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How Much Can Large-Scale Video-on-Demand
Benefit From Users' Cooperation?

Delia Ciullo, Valentina Martina, Michele Garetto, Member, IEEE, and Emilio Leonardi, Senior Member, IEEE

Abstract—We propose an analytical framework to tightly char-
acterize the scaling laws for the additional bandwidth that servers
must supply to guarantee perfect service in peer-assisted Video-
on-Demand systems, taking into account essential aspects such as
peer churn, bandwidth heterogeneity, and Zipf-like video popu-
larity. Our results reveal that the catalog size and the content pop-
ularity distribution have a huge effect on the system performance.
We show that users' cooperation can effectively reduce the servers'
burden for a wide range of system parameters, confirming to be an
attractive solution to limit the costs incurred by content providers
as the system scales to large populations of users.

Index Terms—Cooperative networking, stochastic models,
Video-on-Demand.

I. INTRODUCTION

A CCORDING to Cisco [1], by the end of 2016, the sum of
all forms of Internet video [TV, Video-on-Demand (VoD),

P2P] will be approximately 86% of global consumer traffic. In
particular, the traffic component due to Video-on-Demand is ex-
pected to triple from 2011 to 2016, reaching the equivalent of
4 billion DVDs per month.
Increasing traffic volumes force video providers to continu-

ously upgrade the content delivery network (CDN) infrastruc-
ture that feeds the contents to local ISPs. To partially alleviate
this burden, a recent trend of VoD providers is to exploit cloud
services, which permit fine-grained resource reservation [2]. As
an example, in 2010, Netflix decided tomigrate its infrastructure
into the Amazon EC2 cloud, as it could not build data centers
fast enough to keep pace with growing demand.
However, any solution based on CDNs has severe limitations

in terms of scalability. CDNs can significantly reduce the traffic
in the Internet core and improve the user-perceived performance
(e.g., by reducing the latency) by “moving” contents close to
the users. Nevertheless, the aggregate resources required at data
centers (bandwidth/storage/processing), and the corresponding
costs incurred by content providers, inevitably scale linearly
with the user demand and data volume.
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The only scalable solution proposed so far is to exploit the
peer-to-peer paradigm, according to which users contribute their
resources (bandwidth/storage/processing) to the system while
they use it [3], [4]. Although the peer-assisted approach is an
attractive solution to the scalability problem, and it has already
been experimented in several applications [5]–[8], it brings with
it several issues that tend to discourage its adoption by many
content providers: the unpredictable nature of users' coopera-
tion, the added complexity on the control plane due to signaling
and chunk scheduling, and the need to provide incentive mech-
anisms to the users [9].
Streaming architectures that primarily rely on users' cooper-

ation can hardly guarantee the strict quality-of-service require-
ments of online video, where a steady download rate no smaller
than the video playback rate is necessary for a smooth watching
experience, and any interruption tends to be very annoying to
the user [10].
For these reasons, we argue that peer-assisted architectures

should be supported by properly dimensioned CDNs (or cloud
services) that intervene whenever the resources provided by
users are not enough to satisfy the current demand. In our the-
oretical work, we are specifically interested in characterizing
the additional bandwidth that servers must supply to guarantee
ideal service to all users (i.e., requests are immediately satisfied,
and videos can be watched without interruptions until the end).
Our main contribution is a stochastic analytical framework that
allows to derive general upper and lower bounds to the band-
width requested from the servers in a peer-assisted VoD system,
capturing essential aspects such as peer churn, bandwidth het-
erogeneity, and Zipf-like video popularity. Our analysis permits
to tightly characterize the system performance as the number
of users (and the number of available videos) grows large, and
thus assess the scalability of large-scale VoD exploiting users'
cooperation.
In our previous work [11], we have considered the case of a

single video, providing for the first time an asymptotic charac-
terization of the servers' bandwidth as the number of watchers
increases. Here, we extend the analysis to a multivideo system,
in which users can browse a catalog of available contents and
asynchronously issue requests to watch videos.
Our main contribution is a precise definition of the conditions

(related to physical system parameters such as the growth rate of
the catalog size, the Zipf's exponent of video popularity, videos'
characteristics, and user behavior) under which the additional
bandwidth requested from the servers asymptotically goes to
zero as the size of the system grows large.When such conditions
are not met, we provide the asymptotic laws for the required
servers' bandwidth.
We consider both the cases in which users can only assist the

distribution of the last video they have selected (we call this
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the passive system because the utilization of peer resources is
tied to the video popularity distribution, which is not under the
system control) and the general case in which users can assist
the distribution of any video (we call this the active system,
also referred to in the literature as universal streaming). For the
active system, we also devise the resource allocation strategies
that permit to achieve the optimal theoretical performance.
We emphasize that a full exploitation of peers' upload band-

width is not a trivial task in the presence of high degrees of
peer churn (i.e., when users tend to abandon the system after
watching a few videos), in consideration of the obvious fact
that users can only upload data that they have previously down-
loaded. For the same reason, unpopular videos, which tend to be
scarcely replicated among peers, can pose a significant stress on
the system. Hence, another important contribution of our work
is the definition of suitable strategies to mitigate the joint impact
of peer churn and heterogeneous video popularity.

II. SYSTEM ASSUMPTIONS

A. Service Specification and Users Cooperation
We model a VoD system where users run applications that

allow them to browse an online catalog of videos. When a user
selects a video, we assume that the request is immediately satis-
fied and the selected video can be watched uninterruptedly until
the end, i.e., the system is able to steadily provide to the user a
data flow greater than or equal to the video playback rate. We
consider that users watch at most one video at a time.
We assume that the system catalog contains different

videos. Video is characterized by the following:
its size , expressed in bytes; a selection prob-
ability , which is the probability that a user selects video
among all videos in the catalog; and a minimum playback rate.
We assume that video is downloaded at constant rate greater
than or equal to the minimum playback rate. Specifically, we
denote by the download rate, where (in
bytes/second).
Users contribute with their available upload bandwidth to the

video distribution: They can retrieve part of a requested video
(or even the entire video) from other users, saving servers re-
sources.
We model the amount of available upload bandwidth at a

given time by a user by a random variable with cumulative
distribution function and mean . In this way, we can take
into account effects related to Internet access heterogeneity and
cross-traffic fluctuations. The random variables 's denoting the
upload bandwidths of the users are assumed to be i.i.d.
Users contribute to the system also a limited amount of

storage capacity. The exact amount of buffer space available
at each user is not important in our analysis. As a minimum
requirement, our schemes assume that users can store at least
one whole video in addition to the one currently played out.

