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Abstract

Aggregates of multiwalled carbon nanotubes (MWCNT) impair the barrier properties of human

airway cell monolayers. To resolve the mechanism of the barrier alteration, monolayers of

Calu-3 human airway epithelial cells were exposed to aggregated MWCNT. At the

cell-population level, trans-epithelial electrical resistance (TEER) was used as an indicator of
barrier competence, caspase activity was assessed with standard biochemical assays, and cell

viability was investigated by biochemical techniques and high-throughput (HTP) technique

based on automated epifluorescence microscopy. At cell level, the response to MWCNT was

investigated with confocal microscopy, by evaluating cell death (calcein/propidium iodide (PI)),
proliferation (Ki-67), and apoptosis (caspase activity). At the cell-population level, exposure to

aggregated MWCNT caused a decrease in TEER, which was not associated with a decrease in

cell viability or onset of apoptosis even after an 8-d exposure. In contrast, confocal imaging
demonstrated contact with MWCNT aggregates triggered cell death after 24 h of exposure.

In the presence of a natural surfactant, both TEER decrease and contact-mediated toxicity

were mitigated. With confocal imaging, increased proliferation and apoptosis were detected in

Calu-3 cells next to the aggregates. Contact-mediated cytotoxicity was recorded in two
additional cell lines (BEAS-2B and A549) derived from human airways. Similar results were

confirmed by adopting two additional MWCNT preparations with different physico-chemical

features. This indicates MWCNT caused localized damage to airway epithelial monolayers

in vitro and altered the apoptotic and proliferative rate of epithelial cells in close proximity to
the aggregates. These findings provide evidence on the pathway by which MWCNT aggregates

impair airway barrier function, and support the use of imaging techniques as a possible

regulatory-decision supporting tool to identify effects of aggregated nanomaterials not readily

detected at cell population level.

Abbreviations: Calcein-AM: calcein-acetoxymethylester; PI: propidium iodide; DMEM:

Dulbecco’s Modified Eagle Medium; FBS: fetal bovine serum; h: hours; min: minutes; d: days;

MWCNT: multiwalled carbon nanotubes; MWCNT-SA: MWCNT provided by Sigma-Aldrich cat.

no. 659258; TEER: trans-epithelial electrical resistance
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Introduction

Multiwalled carbon nanotubes (MWCNT) have raised great

interest for their peculiar mechanical and electrical properties as

reinforcing agents in novel hybrid or polymeric composites

combining the beneficial properties of multiple materials.

In biology, hydrogels doped with MWCNT, which mimic

biological extracellular matrix (ECM), have demonstrated to

provide cells with mechanical support and cues to regulate their

behavior (Dong et al., 2013; Lee et al., 2009). Recent studies

have investigated in depth the consequences of the interaction of
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MWCNT with biological systems, highlighting severe toxic

effects induced by these materials (Kayat et al., 2011; Mercer

et al., 2013; Porter et al., 2013; Shvedova et al., 2013; Wang

et al., 2013).

Airway epithelium represents one of the first body barriers

encountered by MWCNT dispersed in the environment (Smart

et al., 2006). For this reason, a wide number of studies have been

investigated, in vitro and in vivo, the effect of MWCNT on the

lung barrier. The concerns on the pulmonary impairment

following MWCNT accumulation in the lungs and the potential

systemic adverse effects of this nanomaterial on humans are

indeed well documented (Shvedova et al., 2009, 2012). In vitro,

low acute toxicity has been reported in alveolar epithelial (A549)

cells, using standard biochemical methods (Pulskamp et al.,

2007). However, more sensitive methods, such as colony forming

efficiency assay, have shown a moderate toxicity of MWCNT

(Ponti et al., 2010), and it is known that MWCNT are genotoxic

for rat lung epithelial cells (Muller et al., 2008a, b). A prolonged

exposure to rigid MWCNT (see ‘‘Methods’’ and ‘‘Results’’

sections for a detailed characterization) impairs the barrier

function of the epithelial monolayers, lowering the trans-epithelial

electrical resistance (TEER) and increasing the paracellular

permeability to mannitol (Rotoli et al., 2008, 2009).

Interestingly, these changes were not associated with decreased

cell viability or with an altered expression of tight junction

proteins, while they seemed to be related to the fibre-like

properties of MWCNT (Rotoli et al., 2009). In vivo, rodents

receiving MWCNT by intratracheal instillation or pharyngeal

aspiration showed early formation of granulomas and fibrosis at

deposition sites, leading to functional respiratory impairment

(Kim et al., 2010; Ravichandran et al., 2009, 2010; Reddy et al.,

2010). Several reports suggest a pro-allergic effect following

intratracheal instillation of MWCNT in mice, with an increased

production of Th2 cytokines (such as IL-4, IL-5, and IL-10) (Park

et al., 2009), exacerbation of allergic airway inflammation (Inoue

et al., 2009) and increased occurrence of fibrosis (Ryman-

Rasmussen et al., 2009). Moreover, sub-chronic inhalation

exposure of rats to MWCNT revealed early epithelial cell

hyper- and/or metaplasia in the upper respiratory tract and, at

high doses, a time-dependent bronchiolo-alveolar hyperplasia in

the lower respiratory tract (Pauluhn, 2010).

