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Abstract—Radiography is nowadays a common medical exam,
used for diagnosing several diseases, but has the disadvantage
of exposing people to a dose of radiation. For this reason, it
is important to study methods for reducing such dose. In this
paper we present a digital X-ray simulation tool that simulates
a radiological exam on a virtual patient. The software builds a
physically-realistic radiography in real-time thanks to GPGPU
programming and CUDA technology. It aims to be used in
radiological departments, for testing new dose reduction proce-
dures and training health operators. We validated the software
comparing the results with real radiographic images, and we
tested it on different graphic cards obtaining running times
that are 35 to 250 times faster than the corresponding CPU
implementation.

Keywords—Simulating X-ray images; Medical Imaging; Graph-
ics Processor Unit; CUDA;

I. INTRODUCTION

Originally designed for accelerating computer graphics
applications, the graphics processing unit (GPU) has emerged
as versatile platform for massively parallel computing, without
loss of reliability and accuracy. The use of the GPU has clear
advantages for complex computational problems in different
scientific disciplines such as linear algebra, differential equa-
tion, ray tracing, data-mining, biophysics, fluid dynamics as
well as medical physics. A key topic in this last field is the
simulation of radiography images. A software application, for
simulating accurate and realistic images, should implement
some fundamental components: a primary beam and its at-
tenuation through human body and detector materials; the
scatter radiation; the image noise; a virtual patient and a digital
detector. The first three components are usually simulated
through Monte Carlo method that provides good results, but it
requires long computation times, making it unusable for a real-
time software. Since the generation of realistic X-ray images
requires complex operations independently performed on each
pixel, the GPU is suitable for this kind of massively parallel
problems. Furthermore the use of GPU permits a real-time
interaction, so the results of simulation are available in few
seconds. Such tool is useful in a radiological department for
training health operators: the operator can analyze in real-time
the influence of exposure parameters (photon beam energy,
intensity of radiation beam, detectors) on a virtual patient
and dose optimization processes can be performed, reducing
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the radiation dose to patients. Moreover, such tool allows to
make the best use of available resources, saving time, human
workload and occupancy time of the radiological room.

In this paper, we present a real-time tool for simulating
digital X-ray images, based on GPU computing and CUDA
architecture. We reproduce a radiological room including a
source of primary beam, a virtual phantom and a detector.
We also take into account the attenuation of primary beam
and the typical noise of the radiological image. The software
is validated by the comparison between real and simulated
radiography. We test our tool on GPUs having different level of
performance for evaluating its response in real-time. Finally we
make a comparison of the computational times for generating
an image on the GPUs and on CPU.

Other applications that exploit GPU computing for the
simulation of medical images have been proposed. Shi et al.
[1] have provided a comprehensive reference in the GPU-
based medical image processing. Pratx and Xing [2] besides
report the basic principles of GPU computing and the main
performance optimization techniques, have summarized exist-
ing applications in different areas of medical physics, such as
image reconstruction, dose calculation and treatment plan opti-
mization, image processing. Ino et al. [3], Ruijters et al. [4] and
Dorgham et al. [S] have considerably improved computation
time of 2D to 3D registration algorithms, parallelizing on GPU
the generation of digitally reconstructed radiographs (DRRs).
Vidal et al. [6] have implemented a tool for the simulation
of X-ray attenuation through complex objects. Chou et al
[7] have accelerated and optimized the forward-projection
algorithm for medical image reconstruction. Viswanathan et
al. [8] have sped up the simulation of X-ray radiography and
computed tomography images, based on graphics rasterization
and image reconstruction techniques.

Each one of the previous tools performs only a part of
the process of radiography simulation: on the other side, our
application aim to implement them all in one framework.
In the following we present our approach. In Section II the
theoretical model is presented in details, while in Section III
the simulation tool is explained. Our results and conclusion
are outlined respectively in Section IV and Section V.

II. THEORETICAL MODEL

The simulation tool displays a virtual radiological room,
in which there are an X-ray source, a virtual patient and a



detector. The virtual body is traversed by several X-rays beams,
one for each detector pixel, produced by the source. A certain
amount of X-ray is absorbed by the virtual body, depending
on the tissues density. The remaining radiation beam hits the
detector behind the virtual body, then is converted in the dose
and, by adding the noise components, in a digital value (gray
level) for each pixel using the detector response function.

Primary beam and its attenuation. The interaction of
the primary beam with the virtual phantom is modeled using
ray-tracing techniques and X-ray attenuation laws, also called
Beer—Lambert law:

I = .[067”'”

The source, punctual and polychromatic, is an ordinary X-ray
tube with energy and intensity user-adjustable. The different
beams are obtained from IPEM [9] by setting traditional
clinical X-ray tube features and dividing the spectrum in 5keV’
(Kiloelettronvolt) energy bins. The user can choose among a
set of different input files, one for every beam, that indicate
the fluence of photon normalized at a distance of 1m and the
energy for each energy bin.