B. User Dynamics
Users join the system when they request the first video. We

denote by the arrival rate of new users. While they are in the
system, users can be in two states: .
The contributing state is defined as the state in which a user
is contributing its upload bandwidth to the system. In the con-
tributing state, a user can download (and watch) video con-
tents. Notice that a user can be contributing its upload bandwidth

even if it is not currently downloading/watching any video, but
simply because it keeps its VoD application up and running.
During the sleeping phase, the user's application is not run-

ning, hence it is neither downloading nor uploading data. We as-
sume that users download the entire requested videos (aborted
downloads could be easily included in our model, but we have
preferred not to do so for simplicity). Note that since a video
is retrieved at constant rate, its download time, ,
is a deterministic attribute of video , taking values in range

. After completing a
download, users remain in the contributing state for a random
amount of time with mean (part of this time can be
spent finishing watching the video, if the download rate is larger
than the playback rate). Then, they transit to the sleeping state,
where they stay for a random amount of time of mean .
Users can choose to abandon the system (i.e., to stop the VoD
application and never open it again) after watching just a single
video. We assume that, after watching a video, each user inde-
pendently decides to leave the system with probability . It
follows that the number of videos requested by a user is geo-
metrically distributed with mean . Moreover, the
average time spent by a user in the system can be computed as

.
From the above assumptions, and the fact that the system

provides guaranteed service, the set of videos requested by a
user, the total time spent by a user in the system, as well as
the amounts of time spent by a user in the contributing/sleeping
states are independent from user to user.

C. System Scaling
Our goal is to asymptotically characterize the average addi-

tional bandwidth that servers must supply to guarantee perfect
service to all users, as the system grows large. Let be the av-
erage number of users in the system. By Little's law, we have

. Note that is a constant, hence our asymptotic anal-
ysis for increasing number of users is performed by letting
(and thus ) go to infinite.
Since the catalog size is expected to grow, just like the number

of users, we consider that the number of videos available in
the catalog is tied to the number of users, according to the law

, with1 .
As the system grows, new videos are made available to the

users. We assume that the characteristics of new videos inserted
into the catalog, in terms of file size and download rate ,
are random. Hence, and should be regarded as instances of
i.i.d. random variables and , respectively, with assigned
distributions (possibly correlated). Recall from Section II-A that
we (reasonably) assume that the distributions of , have
finite support independent of .

D. Content Popularity
To specify the selection probabilities of videos, we need to

model the relative popularity of the videos in the catalog. For
this, we adopt the standard Zipf's law, which has been frequently
observed in traffic measurements and widely adopted in perfor-
mance evaluation studies [12], [13]. More specifically, having

1Note that the assumption is not particularly restrictive, as long as the
number of contents introduced into the catalog by each user can be bounded by
a constant. Indeed, in this case the total catalog size scales at most linearly with
the number of users.
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sorted the videos in decreasing order of popularity, a request is
directed to video with probability

(1)

where is the Zipf's law exponent, and
is a normalization constant. Depending on the

exponent , we have
if
if
if

(2)

Let be the aggregate rate at which users request videos. By
construction, . The rate at which a specific video is
requested is .
Recalling that , and using (2), we have that

, and more precisely
if
if
if

(3)

In this work, we ignore the evolution of contents' popularity
over time by invoking a timescale separation principle, i.e., by
assuming that popularity dynamics occur at a timescale much
slower than contents' download time, which is fairly acceptable
in many cases of practical interest.

E. System Load

For a given system catalog, i.e., for given video characteris-
tics and , we can compute a fundamental quantity
characterizing the global system load (i.e., the load induced by
all videos)

(4)

Indeed, consider a large time interval . During this time in-
terval, a video will be requested on average times. Each
request for video has a double effect on the system: It re-
quires an amount of bytes to be downloaded; it lets the re-
questing user potentially to upload an average amount of data

. The ratio between the average amount of down-
loaded data and the average amount of uploaded data during in-
terval , for , leads to the expression in (4).
We remark that (4) holds for both passive and active systems

introduced in Section I. However, in the case of active systems,
it does not account for the additional data that users might be in-
structed to download by the system (data bundling). The effect
of bundling on the system load will be considered later. Bor-
rowing the terminology adopted in previous work [3], [14], we
say2 that the system operates in deficit mode if , and in
surplus mode if .
We emphasize that since video characteristics are random,

should be itself interpreted as an instance of a random variable
obtained deconditioning (4) with respect to and .
We will also use a video-specific notion of load, denoted by
, and its corresponding random variable

(5)

2In this paper, we do not consider the special case .

TABLE I
NOTATION

TABLE II
AVERAGE BANDWIDTH REQUESTED FROM THE SERVERS,

We observe that would coincide with if all were equal.
With abuse of language, we say that a video is in deficit mode
if , and in surplus mode if .
Table I summarizes the notation introduced so far.

III. SUMMARY OF RESULTS
First, we observe that, in the worst possible case, the servers

have to transmit at rate to all downloading users. It follows
that a trivial upper bound to the bandwidth requested from the
servers is . A trivial lower bound is .
For the passive system, we obtain the following results. If the

probability to include in the catalog a video with load
is greater than zero, i.e., , we have .
If, instead, there exists an arbitrarily small constant such that

, we obtain the asymptotic upper bounds
reported in the second column of Table II, which depend on the
Zipf's exponent and the catalog growth rate exponent .
For the active system, we obtain the following results. If
with nonvanishing probability as the system size increases,

we have . If (w.h.p.),3 for some
, we obtain the asymptotic upper bounds reported in the third
column of Table II, which depend on the Zipf's exponent and
the catalog growth rate exponent , while is an arbitrarily
small positive number.
The fourth column of Table II reports corresponding lower

bounds for , which are valid also for the extreme case in which
the user upload bandwidth is arbitrarily large.
In Fig. 1, we show a graphical representation of our upper

bounds, reporting (on a scale) versus the parameter .

3With high probability, i.e., with probability that tends to 1 as .
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Fig. 1. versus the parameter : (top plot) passive system and (bottom
plot) active system.

The different line types (accompanied with labels) refer to dif-
ferent values assumed by the parameter : The top plot refers
to the passive system, while the bottom plot refers to the active
one.
Our results for the active system provide the following funda-

mental insights: If , i.e., if the number of contents in the
system scales sublinearly with respect to the average number
of users, an active system operating (globally) in surplus mode
can asymptotically eliminate the need of additional bandwidth
from the servers (i.e., tends to zero as the number of users
increases), for any value of . This can be done even under the
sequential delivery scheme (i.e., when downloading users can
only help future downloaders of the same file). We remark that
the only requirement to achieve this desirable behavior is that
the global system load is smaller than one, which does not imply
that all videos are individually in the surplus mode.
If, instead, , (i.e., when the number of contents in the

system scales as fast as the number of users),4 the exploitation
of users' cooperation is more difficult and depends on the Zipf's
exponent: For , we cannot do any better than the worst
case . For (and ), we approximately
need additional servers' bandwidth (notice that in this case
upper and lower bounds differ only by a poly-log term), which
unfortunately goes to infinite for any . Basically, this is
due to the fact that, for , there are too many contents
available in the system (whose aggregate data volume becomes
comparable to the total buffer space available at users). In this
case, contents cannot be distributed/replicated at peers in such
a way that the distribution of all of them can be effectively as-
sisted by the users, considering also the effect of peer churn.
Passive systems perform, obviously, worse than active sys-

tems. First of all, they can lead to something better than
only when all videos are in surplus mode, which is a rather

restrictive condition. Nevertheless, if this condition is satisfied,
for we still obtain that , provided that
or . Instead, the servers' bandwidth goes to infinite as

for , and the same occurs if (of course
without exceeding the worst case ).