To the best of the authors’ knowledge, the mechanisms

underlying the alterations of the lung barrier triggered by

MWCNT in vivo have not been elucidated so far. Given the

high tendency of MWCNT to aggregate (Kishore et al., 2009;

Muller et al., 2005; Rotoli et al., 2008) and the presence of

aggregates in the airway walls of exposed animals (Park et al.,

2009; Pauluhn, 2009; Reddy et al., 2010), our working hypothesis

is that, similar to asbestos, MWCNT aggregates might elicit

peculiar toxic responses in the lungs. Due to structural similarities

in terms of their ‘‘needle-like’’ shape, in combination with their

high aspect ratio and low solubility, it has been hypothesized, in

fact, that MWCNT may exhibit respiratory toxic properties

similar to those of other fibrous materials (e.g. asbestos and nickel

nanowires (Murphy et al., 2011; Poland et al., 2012), the toxicity

mechanisms of which are related to the fibre pathogenicity and

the frustrated phagocytosis paradigms (Donaldson et al., 2010).

Indeed, numerous in vivo studies have already demonstrated that

MWCNT, when instilled into the lungs of rodents, have the

potential to cause transient inflammatory changes, granuloma

formation, and fibrosis in the lung tissue (Murphy et al., 2011).

Long (420 mm), straight MWCNT have also been shown to have

the potential to cause inflammation and granuloma formation in

the mesothelial lining of the pleura, consistent with the patho-

genic behavior of asbestos. However, information of morpho-

logical and functional events occurring in the early stages of

nano-bio-interactions is still lacking. Our working strategy was,

therefore, to investigate the role of MWCNT aggregates in the

barrier impairment, so as to elucidate the potential mechanism of

lung toxicity of this nanomaterial when present in the

environment.

An in vitro model consisting of Calu-3 cell monolayers grown

on permeable filters in a double-chamber culture system was

adopted to mimic the airway epithelial barrier. Under these

conditions, Calu-3 cells, which are derived from a human lung

adenocarcinoma, form tight junctions, show strictly polarized

secretory and transport functions, prevent the trans-epithelial

passage of paracellular substrates, and participate in signal

transduction (Cereijido et al., 2008; Matter & Balda 2007), thus

representing an in vitro model of a functional epithelial barrier.

For this reason, Calu-3 cells have been used to predict the

behavior of the respiratory barrier in vivo (Sakagami, 2006) and

as a model to study airway permeability to nanomaterials (Daum

et al., 2009; Grainger et al., 2009; Teijeiro-Osorio et al., 2009).

Monolayers of human bronchial epithelial cells (BEAS-2B) and

human lung alveolar carcinoma cells (A549) were also used for

comparison.

Our results demonstrate that distinctive localized toxic effects

could be identified in cells in direct contact with MWCNT

aggregates even when no major responses were detectable at the

cell-population level. Imaging techniques are here presented as

possible regulatory-decision supporting tool for nanomaterial

assessment highlighting the underlying evidence of interaction

between MWCNT aggregates and surrounding epithelial cells.

Methods

MWCNT materials

Commercially available multi-walled carbon nanotubes (hereafter

named MWCNT-SA) used in this study as ‘‘fibre-like’’ model of

nanomaterials causing respiratory toxicity (Li et al., 2007; Muller

et al., 2005, 2008b; Elgrabli et al., 2008; Simon-Deckers et al.,

2008), were obtained from Sigma-Aldrich (Milan, Italy, cat.

no. 659258, produced through Chemical Vapor Deposition,

diameter ranging between 110 and 170 nm; length ranging

between 5 and 9mm). As by manufacturer analysis, the percentage

of MWCNT content was at least 90% with a residual amorphous

carbon content present in the sample. The iron concentration

declared by the manufacturer was less than 0.1%; however, no

metal impurities were found in the preparation (see below,

Results, Physico-chemical characterization of MWCNT-SA).

Two additional MWCNT preparations, NM400 and NM402,

were obtained from the JRC repository of Representative Test

Materials (Roebben et al., 2013) and used in this work. NM400

MWCNT have a diameter ranging between 5 and 35 nm and

a length ranging between 0.7 and 3 mm, while NM402

MWCNT have a diameter ranging between 6 and 20 nm and a

length ranging between 0.7 and 4mm (Kermanizadeh et al.,

2012).

Before toxicity experiments, MWCNT were heated at

220 �C for 3 h to ensure endotoxin elimination (Muller et al.,

2005).

Chemicals and reagents

All reagents and chemicals used in this work, unless differently

indicated, were purchased from Sigma-Aldrich (Milan, Italy).

Fetal bovine serum (FBS) and culture media were purchased from

EuroClone (Milan, Italy). Pluronic F127 was obtained from

Invitrogen SpA (San Giuliano Milanese, Milan, Italy). The natural

surfactant CurosurfÕ, consisting of pig lung surfactant, was kindly

supplied by Chiesi Farmaceutici SpA (Parma, Italy). The

2 B. M. Rotoli et al. Nanotoxicology, Early Online: 1–12
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CurosurfÕ used in this work contained phosphatidylcholine (73%

of the total phosphorus) and 1.7mg/ml of surfactant proteins (SP-

B and SP-C).

Physico-chemical characterization of MWCNT

Methods for the physico-chemical characterization of MWCNT-

SA are reported in Supplementary material.

Cell culture

Calu-3 cells were routinely culturedat physiological conditions

(37.5 �C, 5% CO2, 95% humidity) in 10-cm diameter dishes in

Eagle’s Minimum Essential Medium (EMEM) supplemented with

1mM sodium pyruvate, 10% FBS, streptomycin (100 mg/ml), and

penicillin (100U/ml), as previously reported (Rotoli et al., 2008).

