporarily and efficiently
working to remove accumulated proteins. In the present study,
beclin-1 protein levels were increased by bortezomib treatment
in Day 3 controls but were unchanged on both Days 3 and 7 in
the AH-130 hosts, suggesting that an early compensatory in-
duction of autophagy exists in healthy but not in tumour-
bearing animals. In this regard, recent observations have shown
that the levels of p62, a marker of autophagosome disposal,
markedly increase in the gastrocnemius of rats bearing the
AH-130 hepatoma 7days after tumour inoculum, in face of un-
changed beclin-1 expression.59 This observation suggests that a
progressive exhaustion of the lysosomal degradative capacity
occurs in the skeletal muscle of tumour-bearing animals.
Therefore, upon proteasome inhibition, ubiquitylated protein

Figure 3 Effects of bortezomib on food and water intake. (A) Food in-
take and (B) water intake were evaluated daily in control (C) and tu-
mour-bearing rats (AH-130) treated or untreated with bortezomib
(BTZ). C and C + BTZ: n = 4; AH-130, AH-130 + BTZ: n = 8.
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aggregates might not be efficiently removed because of
impaired autophagic degradation, which could partially explain
the worsened cachectic phenotype observed in the

gastrocnemius of bortezomib-treated AH-130 hosts. All this
reasoning, however, remains speculative because the amount
of ubiquitylated protein was not assessed. Further experiments
would be needed to clarify this point.

Besides autophagy, other mechanisms participate to the
disposal of ubiquitin conjugates, such as deubiquitylating en-
zymes.17,61 Little is known about deubiquitylation and its role
in cancer-induced muscle wasting; however, an alteration of
this process may play a role in the lack of effect of bortezomib
administration to tumour-bearing animals.

In contrast with the results shown in the present study, treat-
ment with a different proteasome inhibitor, namely MG132,
has been reported to attenuate body weight loss and muscle
depletion in mice bearing the C26 colon adenocarcinoma.62

Such a discrepancy could rely on the fact that MG132 does
not just inhibit proteasome, but also cathepsins and calpains.6

In addition, MG132 administration, unlike bortezomib in our ex-
periment, caused a significant reduction of C26 mass,62 which
could have contributed to improve skeletal muscle wasting.

Finally, additional specific effects of bortezomib besides
proteasome inhibition may have affected the modulation of
muscle mass in the present study. In this regard, bortezomib
has been recently reported to inhibit differentiation, to arrest
cell growth at G2/M phase, and to induce apoptosis in C2C12
myocyte cultures.63 Importantly, although bortezomib is less
toxic compared with other proteasome inhibitors, several side
effects have been reported such as asthenia (due to fatigue
and weakness), gastrointestinal events (i.e. nausea, diarrhoea,
vomiting, and poor appetite), haematological toxicity (low
platelets and erithrocytes count),13 peripheral neuropathy,64

and cardiotoxicity.65–67 In the present experiment, bortezomib
exerted a transient toxicity in tumour-bearing rats as
evidenced by reduced food intake and increased NF-κB DNA-
binding activity at Day 3 after tumour transplantation, which
could have contributed, at least in part, to the lack of effec-
tiveness in preventing cancer-related muscle wasting.

On the whole, the results shown in the present study dem-
onstrate that proteasome inhibition by bortezomib is not able
to prevent muscle wasting in tumour-bearing animals. How-
ever, the molecular mechanisms occurring in the skeletal
muscle in response to bortezomib administration during can-
cer cachexia still need to be defined, and further studies
should address the issue whether a different dosage of
bortezomib alone or in combination with other drugs modu-
lating different molecular pathways may effectively prevent
muscle wasting during cancer cachexia.
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Figure 6 Bortezomib does not modulate atrogin-1 and MuRF1 mRNA
levels in the gastrocnemius of the AH-130 hosts. mRNA levels for (A)
atrogin-1 and (B) MuRF1 were determined by semi-quantitative RT-
PCR in the gastrocnemius of controls (C) and tumour-bearing rats (AH-
130) treated or untread with bortezomib (BTZ) at Day 3 (d3) and Day
7 (d7) after AH-130 cell inoculation. Results (means ± SD) are expressed
as percentage of controls (C and C + BTZ: n = 4; AH-130, AH-130 + BTZ:
n = 8). **P< 0.01, ***P< 0.001 vs. control.
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Figure 7 Bortezomib does not modulate beclin-1 protein levels in the
gastrocnemius of the AH-130 hosts. Beclin-1 protein levels in gastrocne-
mius muscle of controls (C) and tumour-bearing rats (AH-130) treated
and untreated with bortezomib (BTZ) at Day 3 (d3) and Day 7 (d7) after
AH-130 cell inoculation were evaluated by western blotting. α-tubulin
was used as loading control. Densitometric quantification are shown
in the figure, and results (means ± SD) are expressed as percentage of
controls (C and C + BTZ: n = 4; AH-130, AH-130 + BTZ: n = 8). *P<0.05
vs. control.
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