4Our results could be extended to the case , reaching identical conclu-
sions.

Fig. 2. Open network of queues modeling users' dynamics.

IV. PASSIVE SYSTEM

We start considering the passive system, in which users are
constrained to assist only the distribution of the last selected
video. This means that, after requesting a video, they can only
download/upload data belonging to the selected video (until
they request a new content from the catalog). A passive system
is conceptually simple to implement and manage, since swarms
of different videos are decoupled, and can be controlled inde-
pendently of each other.

A. Preliminaries

We can describe the dynamics of users in the system by the
open queueing network illustrated in Fig. 2. We consider a sep-
arate queue for all users downloading the same video. When the
download is complete, users who keep the application running
continue contributing their uploading bandwidth to the system,
transiting to queues arranged in the second column of the net-
work. Users who stop the application transit to the sleeping
state, represented by a single queue on the right-hand side (r.h.
s.).
Lemma 1: At any time, the number of users who are down-

loading a given video, the number of users who remain in the
contributing state after downloading a video, and the number
of users in the sleeping state follow independent Poisson
distributions.

Proof: The dynamics of users in the open queueing net-
work (in terms of transitions among the queues and sojourn
times at queues) are decoupled since users behave indepen-
dently of each other.5 The resulting queueing network admits a
product-form solution by the BCMP theorem. Since all queues
have infinite servers, the numbers of users in the queues follow
independent Poisson distributions.
Let be the total number of users in the system at time .

Note that is itself Poisson distributed, with mean
. We denote by the average number of users

downloading file , and by the average
number of users remaining in the contributing state after down-
loading file . In a passive system, represents also the
average number of users acting as seeds for video .

5Notice that here we are not considering as part of user dynamics the data
downloaded/uploaded by a user, which obviously depend on which videos the
other users have requested.
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B. Asymptotic Results for Single-Video System
Before considering the bandwidth requested from the servers

to support the distribution of all videos available in the catalog,
we analyze the simple case in which there is just one video (i.e.,

), whose request rate tends to infinite. Notice that in
this case in (4) equals in (5).
The following theorem characterizes how the servers' band-

width scales when :
Theorem 1: Assume the following properties hold for .
i) .
ii) is finite in a neighborhood of the origin.
iii) for every .

If for some , uniformly over , , and , a
can be found such that

and (6)
with , and . A
detailed proof of Theorem 1 is reported in Appendix A.
The upper bound stated in Theorem 1 is valid for .

When remains finite or vanishes as grows large, we can
apply the following rough bound based on the pessimistic
assumption that the entire bandwidth necessary to sustain
the downloads is provided by the servers (i.e., neglecting the
contribution of seeds and simultaneously downloading users).
Lemma 2: A universal upper bound to the bandwidth re-

quested from the servers is
Combining Theorem 1 and Lemma 2, we get the following

corollary.
Corollary 1: Under the assumptions on of Theorem 1, if

, for some , then uniformly over , , and a
can be found such that

if
if (7)

with .

C. Asymptotic Results for Multivideo System
Corollary 1 can be readily exploited to compute the aggre-

gate bandwidth requested from the servers in the case of mul-
tivideo systems. Indeed, we basically have to add up the con-
tributions of individual videos (as predicted by Corollary 1) to
obtain an upper bound on the overall bandwidth requested from
the servers. Thus, we can divide the video catalog into two por-
tions: The hottest portion of the catalog comprises videos whose
request rate tends to infinite as ; the coldest portion
of the catalog (which could be empty) comprises videos whose
request rate remains constant or vanishes as . For the
former portion, Corollary 1 (from Theorem 1) provides a tight
bound to the bandwidth requested from the server. For the latter
portion, we limit ourselves to apply the bound in Lemma 2 (re-
peated in Corollary 1). Although this bound may appear par-
ticularly coarse, it correctly captures (in order sense) the im-
pact that cold videos have on the aggregate bandwidth requested
from the servers. This is because, for any cold video, peer as-
sistance is rather ineffective (in a passive system). Indeed, since
the average number of available seeds for any cold video keeps
bounded also when grows large, it is possible (with a non-
vanishing probability) that at a given time either there are no
seeds supporting its distribution or all the seeds are sleeping. In
this case (occurring with nonvanishing probability), a minimum
amount of bandwidth equal to is needed from the servers to

sustain the distribution of a video. At last, observe that consti-
tutes a finite fraction of the whole bandwidth needed by peers
since the number of concurrent downloaders is finite. We obtain
the following theorem.
Theorem 2: Under the same assumptions on of Theorem 1,

if there exists an arbitrarily small constant such that
, then the average bandwidth requested

from the servers satisfies the following asymptotic bound w.h.p.
as the number of users tends to :

if
if
if

If, instead, , then w.h.p., .
A detailed proof is reported in Appendix C.
Remarks: We emphasize that when all videos are in the

surplus mode, the dominant contribution to the bandwidth
requested from the servers is always due to the coldest portion
of the video catalog, as it clearly emerges from the proof of
Theorem 2. In particular, when , , the
scaling law of is determined by videos whose request rate
either remains constant or decays to zero.
Although a passive system is conceptually simple to imple-

ment and manage, it is a very rigid (and potentially suboptimal)
scheme since users are constrained to devote their entire upload
bandwidth to the last requested video, and by so doing their re-
sources might not be fully utilized. In Section V, guided by the
insights gained from the analysis of passive systems, we will
investigate the performance achievable by active systems.

V. ACTIVE SYSTEMS

In active systems, users can be instructed to essentially
download/upload data belonging to arbitrary videos, with the
following obvious constraints: 1) they must at least download
(at constant rate) the videos that they want to watch; 2) they can
upload only data previously downloaded. In particular, users
can download/upload chunks or stripes belonging to videos
they have not requested (data bundling). However, we will not
consider the extreme case in which chunks/stripes can be made
arbitrarily small (fluid limit), i.e., chunks/stripes whose size
asymptotically goes to zero, because this is not implementable
in practice.
We will show that, even with this restriction (i.e., the size of

chunks/stripes cannot go to zero), we can devise efficient ac-
tive strategies that can overcome the fundamental limitations of
passive systems. In particular, we need to solve two orthogonal
problems: 1) the possible presence of videos in deficit mode,
which prevent any passive system to scale (we call this the load
balancing problem); 2) the possible presence of cold videos,
which are especially detrimental to the system (we call this the
catalog warming problem). For each problem, we will present
more than one solution, reporting the main results and the basic
intuition about how theywork.We anticipate that, once we solve
both problems above, the computation of the resulting system
performance will be an easy task.
Before describing the proposed techniques, we want to em-

phasize that, also for the active systems, the dynamics of users
can be described by an open network of infinite servers queues,
which turns out to be a BCMP queue as specified by the fol-
lowing lemma.
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Lemma 3: The dynamics of users in the system are repre-
sented by a BCMP (i.e., product-form) open queuing network
in which a different queue corresponds to a possible user
configuration.
Also in this case, system evolution can be represented by a

network of infinite servers queues associated to different user
states. However, the resulting queuing network is more complex
than in the passive case since the number of possible states in
which a user can be and to which a queue corresponds is much
larger than in the passive case. For example, a user can down-
load a content while hosting a different content to which it is
assigned as seed.