BEAS-2B and A549 cells were cultured in Dulbecco’s

Modified Eagle Medium (DMEM) (Euroclone, Italy), supple-

mented with Gln (4mM) and 10% FBS. For the experiments, cells

were seeded into culture inserts with permeable membrane

filters (pore size of 0.4mm) for Falcon 24-well-multitrays

(BD Bioscience, Franklin Lakes, NJ ), at a density of 75� 103

cells/300 ml of media.

Confocal laser scanning microscopy (CLSM)

Confocal analysis was carried out with a LSM 510 Meta scan

head integrated with an inverted microscope (Carl Zeiss, Jena,

Germany). Samples were observed through a 40� (1.3NA) or a
63� (1.4NA) oil objectives. Image acquisition was carried out in
multitrack mode, i.e. through consecutive and independent optical

pathways. Vertical sections were obtained with the function

Display – Cut (Expert Mode) of the LSM 510 confocal

microscope software (Microscopy Systems, Hartford, CT).

Reconstructions were performed from z-stacks of digital images

(minimum 32 confocal sections, z-axis acquisition interval of

0.39mm), processed with the Axiovision module inside 4D release

4.5 (Carl Zeiss, Jena, Germany), applying the shadow or the

transparency algorithm.

Exposure to MWCNT

MWCNT were dispersed, unless otherwise stated, at a mass

concentration of 1mg/ml in sterile phosphate-buffered saline

(PBS) obtaining the stock suspension. Working concentrations

were obtained by serial dilutions.

MWCNT dispersions were added immediately after son-

ication (15min, 3 cycles) to the growth medium at the apical

side of the permeable filter on which cell monolayers were

growing. The doses of MWCNT were expressed in mg/cm2 of

monolayer. The conversion of doses expressed in mg/ml into

this metric depends on the ratio between culture surface

and incubation volume. Thus, for cells seeded into filters of

double chamber culture systems (surface 0.3 cm2) in 225ml

of medium (apical compartment), a dose of 100 mg/ml

corresponds to an average exposure of 75 mg/cm2 of cell

monolayer.

Trans-epithelial electrical resistance (TEER) measurements

Measurements of TEER of Calu-3 cells monolayers were made

with an epithelial voltmeter (EVOM, World Precision Instruments

Inc., Sarasota, FL) that produces an AC current. Cells were

allowed to grow for 10 d into a tight monolayer

(TEER41000X cm2) before MWCNT were added at the doses

of 0, 15, 30, 45, and 75mg/cm2. Cells monolayers were exposed

for 24 h and 8 d. In accordance with the scientific literature

(Salem et al., 2009), variations in TEER were expressed as the

percentage of the initial value adjusted for control cell layers

according to the following equation:

% � DTEER ¼
Final TEERðMWCNTÿtreatedÞ

Final TEERðcontrolÞ

�
Initial TEERðcontrolÞ

Initial TEERðMWCNTÿtreatedÞ
� 100

Resazurin assay

To assess cell viability, the resazurin assay (O’Brien et al., 2000)

was used. After the exposure to MWCNT (75mg/cm2), Calu-3

cells monolayers were incubated for 90min with fresh, serum-free

medium supplemented with 44 mM resazurin, added to both the

basolateral and the apical compartments. MWCNT have been

previously reported to not interfere with the resazurin assay

(Rotoli et al., 2008). Fluorescence measurements at 572 nm were

performed on the medium of the apical chamber transferred in a

clean 96-well dish with a Wallac 1420 Victor2Multilabel Counter

(Perkin Elmer, Waltham, MA).

Caspase activity

Cells were mechanically detached from the filter and centrifuged

at 300� g for 5min. Pellets were suspended in 500ml of assay

buffer (50mM Hepes, 0.1% CHAPS, 10mM EDTA, 5% glycerol,

and 10mM DTT) and vigorously vortexed. After centrifugation at

12 000� g for 10min at 4 �C, the protein content in the

supernatant was determined with the Bio-Rad protein assay.

Aliquots of 10 mg protein were distributed in each well of a

96-well plate, along with the caspase substrate Ac-DEVD-pNA

(200 mM, Alexis Biochemicals, San Diego, CA). The absorbance

at 405 nM was read with a microplate reader (Wallac 1420 Victor2

Multilabel Counter, Perkin Elmer, Akron, OH) after 16 h at 37 �C.

Caspase activity under each condition was expressed as the % of

the value obtained for the untreated control cells after subtraction

of the blank value.

Cytotoxicity analysis: live cell monolayers

Calcein/PI assay: this assay is known to not interact with

MWCNT (Monteiro-Riviere et al., 2009) and it has been

successfully used to determine the cytotoxic effect of carbon-

based materials in previous studies (Movia et al., 2011). After

exposure to MWCNT (0, 15, 30, 45, and 75 mg/cm2) for 24 h and

8 d, the cell culture medium was replaced with fresh, complete

medium containing 2.5mM calcein–acetoxymethylester (Calcein-

AM, Invitrogen, Paisley, UK) and 4mg/ml PI. Calcein-AM is a

non-fluorescent molecule that passively enters live cells where it

is converted into a green fluorescent dye (calcein) by intracellular

esterases. Calcein is retained by live cells until the plasma

membrane is intact. PI is a red fluorescent dye that stains cells

with compromised cell membrane binding to nucleic acids. Cells

were incubated for 15min at 37 �C and then washed with fresh

medium. The permeable filters were then detached from the

culture inserts and live specimens were imaged by an inverted

LSM 510 Meta confocal microscope (Carl Zeiss, Jena, Germany)

while incubated with a fresh medium in a Kit Cell Observer (Carl

Zeiss, Jena, Germany), which allowed for fine temperature

control, CO2/air ratio and humidity (Gatti et al., 2008).