Virtual phantom. The virtual body consists in a 3D voxel
matrix generated from CT images. Let fi,o5e; be the linear
attenuation coefficient of each voxel. It is estimated from the
HU (Hounsfield scale) value:

HU = 1000 - ((,vaomel - ,Ufwater)/ﬂwater)

where for pi,qter We consider the effective energy of the TC
radiation beam of anthropomorphic phantom, corresponding to
60keV . For the other energies (1,05, 1 multiplied by a factor
f equal to the linear attenuation coefficient of the crossed
material divided by the one of water, at the same energy. The f
values are obtained from ICRU 44 [10] taking into account the
tissues density: the trend of the f coefficients is quite similar
in soft tissues such as air, water and muscle, but is different
for high density tissues like bones. For this reason we set up a
discriminant value fi,oze; €qual to 0.25cm ™1, that is the linear
attenuation coefficient of compact bone: if f1,4¢; 1S lesser than
0.25¢m ™! the anatomical section crossed is a soft tissue and/or
water; otherwise it is a high density region.

Detector. The detector is designed like a set of coplanar
points belonging to a planar surface having the same dimen-
sions of the image to generate. Each point simulates the center
of the corresponding pixel of the real detector. A radiation
beam is simulated from the source to each pixel. The distance
between the source and the coplanar point (beam path) is
divided into n equal step increments. The number of steps
can be set by the user and for each of them the attenuated
photon fluence (P,++,) is computed for each energy bin as:

n
Patt, = Ps H e HInT
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where p; is the linear attenuation coefficients and Az is
the step length (distance between two step increments). The
dose contribution of each energy bin is calculated through the

formula: )
1
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where (ien/p)s is the mass absorption coefficient in air,
derived from ICRU 44 [10], 1; is the attenuated energy fluence
of the single energy bin (P, - E;), (100/d;;)? is the distance
correction factor and f. is the conversion factor from eV to
J. The total dose D incident in the pixel center is equal to:

N
D=)"D;
i=1

where NNV is the number of energy bin of the selected beam.
The total dose carried from the source to each pixel of the
digital detector is converted into pixel value PV through the
response function of the detector:

PV =b+a-In(Ku)

where K ;. is the incident air kerma (kinetic energy released
per unit mass) equal to total dose D, a and b are the fit pa-
rameters. Our tool offers three different detectors: two indirect
digital radiography (D.R.), the former Philips DigitalDiagnost
and the latter Kodak DR 7500, and a computed radiography
(C.R.) system, the Kodak DirectView C.R. 900. It also offers
two types of Look-Up Table (LUT) for the visualization of
radiological image: the first one linear for the raw images
and the second one sigmoidal, i.e. the standard LUT for these
detectors.

Noise and random numbers. In addition to the response
function, for each detector is carried out an analysis of the
noise, as follows. The variance o2 is decomposed into its basic
components [11]:

o =a-D+3-D*+v

where «, § and v are the weight coefficients of Poisson,
multiplicative and additive noise respectively. Taking into
account the trends of variance, for each pixel of the simu-
lated image is calculated a dose depending from noise. The
necessary Gaussian variables are generated through the Box-
Muller method [12]: let U; and Us be random numbers having
the same probability density function, then:

X1 =+v/—-2InU; - cos2nUs;
X9 =+/—2InU; - sin27Us;

are independent and identically distributed random variables
having normal distribution with zero mean and unit variance.
The random numbers (U; and Us) for this method are ob-
tained by a combination of three Tausworthe generators [13]
(TausStep) with a linear congruential generator (LCG) [14]
without mod operation (LCGStep), as suggested by S. Mohanty
et al. [15], with different starting seeds:

Uy =(TausStep(seedy,13,19,12,4294967294UL) &
TausStep(seedy,2,25,4,4294967288UL) @
TausStep(seedy,3,11,17,429496280UL) &
LOGStep(seed;, 1664525, 10139042230 L))
2.3283064365387 - 10 1Y;

where Us is calculated as U; using seeds instead of seed;.
The starting seeds are the result of another linear congruent
generator:

seed; = id; - 1099087573U L;



where ¢d; is a combination of the row and column indexes
of the image with GPU thread and block numbers to avoid
correlated noise. Four combination ¢d; implement three noise
contributions:

id1 = /1 - j - (thread, + block,);

idy =+/j - i - (thread, + blocky);
where ¢ and j are the row and column indexes of the image
respectively; thread,, thread, and block,, block, are the
thread index within the block and the block index within the
grid respectively. id; and id, are used for the calculation of
X, and X5, the former for the Poisson noise and the latter
for the multiplicative one; ids and id4 are used for calculating
the X, variable for the additive noise. This combination is
adapted from the image generation field applying the Park-
Miller algorithm proposed by W.B. Langdon [16] to seed;
before inserting it in the TausStep and LCGStep combination.
It is very important that each pixel has its own starting seed,
different and independent from those of the other pixels,
because “miscalculated” random numbers produce correlated
noise.