A. Load Balancing by Seed Reallocation

The goal of video equalization is to make the loads induced
by individual videos equal to the global system load (4). The
simplest approach to redistribute the peer upload resources to
achieve this goal is to remove the constraint that peers must
act as seed only for the last downloaded video. Here, we note
that videos for which the video rate is small ( ideally)
do not need seeds, while video contents with large video rate
( ) and long duration are much more critical. A good
performing strategy is to concentrate most of the seeds among
the videos that are more critical. This goal can be achieved in a
fairly natural way by allowing peers to offer service (as seed) for
an arbitrary video content that has been previously downloaded.
To implement such a scheme, peers are only requested to keep
in memory the content for which they act as seed. Essentially,
we can allocate extra seeds to those videos having in
the passive system. Although the approach is simple (it does
not require any chunk/stripe bundling), the performance of this
strategy is clearly limited by the fact that users download only
a finite number of videos before leaving the system, hence
they cannot act as seed for arbitrary videos.
At the same time, video for which may be

cause of potential bandwidth wastage for the system since it
may subtract excessive amount of bandwidth resources to other
videos. Observe, indeed, that the th video load remains too
small (smaller than ) even when we subtract to it all the seeds.
One remedial action, in this case, is to artificially increase the
nominal download rate of content , decreasing simultaneously
the download time. By doing so, as a side effect we increase the
average time during which peers may act as seed after down-
loading video . Thus, by increasing the download speed of
low loaded contents, we can spare more bandwidth resources
for other videos.
In accordance with previous considerations, we propose a

seed reallocation strategy that works as follows: 1) All videos
are downloaded at the same speed ; this way we decrease
the download time (that becomes ) and increase
the average time during which peers may act as seed after down-
loading video (we denote this quantity by

). 2) Peers acting as seeds are divided into cate-
gories: seeds assigned to a specific video and unassigned seeds.
Seeds assigned to video act as seed for video for all their
residual lifetime in the system; unassigned seeds, instead, act
as seeds for the last downloaded video. Every fresh new peer
joining the system is initially unassigned. An unassigned peer,
after downloading video , is assigned to video with proba-
bility , while it remains unassigned with probability .

Theorem 3: Given , , the proposed seed reallo-
cation strategy guarantees perfect load balancing (by properly
selecting probabilities ), iff , and the following condi-
tion on , is satisfied:

(8)

where . Deconditioning with respect to
and , we obtain that a perfect balance of video loads is

feasible w.h.p. iff

The proof is reported in Appendix D.
Note that if users stayed indefinitely in the system, they

would sooner or later download any video that requires ad-
ditional seeds, hence by properly setting probabilities , we
would surely be able to equalize the loads. Theorem 3 provides
the sufficient and necessary condition on the average number
of videos downloaded by a user (which is proportional to
average residence time in the system) such that perfect load
balancing is still possible. The previous approach can be further
boosted by allowing view-upload decoupling, i.e., by letting
users assigned to video to act as seed for it also while they
are downloading a different video.
Theorem 4: Adding universal streaming boost to the pre-

vious described seed reallocation policy, we are able to perfectly
equalize the load for different videos iff and
satisfy the following condition:

(9)
where .
We omit the proof of Theorem 4 since it follows exactly the

same lines of the proof of Theorem 3.

B. Load Balancing by Stripe Bundling
This technique is based on the following idea: Each video

is divided into stripes (substreams), which have to be down-
loaded in parallel by a user requesting the video (the distribution
of each stripe can be assisted by a different set of peers) and re-
assembled by the decoder. Users who are downloading a video
with are forced to download also one stripe of a video
with and devote a fraction of their upload bandwidth
(actually, all of their excess upload bandwidth with respect to
the target average system load) to the additional bundled stripe.
The upcoming Theorem 5 guarantees that, by making

large enough (but not infinite), we can approximately equalize
all videos, bringing all of them in surplus mode.
Before going into technical details, we provide an intuitive

understanding of why this strategy turns out to be very effec-
tive to balance the video loads while minimally increasing the
global system load. Indeed, while on the one hand some users
(those requesting a video with ) have to download ad-
ditional unwanted data (but this additional amount of data, cor-
responding to a single stripe, can be made smaller and smaller
by increasing ), on the other hand these users can exploit all
of their excess upload bandwidth to assist the distribution of
the bundled stripe, typically retransmitting many copies of it to
other peers before leaving the system, with an obvious gain in
terms of system performance. This technique is more complex
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to implement than the previous one based only on seed realloca-
tion. However, it has the great advantage that it does not require
any additional condition on the system parameters. In particular,
it works also in the extreme case in which users leave the system
after downloading just one video .
We now describe in more details the proposed load balancing

technique, and then provide the main result characterizing its
performance.
Definition 1: For each video , we define the amount of band-

width

(10)

It can be easily verified that is the amount of bandwidth
that, if subtracted to the average upload bandwidth of a peer,
would make the load of video equal to , i.e.,

where . We observe that is positive for
videos with , and negative for videos with .
Moreover, the following equation holds:

(11)

which suggests that, for a proper equalization, we have to con-
sider the weighted contribution of each video to the overall
system load, which requires to multiply both by the av-
erage stay in the system of users downloading video and by
the request rate . Before thinking about a scheme to distribute
the aggregate excess bandwidth of videos with to videos
with , we need to address the fundamental problem that
a peer can help another peer only if it already stores (or it is
concurrently downloading) data of interest to the other peer. In
the extreme case, peers leave the system after downloading just
one video, hence they cannot assist any other video distribution
unless we force them to download at least one piece of another
video (bundling), which can be done as soon as they enter the
system.
To minimize the amount of bundled data, we divide each

video into stripes, which are downloaded at constant rate
. We can treat a stripe exactly in the same way as a full

video and view the system catalog as being composed by
independent contents corresponding to the set of all stripes.
Users independently retrieve the stripes of each requested
video in parallel and devote an equal fraction of their upload
bandwidth to assist the distribution of each stripe. By doing
so, the load associated to each stripe equals the load of the
entire video.
If a video has some excess bandwidth (i.e., ), a

peer downloading it acts as follows: As soon as it requests the
video, it starts concurrently to download also a stripe of a video
having (to be specified later). Then, it devotes a fraction

of its upload bandwidth to each stripe of the origi-
nally requested video. The remaining upload bandwidth
is devoted to assist the distribution of the bundled stripe. Notice
that, on average, a peer requesting a video with reduces
the upload bandwidth devoted to this video by . It follows
that the new load associated to a video with (and to any
of its stripes) exactly equals the target load .