Samples were observed through a 40� (1.3NA) or a

63� (1.4NA) oil objectives. Calcein was excited with a 488 nm
laser and the emission recorded through a 505–530 nm band pass

barrier filter. PI was excited with a 543 nm laser and the emission

recorded through a 560 long pass barrier filter. MWCNT were

imaged in reflection mode at kexc¼ 633 nm and are shown in

DOI: 10.3109/17435390.2014.918203 Effects of MWCNT aggregates on epithelial monolayersQ1 3
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pseudo-color. Images were then processed as previously

described. For quantification of PI-positive cells, six random

chosen fields (approximately 0.1mm2) were analyzed through a

series of horizontal sections.

Quantitative analysis for live/dead accounts was carried out on

large areas (approximately 1 cm2 each) of the prepared samples by

HTP technique based on automated epifluorescence microscopy

(Nikon TE2000, Tokyo, Japan). HTP analysis of the data was

carried out by bioinformatics algorithm based on cell live/dead

counting. To provide statistical sample populations, two mem-

branes where analyzed for Calu-3 cells: Calu-3 exposed to

MWCNT for 8 d and Calu-3 not exposed as a negative control. PI

or Calcein staining was recorded based on their respective

emission wavelengths. On an average, 400 cells were counted for

each membrane. The percentage (%) of live cells was then

calculated from the counting readings as described in the

following equation:

% live cells ¼
Live cells ðcalceinÞ

Total number of cells ðcell countÞ
� 100

Caspase activity: After exposure to MWCNT (75mg/cm2) for

8 d, the cell culture medium at the apical side of the cell

monolayers was replaced for 1 h by fresh, complete medium

supplemented with a sulforhodamine-labeled inhibitor of active

caspases (CaspaTagÔ Pan-Caspase in Situ Assay kit, Chemicon

International, Temecula, CA). The inhibitor covalently binds to a

reactive cytokine residue. Upon washing, the bound reagent is

retained while the unbound reagent diffuses out of the cell, so that

only cells with high caspase activity remain labeled. Negative

(untreated) and positive (doxorubicin, 1 mM, 24 h) controls were

included in the experimental design. The permeable filters were

then detached from the culture inserts and analyzed by confocal

microscopy as previously described for the calcein/PI assay. The

sulforhodamine label was excited with a 543 nm laser and its

emission recorded through a 560 long-pass barrier filter.

Immunofluorescence staining: fixed cell monolayers

Cell monolayers, grown on permeable filters, were rinsed in PBS

and fixed with 3.7% paraformaldehyde (PFA) at room temperature

for 15min. Following staining procedures, specimens were

mounted on glass slides with fluorescence mounting medium

(Dako Italia SpA) and imaged by confocal microscopy (excitation

at 488 nm; emission recorded through a 505–530 nm band pass

barrier filter).

Proliferative activity: Actively proliferating cells were detected

from the positivity to the nuclear antigen Ki-67, a protein

expressed by cells in G1, S, G2, or M phases, but not by quiescent

cells in G0 (Scholzen & Gerdes, 2000). For this assay, cells were

permeabilized with methanol at ÿ10 �C (5min), incubated in

blocking solution (10% goat serum) at room temperature, and

incubated with primary anti-Ki-67 mouse monoclonal antibody

(Santa Cruz Biotechnology (Santa Cruz, CA), 1:000+ 1.5% goat

serum) for 60min. Filters were then washed in PBS and incubated

with 1:400 Alexa 488 anti-mouse IgG (Invitrogen, Paisley, UK)

for 45min at 37 �C. After washing in Tween 0.1%, detached filters

were mounted on a glass slide with mounting medium prior to

confocal imaging.

Quantitative analysis of cell proliferation was carried out by

HTP technique based on automated epifluorescence microscopy

(Nikon, TE2000, Tokyo, Japan). HTP analysis of the data was

carried out by bioinformatics algorithm based on nuclear counting

and positive nuclear Ki-67-green fluorescent staining average

intensity per cell. Two stained samples containing Calu-3 cell

only (negative control) and Calu-3 exposed to MWCNT for 8 d

were analyzed based on the intensity level of localized nuclear

Ki-67-green fluorescent staining. The percentage (%) of prolif-

erating cells was calculated from the following equation:

% proliferating cells ¼
Kiÿ 67ÿ positive fluorescence

Total cell count
� 100

The total cell count was based on the fluorescence intensity of

nuclear staining (40,6-diamidino-2-phenylindole (DAPI) staining,

emission wavelength¼ 461 nm). On an average, 400 cells were
counted for each membrane. Detailed data analysis is reported in

Table 2.

Organization of F-actin filaments: After fixation, MWCNT-

exposed cells were permeabilized with 0.1% Triton X-100

(10min), incubated for 20min at 37 �C with AlexaFluor-

Phalloidin (10U/ml, Invitrogen, Paisley, UK). After washing

with PBS, detached filters were mounted on glass slides prior to

confocal imaging.

Visualization of MWCNT aggregates in reflection mode

Images of MWCNT aggregates are reported in Supplementary

Figure S1.

Statistical analysis

A one-way ANOVA with Tukey test was used to compare TEER

values and monolayer viability under various experimental

conditions. Differences were considered significant when

p50.05. The analysis was performed with the Prism5Ôsoftware

(GraphPad Software Inc, San Diego, CA). Linear regression

analyses were performed with the same software.