We decided to implement this complex approach for the
simulation of noise due to the limitation of CUDA about the
generation of random number. It is a widely discussed argu-
ment in GPU computing, and from CUDA 2.0 it is available a
library called CURAND, that allows to generate pseudorandom
and quasirandom numbers. Despite the sequence of numbers
satisfies most of the statistical properties of a truly random
sequence, it is generated by a deterministic algorithm. It means
that if each thread always starts with the same initial seed, it
is always generated the same sequence of numbers, losing the
randomness. As a consequence such method is not suitable
for imaging, in particular for the simulation of the statistical
fluctuation of noise.

III. GRAPHICAL TOOL

The main window of our program, shown in Figure 1, is
composed by three panels: the first one represents the virtual
radiological room; the second one displays the preview of
the radiographic image; the third one shows the histogram of
the acquired image. The input of the application is a set of
tomographic images, in which each pixel provides information
about the density of the voxel, or rather of the represented

Fig. 1: Display window of the simulation tool.
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Fig. 2: Data flow diagram of the simulation tool.

tissue. A 3D matrix of the phantom is built from the set
of voxels, and then loaded into the GPU memory. The user
can set, through a simple settings window, some parameters
involved in the X-ray exam, such as energy (photon spectrum)
and intensity (mAs) of the radiation beam, radiation field size
(i.e. the image sizes), two rotation angles of the source-detector
system (alpha and beta), the distance between source and
phantom (DFC) and between phantom and detector (DCI),
the number of steps, phantom, detector, LUT type, noise
component and also the GPU model. The simulation starts with
a standard configuration of the position of the source-detector
system, and provides a radiography preview that has lower
resolution with respect to the final image, in order to speed
up the application. Some parameters can be modified during
the virtual exam, through keyboard or gamepad controls, such
as the beam intensity, the beam collimation, the number of
steps, the value of alpha, beta, DFC and DCI. The image
preview is updated after every change, in order to permit a
real-time interaction. When all these parameters satisfy the
user, it is possible to generate the radiography as an high
resolution version of the image in preview, that is saved on disk
in tiff format. The entire process is schematized in the diagram
shown in Figure 2. The X-ray image is generated on the GPU
using the algorithms presented in Section II, summarized in
Algorithm 1, executed in parallel: each thread computes an
image pixel.

IV. RESULTS

Our tool produces physically-realistic X-ray images in real-
time. Below, we provide a brief description of the software
validation (as this goes beyond the scope of the paper), and
the comparison of computing times. For testing we used three
different NVIDIA graphics cards: Tesla C1060 (240 cores,
4GB of memory, released in 2008), GeForce GTX 680 Kepler
(1536 cores, 2GB of memory, released in 2013) and Tesla
K40c (2880 cores, 12GB of memory, released in 2014).

The validation of the software was based on the comparison



Algorithm 1 CUDA kernel function

for each pixel of the image do
initialize variables;
for each steps do
compute the linear attenuation coefficient fiyozei;
end for

for each energy bin do
compute the attenuated photon fluence ®q1¢;;
compute the dose contribution D;;

end for

compute the total dose incident in the pixel center D;

compute the noise;
# here the generation of random numbers

convert the total dose in gray level value;
end for

between acquired and simulated images, using different set
of input parameters and two different phantoms. For each
image, both the simulated and the actual one, we selected some
regions of interest (ROIs) for making a comparison between
the respective gray levels.

In the first validation phase, we used a cubical phantom of
plexiglass. Since it has a uniform density, it is ideal for testing
the correctness of our computation algorithm of gray levels.
Figure 3 shows the Gaussian noise distribution of a central
ROI of the image (81kV'p, 12.8mAs, DCI = 7.6cm, DFC =
172.4cm, a = 8 = 0, step = 2500) for the DirectView D.R.
7500 detector. Mean pixel value and standard deviation are
reported for the three graphics cards: the distributions obtained
are similar.