We still need to specify which stripe is bundled to peers down-
loading a video with . This is done by the following
water-filling-like algorithm. Initially, we put in a set of all in-
dexes of videos with . Moreover, , we initialize
to the arrival rate of users requesting file who have
not yet been assigned a bundled stripe.
We then consider (in arbitrary sequence) all of the stripes be-

longing to videos with , one at a time. For each of them
(say stripe ), let be the index of the video to which it belongs.
We initialize to a quantity representing
the residual impact that this stripe has on the system unbalance.
As long as , we perform this step: We randomly ex-
tract an index from set and consider the (positive) quantity

. Two cases are possible: If , we need
to use the bandwidth of all remaining users requesting file .
This means that peers requesting file have to download stripe
with probability (notice that this quantity equals 1, if
is still maintaining its initial value). Furthermore, index is re-
moved from set , and is diminished to . We extract
a new index from and repeat the same step; if ,
it means that a subset of peers downloading video is enough
to fill the remaining bandwidth deficit of stripe : In particular,
peers requesting file are forced to download stripe with prob-
ability . At last, before considering the next
stripe with , we update to .
Equation (11) guarantees that the above algorithm terminates

after handling all stripes with , finding for each of them
enough peers downloading videos with to fill its deficit
of bandwidth. At the same time, all peers downloading a video
with are assigned exactly one bundled stripe to down-
load. Notice that if the bundling mechanism were for free (i.e.,
no need for any peer to download additional data), after the
redistribution of upload bandwidth performed by the previous
algorithm, we would have all stripes with equal load . How-
ever, we need to consider the cost of bundling. The following
theorem guarantees that such additional cost can be made arbi-
trarily small by increasing , by employing a slightly modified
version of the previously described bundling scheme.
Theorem 5: For any value such that , there

exists a value for the number of stripes such that for
all a stripe bundling scheme can be found that brings
the system to operate at global load smaller than . At the same
time, the load associated to each video becomes smaller than
or equal to (the same holds considering the load induced by
individual stripes).
The proof is reported in Appendix E.
Remark: Comparing the two previously proposed techniques

to achieve load balancing, we can say that seed relocation is
much simpler to implement. Indeed, it does not require any
major modification to the system architecture and protocols. The
only actions requested to peers for the implementation of such
technique are: 1) to download videos at maximum rate ;
2) to become seed of a video in a predetermined/coordinated
fashion. The implementation of the stripe bundling mechanism
is, instead, more complex, as it requires the application of both
video striping and video bundling techniques. On the other end,
stripe bundling turns out to be significantly more effective in
highly dynamic scenarios in which peers download only few
videos (in the limit, just one video) before disappearing from
the system.
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C. Catalog Warming by Video Bundling
While analyzing the case of a passive system, we learned that

cold videos (videos whose request rate does not increase with )
are responsible for the dominant component of the bandwidth
requested from the servers. Hence, if we could artificially in-
crease the request rate of cold videos, we would expect to get
a significant reduction of . Now, it turns out that we do not
need to warm up the coldest portion of the catalog too much:
Optimal performance is already achieved when the request rate
of videos go to infinite at least as fast as a poly-log function, i.e.,
when , (actually, this is needed only for a
“critical” portion of the catalog) where is a suitable constant.
Provided that , the amount of data bundling necessary to
achieve this goal is rather small, hence it is possible to warm the
catalog up enough, while at the same time increasing the global
system load to a value such that

for (12)
as it will be shown in the proof of Theorem 6.
The simplest approach to achieve this goal is to make some

peers in the contributing state download entire (unrequested)
videos while they are not downloading any other content. This
mechanism does not require any video chunking/striping and
can be superposed to the load balancing strategy described in
Section V-A. In essence, the strategy works as follows. Let

be the target new rate at which video should be down-
loaded in the active system. Peers who have just finished down-
loading a hot video (for a specific constant ), without
having been assigned to it by the seed reallocation strategy, are
induced to start the download of a cold video with
probability (note that, by construc-

tion, as , whenever .6 If the
download of the bundled video is interrupted because the peer
goes into the sleeping state, the download is promptly resumed
as soon as the peer restarts contributing to the system without
concurrently downloading any other video (they cannot be, as it
will be shown in the proof of Theorem 6, assigned to any video
they possibly download in the meanwhile). Since , the
negative effect that this strategy has on the load induced by hot
videos (those videos whose request rate is not increased, and
from which the mechanism subtracts some seeds) becomes neg-
ligible for . Our strategy has a potential effect also on
the load of videos whose request rate is artificially increased.
However, it guarantees that the new load of such videos is
maintained less than 1, provided that the average upload band-
width of adjoint seeds exceeds the average bandwidth consumed
to download them, i.e., .
When this condition is met with probability 1, i.e.,

(13)

the above scheme can be effectively employed, in sufficiently
large systems, without bringing any video in deficit mode.

D. Catalog Warming by Chunk Bundling
The previous technique imposes again a constraint on the

system parameters (13). When (13) is violated, the same
approach can be applied to individual pieces of cold videos

6When , only a portion of the coldest video collection can be warmed
up while guaranteeing , as shown in the proof of Theorem 6.

(chunks), instead of entire videos, with less stringent constraint.
Indeed, peers who are forced to contribute to an unrequested
video neither need to completely retrieve it nor to download
it sequentially. Thus, we can cut a cold video in chunks
and ask some peers to download just a randomly chosen chunk
contributing to its distribution. Chunkization reduces the band-
width that every artificial downloader consumes by a factor ,
while keeping constant its potential contribution on the upload.

E. Catalog Warming by Stripe Bundling
A similar idea can be applied to stripes, instead of chunks,

and superposed to the load balancing technique proposed in
Section V-B. Essentially, peers who request for the first time
a hot content (for some constant ), with proba-
bility , are forced to download also a randomly

chosen stripe of cold video , of size (where is a suit-
able constant), contributing to its distribution for the rest of their
stay into the system, with an opportunely chosen fraction of
their upload bandwidth.
To properly choose fraction and constant , we need to

evaluate the impact that the proposed bundling scheme has on
the load induced by individual videos (or stripes), guaranteeing
that such load remains smaller than 1.
To do this, let us assume that, after applying (if necessary) the

load balancing technique proposed in Section V-B, all videos
(or stripes) induce a load smaller than . In particular, let

(with ) be the load induced by a generic cold
video . After applying the catalog warming technique by stripe
bundling, the new load induced by each stripe of video can be
upper-bounded by

(14)

under the pessimistic assumption that all bundled downloads of
hot videos last for the minimum duration . More-
over, considering the worst case in which all cold videos have
size , we can guarantee that the r.h.s. of (14) is smaller
than by selecting a fraction of upload bandwidth

where , which no longer depends on , can be made arbi-
trarily small by increasing . Since must be smaller than
1, we also need to select

At last, observe that the load increase for hot videos (due
to the subtraction of some upload bandwidth) vanishes as the
system size increases since as .
As a consequence, the proposed scheme can always be applied
in sufficiently large systems.