Results

Physico-chemical characterization of MWCNT-SA

High-resolution transmission electron microscopy (HR-TEM)

images of MWCNT-SA (Sigma-Aldrich cat. no. 659258)

showed a clean material composed mainly of individual tubes

with lengths in order of several microns and diameters ranging

from 100 nm to 200 nm (Figure 1A–C), consistently with the

dimensions declared by the manufacturer. HR-TEM images did

not show the presence of any iron impurities, which should be

visible by TEM as black particles because of the high diffraction

contrast of this metal. Dark areas were observable on the

MWCNT surface (indicated by arrows in Figure 1A–C) and

they were associated to synthetic defects onto the graphitic

structure of the tubes.

HR-TEM results were confirmed by thermal gravimetric

analysis (TGA). TGA was performed on MWCNT in air.

A residual ash content of 0% (corresponding to a weight loss

equal to 100%) was recorded at 900 �C (Figure 1D), demonstrat-

ing that no detectable traces of the metal catalyst used during

MWCNT synthesis were present in the sample. Additionally, the

absence of weight loss below 500 �C, which is attributed to the

decomposition of organic groups in the carbon nanotubes

material, confirmed that no organic chemical contaminants were

present in the MWCNT sample. MWCNT, dispersed in the same

culture medium used for cellular tests, exhibited a negative f

potential (ÿ12.01± 2.57mV, Figure 1E) at neutral pH, in

accordance with previously reported findings on carbon nano-

tubes (Hu et al., 2005; Movia et al., 2011; Saleh et al., 2010).

Similar to what is observed with aqueous colloidal particles and

what is reported in previous studies on carbon nanotubes, our

results were indicative of a non-stable MWCNT dispersion in the

culture medium (dispersion with z potential above+ 30mV or

below ÿ30mV correspond to stable solutions) (American Society
for Testing and Materials, 1985). Therefore, MWCNT incubated

with the cell cultures were likely to be in the form of aggregates
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when suspended in the culture medium. Cell monolayers tested in

this study were, therefore, exposed to MWCNT aggregates, which

ranged from less than 20 mm of diameter to more than 80 mm

(Figure S1). Such aggregates were persistent for several days.

Finally, the specific surface area (SSA) of the MWCNT-SA

sample was 22.6± 0.38m2 gÿ 1 (Figure 1E).

Analyses in live cell monolayers

TEER measurements and resazurin assay were carried out on

Calu-3 cell monolayers to identify the responses of these cell

cultures following exposure to MWCNT-SA (75 mg/cm2). As

demonstrated by z potential measurements (Figure 1E) and by

confocal microscopy (Figure S1), Calu-3 cell monolayers were

exposed to MWCNT in the form of aggregates.

TEER measurements showed that when Calu-3 cell mono-

layers were incubated with MWCNT-SA, a significant decrease in

TEER was detectable (Figure 2A). A similar response was

detected when Calu-3 cells were exposed to two other MWCNT

preparations obtained from the JRC repository of representative

test materials, NM-400 and NM-402. Calu-3 cell monolayer

integrity was biochemically assessed by resazurin assay. After the

exposure to MWCNT, no significant alteration of the monolayer

was detectable by this assay with all the materials tested

(Figure 2B). Consistently, no increase in caspase activity was

detected in cell lysates of MWCNT-treated monolayers

(Figure 2C).

Automated epifluorescence microscopy analysis of cell mono-

layers stained with calcein/propidium iodide confirmed the

resazurin measurements, showing no significant changes in cell

viability when Calu-3 cell monolayers were exposed to

MWCNT-SA (Table 1).

The relationship between MWCNT aggregation and TEER

decrease was investigated in the experiment recounted in Figure 3.

In this experiment, natural and synthetic surfactants were used to

delay MWCNT-SA aggregation (Figure 3A–C). The decrease in

TEER, already detectable after 3 d of exposure to aggregated

MWCNT (Figure 3D), was no longer observable after exposure to

MWCNT-SA dispersed in the presence of the natural surfactant

CurosurfÕ (0.8mg/ml). Interestingly, no significant TEER

changes were detected also when the natural surfactant was

used alone. The decrease in TEER induced by MWCNT-SA was

instead comparable in the absence or in the presence of the

synthetic surfactant Pluronic (1mg/ml), which, however, pro-

duced a significant TEER decrease even when added alone.

Viability measurements (Figure 3E) performed in the same

monolayers used for the TEER determinations indicated that no

significant decrease in viability was detected under any of the

conditions tested.

To investigate the mechanisms underlying the discrepancy

between TEER measurements and cell viability assay in

MWCNT-treated monolayers, we investigated the response of

Calu-3 cells by confocal microscopy.