In the second validation phase, we used an anthropo-
morphic phantom (3 Dimensional Torso, model 602, CIRS,
Tissue Simulation and Phantom Technology, Norfolk, Virginia,
USA). We have acquired and simulated images of five different
clinical exams: abdomen, anterior-posterior (AP) vertebral col-
umn, lateral vertebral column, posterior-anterior (PA) chest and
lateral chest. The validation was repeated on all the available
GPU, with similar results, but for sake of brevity we report
only the results obtained with the GeForce GTX 680. Figure
4 shows a qualitative comparison between the real and the
simulated radiography of lateral chest (exposure parameters
117kVp and 12.5mAs), without the contribution of scatter
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Fig. 3: Gaussian distribution of noise for the radiography of cubic
phantom using the detector Kodak DirectView D.R. 7500.

Fig. 4: Sample radiography of lateral chest.

radiation. Figure 5 shows some analysis on the simulated
radiography of abdomen (a). Real images were acquired using
an anti-scatter grid, i.e. a device, placed between the patient
and the detector, for limiting the amount of radiation scatter
created during the exposure. The first graph (Figure 5b) is
related to the trend of dose: the profiles are quite similar and
the shift is due to the absence of the contribution of scatter
radiation and anti-scatter grid in the simulated image. The
second graph (Figure 5c) shows the trend of gray levels, the
most significant analysis for radiologists. In this case we added
the contribution of scatter radiation and anti-scatter grid to the
simulated image, in a post-processing phase, by applying a
Gaussian filter. It can be noted that the two graphs are very
similar.

The application was tested on the three GPUs listed above
and on a CPU (PC Intel Xeon X5560 @ 2.80 GHz 2.78
GHz, 4 cores (2 logical cores per physical), 48 GB RAM), in
order to make a comparison of the performance on different
devices. The CPU version of our algorithm runs on single
core. For the test we used the anthropomorphic phantom CIRS
and two detectors: the Kodak DirectView C.R. 900 and the
Philips DigitalDiagnost. The pixel size of the Kodak detector
is 0.17 x 0.17mm?, whereas the one of the Philips detector is
0.14x0.14mm?. We repeated the test on each of the five X-ray
exams listed above. The results are reported in Figure 6a and
depicted in Figure 6b. The computation time on GPU includes
also the data transfer time between host and device. The Figure
6b shows a scatter plot in which we assign the computational
time for simulating the Kodak detector to the horizontal axis,

p—
simulated

(a) Detail of the sample radiography of abdomen.
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Fig. 5: Statistical analysis on real and simulated radiography of abdomen.
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Fig. 6: Computational times (in seconds), on different devices, for simulated images of anthropomorphic phantom CIRS, using two detectors.

and the computational time for simulating the Philips detector
to the vertical axis; the shape states the process unit (GPUs and
CPU) while the color states the medical exam. As expected,
a lower pixel size of the detector requires more computational
time. In particular by applying simple linear regression through
the origin on the data (the blue line in the graphic) we can
notice that the correlation between the two times is on average
equal to 1.52. Looking at Figure 6a we can make a comparison
of computing times with respect to the fastest device, the Tesla
K40c, noting that on average it is:

- 1.2 times faster than the GeForce GTX 680, because they
are both very recent GPUs, designed for high performances;
- 8.6 times faster than the Tesla C1060: this value gives an
idea of the improvements done in GPU architecture in the last
five years;

- 245 times faster than the CPU version: it is a very signif-
icant difference that highlights the advantages of the parallel
computing on GPU.

V. CONCLUSION

In this paper we presented a simulation tool for digital
X-ray imaging that takes advantage of the computational
power of the graphics processing unit by using the CUDA
parallel computing platform. Our tool reproduces a radiological
room and simulates the main aspects of a real radiological
exam. We implemented an efficient generation of random
numbers, entirely computed on GPU, in order to obtain a real
noise distribution and to simulate physically-realistic medical
images. The software allows a real-time interaction: for this
reason it can be used in a radiological department for training
health operators and for dose optimization processes, saving
the time of the radiologist and reducing the occupancy time of
the radiological room, and for reducing the radiation dose to
patients. Since our tool is designed to be used in a hospital,
in our opinion the GPU-based method is a more attractive
solution with respect to the CPU cluster-based method, because
it is cheaper, needs less maintenance and power consumption,
and has higher fault tolerance. Since different radiological
departments may have at their disposal different hardware, we
tested the program on different GPUs to ensure its correct
operation in real-time. Moreover, our tests show increasing
performance on more recent GPUs, and they confirmed that
the Tesla K40c is the fastest graphics card available on the

market. Furthermore, in contrast with the CPU version, the
Tesla C1060, our oldest card, is around 35 times faster, and
the Tesla K40c, our newest card, is around 250 times faster.
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