F. Discussion on Implementation Issues and Overheads
We emphasize that previously proposed techniques to

achieve load balancing and catalog warming incur very dif-
ferent costs in terms of system complexity and overhead. Load
balancing by seed relocation has a marginal cost on the system
since peers need just to be instructed about which content to
become seed of (except for this, they behave exactly as in a
passive system). Such information can be computed in a cen-
tralized fashion by one or more servers that oversee the overall
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downloading process and periodically send control messages
to peers (these servers essentially mimic the role of trackers in
BitTorrent).
Load balancing by stripe bundling is significant more com-

plex since it requires the system to support video striping. This
mechanism also has an unavoidable overhead since peers are
forced to download stripes of unwanted videos, as discussed in
Section V-B.
Similarly, catalog warming requires peers to download pos-

sible unwanted data (peers must be instructed to do so by a
central authority, as before). Such intrinsic overhead can be
mitigated/made more efficient by employing chunking/striping,
as discussed in Section V-C, which however adds complexity
to the control plane. Observe that chunk and stripe bundling
are conceptually similar and require peers to execute essen-
tially the same high-level operations. On the one hand, video
chunking/unchunking are very simple operations typically sup-
ported by every peer-assisted system (and most CDNs), while
video striping/reconstruction are more complex. On the other
hand, video striping, once supported, can be advantageously ex-
ploited also for load balancing.
At last, we remark that in our analysis we have ignored the

effects of protocol overheads and signaling bandwidth (nec-
essary to coordinate the peers). The impact of protocol over-
heads and signaling, once quantified for a given application, can
be easily incorporated in the model by redefining the peer up-
load bandwidth (i.e., subtracting from it the fraction devoted to
signaling/overhead). Our paper also ignores: 1) possible con-
straints on the number of peers from which a peer can download
data; 2) the effects of possible congestions inside the network.
Although these issues can have an impact on the system perfor-
mance, we have preferred not to consider them for the sake of
simplicity and analytical tractability.

G. Asymptotic Bandwidth Requested From the Servers

At last, we can evaluate the asymptotic performance achiev-
able by applying the active schemes described in previous
sections.
Theorem 6: Under the same assumptions on of Theorem 1,

if there exists an arbitrarily small constant such that
for some , the bandwidth requested

from the servers satisfies the following asymptotic bound w.h.p.
as the number of users tends to :

if
if

(15)

provided that a suitable combination of active techniques is em-
ployed: 1) to balance the loads induce by individual videos; 2) to
sufficiently increase the download rate of cold videos. The proof
of Theorem 6 is reported in Appendix F.

VI. LOWER BOUND

Here, we present a simple universal lower bound to the band-
width requested from the servers. Notice, however, that this
bound holds under the assumption that the size of a chunk/stripe
cannot go to zero. Consider first the case in which videos are not
divided into chunks/stripes. For any video , the servers must
provide at least a bandwidth equal to when the following

two conditions jointly occur: 1) there is at least one user down-
loading the video; 2) there are no seeds assisting its distribution.
Thus, we can write

(16)

Previous argument can be extended to the case in which videos
are divided into a finite number of chunks/stripes, considering
every chunk/stripe as an individual object. By algebraically ma-
nipulating (16), we obtain the following theorem.
Theorem 7: The average bandwidth requested from the

servers, , satisfies the following asymptotic bound as the
number of active users tends to :

if
if
if

(17)

The proof is reported in Appendix G. Essentially, the proof
consists in finding a lower bound for (16) that uniformly holds
under any possible distribution of seeds to videos (i.e., satisfying

).

VII. RELATED WORK

A stochastic fluid model showing fundamental characteris-
tics and limitations of P2P streaming systems was proposed
in [15]. In [16], performance bounds on the minimum server
load, maximum streaming rate, and minimum tree depth under
different peer selection constraints are derived. However, the
two papers above focus only on single-channel streaming
system. Universal streaming architectures have been analyti-
cally studied in [12], where authors develop queueing network
models to describe multichannel live streaming systems incor-
porating peer churn, bandwidth heterogeneity, and Zipf-like
popularity. We remark that VoD systems are different from
live streaming systems in which users join the distribution of a
given TV channel at random points in time, but peers connected
to the same channel watch the content almost synchronously.
In VoD, a given video is watched asynchronously by users,
and downloading peers can only help peers who have started
the download later on in time (sequential delivery). Moreover,
asymptotic results in [12] are restricted to the case of two
values of peer upload bandwidth (low and high) and require
finding the solution (if any) to a set of linear equations. In
contrast to [12], we consider VoD systems and obtain a simpler
characterization of the asymptotic system performance for
general upload bandwidth distribution. In [17], authors propose
an algorithm to allocate server bandwidth that can predict the
minimum server bandwidth requested for each channel, based
on historical information. However, this work focuses only on
live streaming systems.
The first mathematical formulation of the server bandwidth

needed by a VoD system based on sequential delivery appeared
in [4], in which authors resort to a Monte Carlo approach to get
basic insights into the system behavior (like surplus and deficit
modes). The same formulation has been considered in [14],
where authors explore by simulation the effectiveness of dif-
ferent replication strategies to minimize the server load in the
slightly surplus mode, as well as distributed replacement algo-
rithms to achieve it. In [18], upper and lower bounds to the
server load are derived. However, detailed information about
the movie set stored by each peer and its upload capacity must
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be collected by the server. In [19], authors propose a queuing
model to predict the dynamic demand of the users in a P2P VoD
system and provide on-the-fly elastic amounts of processing/
bandwidth resources with a minimum cost.
Reference [20] presents a trace-driven evaluation of server

load savings for VoD streaming. Specifically, it shows the po-
tential savings by using hybrid CDN-P2P systems for twomajor
CDNs: Akamai and Limelight. [21] defines a per-chunk ca-
pacity model focusing on the allocation of upload bandwidth
resources among different chunks. In particular, it points out
the fundamental tradeoffs that exist among system throughput,
sequentiality of downloaded data, and robustness to heteroge-
neous network conditions. In [22], authors develop an analysis
of peer-assisted VoD systems with scalable video streams. Ana-
lytical models that estimate the number of peers that can be ad-
mitted into the system in the case of flash crowds are provided.
Similarly to [23], which focuses on P2P live streaming only,
[24] studies the achievable streaming capacity of large-scale
P2P VoD systems with sparse connectivity among peers and in-
vestigates P2P control strategies that can achieve close-to-op-
timal streaming capacity. With respect to all previous work, in
this paper we propose a general framework that allows us to an-
alytically estimate the potential benefits in terms of scalability
of peer-assisted VoD architectures, revealing under which con-
ditions gains (in terms of servers' bandwidth savings) can be
significant or limited.
An interesting implementation of the kind of systems consid-

ered in our work is Xunlei [25], a download acceleration ap-
plication that is becoming enormously popular in China. Xunlei
combines both peer-assisted and server-assisted techniques, let-
ting users download portions of the requested contents from
other peers while also downloading portions from independent
servers. Recently, the Xunlei network started also a peer-as-
sisted VoD service (Kankan), which generated massive-scale
swarms.