Calcein/PI assay: Untreated Calu-3 cell monolayers accumu-

lated calcein rather homogeneously, while few or no cells were

propidium positive (Figure 4A). These findings were confirmed

by analysis of vertical sections (Figure 4B) and three-dimensional

reconstructions (Figure 4C), which showed that the untreated
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Calu-3 cell monolayers were planar and intact. Propidium-

positive (i.e. dead) cells appeared in Calu-3 cell monolayers

exposed to MWCNT-SA for 24 h (Figure 4D). However, the

distribution of dead cells was not uniform throughout the cell

population because propidium-positivity was detected mainly in

the close proximity of MWCNT-SA aggregates. The vertical

section at 24 h of exposure (Figure 4E), taken in correspondence

to the largest aggregates, also confirmed that the injury was

restricted to cells in direct contact with the MWCNT-SA

aggregate (arrows), while the remaining portion of the monolayer

preserved its viability. Interestingly, there was no evidence of live

cells present at top surface of the aggregates (imaged in reflection

mode and showed in grey as pseudo-color). The top surface

resulted to be completely cell-free, as demonstrated in both the

vertical section and the 3D reconstruction images (Figure 4F). On

the contrary, after 8 d of exposure to MWCNT-SA, confocal

analysis showed that the tangles were almost covered by a

monolayer of cells (Figure 4G, base of the aggregate; Figure 4H,

aggregate top). The vertical section (Figure 4I) and the 3D

reconstruction (Figure 4L) images evidenced that the majority of

cells lying on the top of the aggregates were dead, with a minority

of viable cells stained with green calcein (shown in Figure 4H by

arrowheads). Notably, since propidium-positive cells were

detected around the aggregates of smaller sizes than those

shown in Figure 4 (Supplementary Figure S2), no definite

threshold size of aggregates could be determined for contact-

mediated cytotoxicity.

Contact-mediated cytotoxicity was also found in monolayers

treated with the NM400 and NM402 MWCNT; also in this case,

propidium-positive cells were detectable in close contact with the

aggregates (Supplementary Figure S3).

In addition, the contact-mediated cytotoxicity was also

observed in two additional airway epithelial cell lines,

BEAS-2B and A549 treated with MWCNT-SA (Supplementary

Figure S4).

Finally, the quantitative relationship between MWCNT dose

and cytotoxicity was determined by quantifying the number of

propidium-positive cells. For the concentrations range adopted

(0, 15, 30, 45, and 75 mg/cm2), a significant linear relationship

existed between the MWCNT mass concentration and the

percentage of dead cells after 8 d exposure (Figure 5A). This

result was in agreement with the TEER data which evidenced a

significant linear dose–effect relationship between the change in

resistance of the Calu-3 cell monolayer and the MWCNT dose

(Figure 5B).

Caspase activity: Confocal microscopy analysis showed that

after 8 d of exposure to MWCNT-SA, caspase activity increased

in several cells growing on the top of the aggregate (Figure 6A

and B), whereas no caspase fluorescence was observed in

untreated monolayers (Figure 6C). When co-stained with calcein,

caspase-negative cells located at the top of the MWCNT

aggregates showed calcein positivity (Figure 6A and B), exhibit-

ing a granular intracellular distribution of the dye (arrowheads).

This distribution differed from the intracellular distribution

exhibited by untreated cells (Figure 6C), which were completely

filled with calcein, with some areas of enhanced positivity.

Positive control was taken as a Calu-3 cell monolayer treated with

pro-apoptotic drug doxorubicin (1 mM) for 24 h (Figure 6D).

Doxorubicin-treated monolayers exhibited widespread caspase

activity similar to MWCNT-treated cultures, with several caspase-

positive cells and calcein-positive cells characterized by the

granular staining pattern.

Analyses in fixed cell monolayers

Cell proliferation: The positivity to the nuclear Ki-67 antigen was

used to evaluate the proliferative behavior of Calu-3 cell

monolayers incubated for 8 d in the absence or in the presence

of MWCNT-SA. This assay has been widely adopted in the

scientific literature to detect actively cycling cells in normal and

tumor tissues (Scholzen & Gerdes, 2000). Although several

isolated Ki-67-positive cells were detectable in the untreated

Figure 2. Determination of TEER, cell viability, and caspase activity in
MWCNT-treated Calu-3 cell monolayer. Cells were incubated with the
indicated materials at a dose 75mg/cm2. After 8 d, (A) TEER, (B) cell
viability (assessed by resazurin biochemical assay), and (C) caspase
activity (assessed in cell lysates) were determined. For (A) and (B), three
MWCNT preparations (MWCNT-SA, NM400, and NM402) were used.
For (C), only MWCNT-SA were used, while doxorubicin (1 mM, 1 d) was
the positive control. Data are means (ntest¼ 4)± S.D. **p50.01,
***p50.001, versus control, untreated cultures.
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Calu-3 cell monolayers (due to their origin from a neoplastic

population with high basal proliferative activity), an increased

presence of cells in active proliferation was detectable in

proximity and around MWCNT aggregates (Figure 7).

Quantitative cell population level assessed by HTP did not

show any difference between exposed and untreated sample, as

shown in Table 2.

Discussion

This study aimed to investigate the lung toxicity properties of

MWCNT in their aggregate form when coming into direct contact

with cells. An imaging approach that identifies, at the cell level,

contact-mediated cytotoxic effects were developed, thus

overcoming the limitations imposed by current automated

epifluorescent microscopy or HTP techniques and standard

biochemical techniques. Here, we argue from pre-existing

evidence on carbon nanotubes (Donaldson et al., 2006; Mutlu

et al., 2010) and asbestos (Donaldson et al., 2010), as well as

from our own experimental results, that aggregates of MWCNT

are endowed with peculiar toxic properties, such as the ability to

decrease TEER. Indeed, when MWCNT aggregation tendency

was decreased with a natural surfactant, TEER decrease was

prevented, indicating that it was attributable to aggregates rather

than dispersed MWCNT. In addition, several findings (Carrero-

Sanchez et al., 2006; Maynard et al., 2004) support our assump-

tion that the possibility of being exposed to single MWCNT is

low, due to their tendency to aggregate into bundles. While most

Table 1. High throughput screening (HTS) analysis of cell population monolayers. Quantitative analysis of cell viability (calcein/propidium
iodide assay) based on 400 cells per measurement.

Calcein/propidium iodide assay

Sample Measurement
Number of

calcein-positive cells
Number of propidium
iodide-positive cells

% of live
cells

Average
(± standard deviation)

Untreated 1 212 188 53.00 49.83 (± 3.39)
2 201 192 50.25
3 185 208 46.25

MWCNT-treated 1 195 205 48.75 48.92 (± 1.76)
2 189 210 47.25
3 203 197 50.75

Figure 3. Effect of natural surfactant on MWCNT aggregates and on MWCNT-induced TEER decrease. (A) MWCNT-SA (1mg/ml) were suspended in
non-supplemented culture medium (EMEM, 1) or in medium supplemented with pluronic F127 (10mg/ml, 2) or CurosurfÕ (8mg/ml, 3), and the
suspension was sonicated for 30min. The image was taken 60min after sonication. (B, C) MWCNT (75 mg/cm2) were added to Calu-3 monolayers in
the absence (B) or in the presence (C) of CurosurfÕ (0.8mg/ml). Images were taken after 3 d (bar¼ 50 mm). (D and E) Confluent Calu-3 monolayers
were incubated in normal culture medium or in culture medium supplemented with the natural surfactant CurosurfÕ (0.8mg/ml) or with pluronic F127
(1mg/ml). The incubation was performed in the absence or in the presence of MWCNT (75 mg/cm2). After 3 d, TEER (D) and cell viability
(E) (resazurin method) were measured in the same monolayers. Data are shown as average (ntest¼ 4)± S.D. As a negative control, cells were incubated
without either surfactants or MWCNT. (D) ***p50.001 versus control; NS, not significant versus control; xp50.05 versus cells exposed to MWCNT
without surfactants.
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of the data presented here were obtained with thick-diameter type,

needle-like MWCNT of commercial origin (MWCNT-SA), the

main findings were confirmed with two ‘‘tangle-type’’ MWCNT

preparations, obtained from the JRC repository of representative

test materials (Roebben et al., 2013), which are much thinner

(Kermanizadeh et al., 2012) but nonetheless also form aggregates

as shown in Figure S3. The importance of aggregation for the

pulmonary toxicity was also proposed for single-walled carbon

nanotubes (SWCNT), leading to the speculation that the aggre-

gation of these materials, rather than their large aspect ratio

accounted for the toxic effects (Mutlu et al., 2010). In particular,

foci of granulomatous lesions and collagen deposition were

associated with dense particle-like SWCNT agglomerates

(Murray et al., 2012).

The results presented in this study show that aggregated

MWCNT hinder the barrier properties of airway cells, as

demonstrated by a dose-dependent decrease in TEER. Although

no changes in cell viability are detected by different biochemical

assays at the cell population level, confocal microscopy on living

monolayers showed a distinguishable difference. In particular,

confocal microscopy analysis demonstrated that the viability of

cells adherent to MWCNT aggregates was severely affected, as

indicated by the positivity of these cells to PI. Propidium-positive

cells were already detectable after a 24 h contact with MWCNT

aggregates, indicating that short-term exposure times were

sufficient to induce cell death and localized cell monolayer

damage. Interestingly, cell monolayers impairment was dose

dependent and correlated well with the TEER changes. The dose–

effect relationship shown in Figure 5(A) indicates that propidium-

positive cells correspond to approximately 8% of the total cell

population at the maximal mass concentration of MWCNT tested

(75mg/cm2). This low percentage may well explain why

MWCNT-induced cytotoxicity is not detected by conventional

assays at whole cell population level. Additionally, these results

are in agreement with the low cytotoxicity of MWCNT reported

on epithelial models in vitro (Pulskamp et al., 2007) and with the

transient inflammatory changes detected in the lungs in vivo

(Park et al., 2009). Finally, the absence of a widespread damage

to the cell monolayer is hardly compatible with the potential

sequestration of essential components from the medium by

adsorption onto MWCNT surface, a mechanism proposed to

account for MWCNT cytotoxicity (Casey et al., 2008).

In contrast, HR-TEM and TGA analyses (Figure 1A–C and D,

respectively) ruled out that MWCNT cause cell damage through

the diffusion in the medium of toxic factors, such as possible

Figure 4. Confocal analysis of Calu-3 cell monolayers treated with
MWCNT. Confluent monolayers of Calu-3 cells were incubated in the
absence (A–C) or in the presence of MWCNT-SA (75 mg/cm2) for 24 h
(D–F) or 8 d (G–L). Live cells are shown in green (calcein), while dead
cells are visualized in red (propidium iodide, PI) and aggregate free
surface, visualized from the reflected light, in grey (see Supplementary
Figure S1). (A, D, G, and H) Single horizontal confocal sections taken at
the level of the monolayer (A, D, G) or at the top of the MWCNT
aggregate (H). (B, E, and I) Vertical sections taken on the plan marked by
the line shown in panels A, D, and G, respectively. (C, F, and L) Three-
dimensional reconstructions of z-stack confocal images. Scale bar: 20mm.
The experiment was repeated five times with comparable resultsQ5 .

Figure 5. Dose dependency of MWCNT-induced changes in TEER and
cell viability. Confluent monolayers of Calu-3 cells were incubated in
the absence or in the presence of increasing doses of MWCNT-SA
(15–75 mg/cm2). After 8 d, TEER was measured (B) and monolayers
visualized at confocal microscope (Figure 4) and propidium-positive cells
counted (see ‘‘Methods’’ section). Data are shown as (A) mean values
(ntest¼ 4)± S.D. and as (B) mean TEER changes (% of control,
ntest¼ 4)± S.D. Straight lines represent the best-fit linear regressions.
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metal or organic contaminants, which were not detected in the

MWCNT-SA preparation.