VIII. CONCLUSION

Our results indicate that users' cooperation can dramatically
reduce the servers' burden in large-scale VoD systems. Although
peer-assisted architectures incur several issues related to the
added complexity on the control plane, the need to provide in-
centive mechanism to the users, and the need to protect the
system against attacks andmisbehavior, nevertheless we believe
they should be taken seriously into consideration in the coming
years, as they are the only known solution (up to now) to make
VoD systems arbitrarily scalable. However, we have shown that
the potential gains derived by users' cooperation are reduced
when the service is targeted to the distribution of user-generated
contents (especially for small values of the Zipf's law exponent)
since in this case the number of videos intrinsically scales lin-
early with the number of users.

APPENDIX A
PROOF OF THEOREM 1

For the proof of this theorem, we need to state a preliminary
result.
Lemma 4: Assume the following properties hold for :

i) ; ii) is finite in a neighborhood of the origin;
iii) for every . The average bandwidth

requested from the servers, , satisfies the following bound: If
, for any , there exists such that

if
if

(18)

with , ,
, where is the only strictly positive solution

of the equation . Furthermore in (18), can
be found uniformly with respect to , , and as long as

for any . If, on the other hand, , the
average bandwidth requested from the servers grows linearly
with the number of users, namely, .
The proof of Lemma 4 can be found in Appendix B, and it is

based on some results that we proved in [11].
Considering the constants specified in Lemma 4, we observe

that is insensitive to the distribution of , and it does not de-
pend explicitly from . Actually, its dependency from is me-
diated by . As a consequence, the expression of the bound for

is robust to the distribution of and its mean, provided
that . Instead, and are sensitive to the distri-
bution of , through the quantity . For this reason, the upper
bound on for is more delicate. In particular, note that
if becomes arbitrarily small or large, the bound be-
comes arbitrarily weak. For these reasons, we need to strengthen
the bound for , which is exactly the result in Theorem 1.
We state now the last preliminary result that we need for

proving Theorem 1. The following proposition states that,
given all the other system parameters, the average bandwidth
requested to server is, by construction, monotonically non-
increasing with respect to the available upload bandwidth of
peers. More formally, we can state Proposition 1.
Proposition 1: Whenever we compare two systems, 1 and

2, with identical system parameters except for the
available peer upload bandwidth, then

whenever the available bandwidth in the first system is
stochastically greater than the available bandwidth in the second
system .
This property directly descends from the observation that

peers in the first system can always contribute to the redistribu-
tion with only a fraction of their available bandwidth, properly
choosing the fraction so that the contributed bandwidth to the
P2P system is distributed as .
Finally, we can prove Theorem 1.
Exploiting the definition of , we can derive the following

lower and upper bounds for : and
, which guarantees that cannot be ar-

bitrarily small or large when is sufficiently smaller than ,
let us say when . Therefore, whenever

, in Lemma 4 we can jointly lower-bound by
a positive constant, and upper-bound by a constant. It fol-
lows that , as , .
When from the right, and the bound in Lemma
4 becomes arbitrarily weak (it tends to infinite). To overcome
this problem, we exploit the monotonicity property of with
respect to the peers upload bandwidth (Proposition 1) obtaining
a useful bound also for . We consider a
system in which the available upload bandwidth of all peers has
been reduced by a factor . In this new system, the average
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effective upload bandwidth is smaller than , and the video load
is equal to . For this system, we can bound
by the expression valid for , obtaining a bound that

clearly applies in the original case thanks to Proposition 1.

APPENDIX B
PROOF OF LEMMA 4

We recall the following two propositions from [11]. They es-
tablish important properties of as function7 of .
Proposition 2: If , the equation

(in ) admits a unique solution for . Furthermore,
is strictly increasing and

on the interval . Moreover, it holds .
Proposition 3: Provided that , and is not constant,

the image of for is .
We recall also the following upper bound for the bandwidth

requested from the servers from [11]:

(19)
where is the moment generating function of , is an ar-
bitrary positive constant smaller than , and .
Moreover, is the unique strictly positive solution to the equa-
tion .
Using Propositions 2 and 3, and the bound in (19) we can

prove the lemma. We emphasize that Lemma 4 is not a straight-
forward extension of the results in [11], where we have only
shown that as (provided that ). Indeed,
Lemma 4 characterizes also how fast scales to 0 as grows
large, providing a basic building block of our analysis.
Our goal is to tightly characterize the asymptotic behavior

of bound (19) as . We first focus on the case .
In this case, we will make as , exploiting
Propositions 2 and 3.
Consider, first, quantity in (19). Note that

, and . Thus, for all , there
exists such that if , then

. In particular, ,
where is the Lambert function. Since ,
we define . We
obtain the following: If

(20)

Consider now quantity in (19). Since for
we have (Proposition 2),

, where is the Taylor re-
mainder. If we express in the Lagrange form, we imme-
diately obtain the following: .
After some elementary algebra, it is possible to show that for

every , defining , we have that if
, the following holds: ,

and therefore

(21)

7In the following, whenever not necessary, we use instead of .

Consider now quantity in (19): Defining , it
is immediate to see that for , it holds that

(22)
By (19)–(22), we can conclude that for all

, it holds that

(23)

From (4) we can derive a relation between the number of down-
loaders, , and the number of seeds

(24)

Substituting (24) in (23), we get

(25)

Recall from Proposition 2 that, for and , we have
. Moreover, by Propositions 2 and 3, as , we can

set (i.e., we can find the proper law for that leads to
) for all .

Thus, there exists a such that , we have that
. Then, if , for all ,

we have

(26)
Now we prove that the first term in (26) is negligible with re-
spect to the second one. First, note that if , :
Indeed, by (22), we have that .
Remembering that , we can say that the

exponent in the second term is larger than the exponent in the
first one. Thus, we can say that, for , we have

(27)
Remembering that , for all ,

we define the quantity

(28)

that appears in (27).
We compute now for and

Since for is a continuous function and hence
a uniformly continuous one over compact sets that do not con-
tain points with , a strictly positive constant can be
found such that, for all , we have
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uniformly with respect to parameters , , and as long as
they take values over a compact set that does not contain the
points with (as in our case). Let be the value of that
corresponds to . Defining the constant

(29)

we can conclude that, for , it holds that

as (30)

Consider now the case . From [11, Theorem 1], we
have that is a constant as , and we can set in such a
way that . Thus, in this case, the bound in (19) becomes

(31)

where . Since is a constant, we can
conclude that, if , it holds that

as (32)

where
since, by construction, .