The visualization of F-actin filaments constituting the cell

cytoskeleton (Figure S5) demonstrates that Calu-3 cells react to

the presence of MWCNT aggregates changing their shape and

cytoskeletal organization. Thus, similarly to what observed for

SWCNT aggregates (Worle-Knirsch et al., 2006), Calu-3 cells

adhered actively to MWCNT tangles, as the first step in a

colonization process. A direct interaction between actin cytoskel-

eton and SWCNT has been also recently described (Holt et al.,

2010). However, in that case, SWCNT were dispersed and

aggregates eliminated before cell treatment. In the experiment

shown in Figure S5, no dispersing agent was utilized making,

therefore, unlikely a direct interaction between the actin and the

nanomaterial. Conversely, it is likely that epithelial cells re-

organizeQ5 their cytoskeleton to allow an active and close adherence

to the nanomaterial. It is known that the characteristics of the

adhesion surfaces have considerable consequences on the cell

shape and, hence, on the cell fate (Vogel & Sheetz, 2006, 2009).

MWCNT surface is highly irregular, as clearly shown by the

confocal images in reflection mode (Figures 4 and S1), and may

not allow firm focal adhesions by the epithelial cells (Cui et al.,

2005; Lu et al., 2008). In addition, epithelial cells are more

sensitive than other cell types to anoikis, a form of apoptosis

promoted by absent or wrong signals from membrane adhesion

complexes (Gilmore, 2005). Since the death process triggered by

MWCNT aggregates seems asynchronous and involves individu-

ally caspase-positive cells, we suggest that anoikis-mediated

apoptosis is a likely mechanism of the localized cytotoxicity of

MWCNT aggregates, although further studies are needed to

confirm this form of cell death. However, as in the case of cell

viability, conventional assays of caspase activity at whole cell

population level did not detect significant apoptotic changes

(Figure 2C). Singularly localized apoptotic death would also be

consistent with the relatively small inflammatory response

associated with exposure to MWCNT found in vivo (Ma-Hock

et al., 2009; Park et al., 2009). Apoptosis occurrence in epithelial

monolayers exposed to nanomaterials has been also described in

Caco-2 cells treated with polystyrene nanoparticles (Thubagere &

Reinhard, 2010). However, in that work, cell death was triggered

by oxidative stress; in contrast, no induction of the Hmox1 gene

was detected in MWCNT-treated Calu-3 cells, thus suggesting

that no widespread oxidative stress occurs in our model (data not

shown).

Figure 6. Caspase-positivity in MWCNT-treated Calu-3 monolayers.
Figure reports representative confocal images of Calu-3 cell monolayers
treated with MWCNT-SA (A and B) (75 mg/cm2, 8 d); untreated (C); or
treated for 1 d with 1mM doxorubicin, used as a positive control for
apoptosis (D).Q5 Monolayers were stained with calcein-AM and with
sulforhodamine-labeled caspase-inhibitor (for caspase activity). (A and B)
Cells adherent to MWCNT aggregates showed high caspase activity.
Single horizontal sections, taken at the top of two MWCNT aggregates,
are shown. (C) Representative field of an untreated Calu-3 cell
monolayer. (D) Representative field of a caspase-positive Calu-3 cell
population. Caspase signal is rendered in a blue scale, while calcein is in
green and MWCNT surface is in grey. Scale bar: 10mM.
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Figure 7. Confocal microscopy images of Calu-3 cell monolayers treated
with MWCNT-SA (75 mg/cm2, 8 d) and stained for Ki-67 positivity. Two
representative fields (A–D and E–H) are shown. (A and E) Reflection
mode showing the surface of MWCNT aggregates in grey scale. (B and F)
Ki-67 positivity (green scale): actively proliferating Calu-3 cells are
visible in close proximity to MWCNT aggregates. (C and G) Bright field
images: MWCNT aggregates appear as black masses. (D and H) Merged
images of (A. B, and C) and (E, F, and G), respectively. Scale bars: 20 mm.
.
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In our in vitro model, proliferating cells were detected at high

frequency in proximity of MWCNT aggregates, as evidenced by

the Ki-67 positivity (Figure 7). It is tempting to attribute this

behavior to the proliferative drift due to the MWCNT-induced

cell death and the consequent loss of contact inhibition in

the monolayer. Intriguingly, also the exposure of airway epithe-

lium to MWCNT in vivo is associated with an hyperproliferative

behavior, consisting in areas of epithelial hyperplasia (Ma-Hock

et al., 2009) or ‘‘thickening of epithelial cell layers’’

(Pauluhn, 2010), detected in close proximity of nanomaterial

aggregates.

Conclusions

This study shows that when human airway epithelial cells are

exposed to MWCNT aggregates, distinctive, localized cytotoxic

effects are detectable only when adopting an advanced imaging

approach. Our results not only support previous data showing the

potential for MWCNTs aggregates to induce lung toxicity at low

doses but also incorporate methodological tools for advanced

imaging of MWCNT–cell interaction. The approach described in

this work represents, therefore, a first step in generating a set of

suitable methodologies to exploit mechanistic studies supporting

regulatory risk assessments. Moreover, this could be applied to

the assessment of other toxicologically relevant parameters, such

as protein translocation, changes at organelle levels, and dynamics

of membrane components.
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