At last, we consider the case (i.e., the deficit mode). In
this case, the bandwidth requested from servers scales as ,
as shown in [11]. Indeed, the servers have to provide at least the
bandwidth deficit.

APPENDIX C
PROOF OF THEOREM 2

First, we assume . In this case, all
are deterministically smaller than , and by Corollary 1 for
each video, we get

if
if (33)

where , . We di-
vide videos in two categories, depending on the request rate .
Video belongs to the first category if , with

such that , where is the threshold defined in
Corollary 1. We thus obtain that .
We distinguish the following cases depending on :

if
if
if .

(34)

Videos such that belong to the second category.
Comparing asymptotically to , we obtain

if
if or (35)

Therefore, when , we set , and we have only
one video category. Now, to compute , we can just sum up the
contributions of all videos, obtaining

(36)

We define , and substitute with its value
. We obtain

(37)

Let be the first term in (37). Furthermore, since by (29)
, we have

. Thus, we have

(38)
Now we make the substitution and get

. We have

If , that is if , we obtain

From (34) and (35), we get

if
if
if

if
if
if .



1858 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Now we consider the second term in (37),
. Note that this term exists only when

; see (35). Since function is de-
creasing, by the integral test for series we obtain, for

If , with the same calculation as above we obtain

(39)

Summing and , we obtain

if
if
if .

When, instead, , for any standard concen-
tration arguments allow to say that for any function ,
a finite fraction of videos with index will have w.h.p.
an associated load . Since the associated request rate for
such videos scales linearly with (i.e., it scales faster that any
sublinear function), as immediate consequence, scales also
linearly with .

APPENDIX D
PROOF OF THEOREM 3

First observe that if , we do not really need load
equalization since even when we set ,
thus we focus on the case (we emphasize, how-
ever, that also in this case it is possible to devise a scheme
that equalizes the load following the same lines as for the case

). Assuming , observe that to perfectly
balance the load among all videos, we need to make the av-
erage number of seeds for a video proportional to the average
content downloading time. Indeed, resolving the equation

with respect to , we obtain

, thus to achieve , we need to enforce:

. Now since the distribution of down-
loaders among the videos is proportional, by construction, to the
average content downloading time , we get the assert.
Now according to the seed-freezing scheme, the average

number of seeds for video , , can be partitioned into
two components: the average number of unassigned peers that
are currently acting as seeds for content , and the average
number of -content assigned seeds that are currently seeding.

For what concerns the average number of unassigned seeds,
we can easily obtain it, applying Little law as the average be-
tween the rate at which unassigned peers become seeds for con-
tent times the average time they spend seeding content :

, where rep-
resents the aggregate rate of unassigned peers in the system
starting/ending a download. Similarly, the average number of
assigned seeds can be computed again exploiting Little law as
the rate at which peers are assigned to content ,
times the average time they spend seeding content as assigned
seeds which is given ; in this regard, ob-
serve that the number of contents downloaded by peers follows
a geometric memoryless distribution.
Now considering any pair of different videos , we can

balance the load between them if we are able to find values
and , in correspondence of which the

ratio between seeds becomes equal to the ratio between

downloaders , i.e., we have to force

To achieve our goal under (8), first we sort all videos according
to the associated metric . Let be the video that min-

imizes the associated metric: . We set
, for any other video , we obtain as solution of

i.e., . Observe, however,

that is feasible only if it lies in the interval ;

since, by construction,

. Furthermore, it turns out that
, iff (8) is satisfied.

APPENDIX E
PROOF OF THEOREM 5

We first consider the load associated to individual stripes (or
videos). Note that we need to worry only about stripes requiring
bundling (i.e., those belonging to videos with ) since, by
construction, the load of stripes initially having load
becomes, after applying the proposed equalization technique,
exactly equal to .
Consider a generic stripe belonging to a video having an

initial load . Let be the set of indexes of videos (having
initial load smaller than ) that are assigned (in total or in part) to
assist the distribution of stripe by the bundling algorithm. After
equalization, the new load induced by stripe (or, equivalently,
by video ) is

(40)
where is the probability that a peer downloading video has
concurrently to download stripe (see scheme in Section V-B).
Unfortunately, the r.h.s. of (40) cannot always be made smaller
than by increasing . Indeed, in the worst possible case,
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all videos (except video ) are assigned to video , obtaining
the bound (notice that the stripes
of video are equally bundled). However, the resulting ratio

can, in some cases, go to infinite as the system size
increases (for any finite ), especially for very unpopular
videos . Note that this worst case can only happen when
videos contribute a vanishing amount of bandwidth

to the bundled stripe, making the scheme inefficient.
To overcome this problem, we need to modify the amount of

bandwidth devoted to the distribution of bundled data.8 Specifi-
cally, for each video having , we compute the amount of
bandwidth that, if subtracted to the average upload band-
width of a peer, makes the load of video equal to

We remark that, under the modified scheme, the selection of the
stripe to be bundled to videos with an excess of bandwidth is still
performed by the algorithm described in Section V-B, which is
based on the original values of . Simple calculations lead
to the following equation:

which permits to rewrite (40) as

(41)

Since , and using the fact that and ,
, a sufficient condition such that the r.h.s. of (41) is smaller

than is

(42)

At last, we show that also the overall system load, including
the impact of bundling, can be kept smaller than by a proper
selection of . Indeed, in the worst possible case, all peers
downloading a video have to additionally download a stripe of
the largest video. Hence, the overall system load, after applying
the equalization scheme, can be upper-bounded by

The above quantity is smaller than whenever

Since , by selecting , we satisfy all require-
ments about global, video-specific, and stripe-specific loads.

APPENDIX F
PROOF OF THEOREM 6

For the sake of clarity, we prove the theorem in the case of
a load balancing strategy by seed allocation (as described in
Section V-A), so that the system works at global load such
that for all file , . We suppose also to apply a
full video catalog warming approach (Section V-C). The proof
can be easily extended in the other cases, for example using
stripe bundling (Section V-B). Note that in this case each video

8We preferred to describe this necessary modification of our scheme only in
this proof, and not in Section V-B, for the sake of a better presentation.

is divided into stripes, and that becomes the users' upload
bandwidth devoted to stripe .
In particular, we increase artificially the popularity of the file

whose is smaller than a poly-log function of the number of
active users . More precisely, we impose the following new
request rate: For a certain and

(43)
where is a threshold on the number of videos with in-
creased popularity, such that the system load is still smaller
than 1. Moreover, there exists a threshold such that

. Thus, we have that

where the last equality follows from the fact that
if . To sum up, we can distinguish among three video
categories

if
if
if

(44)

By (4), we know that system load is proportional to
. Thus, we need to verify that the modified popularities

do not change the asymptotical behavior of . We have

If , and , the previous formula becomes

thus we can conclude that the asymptotical behavior of is
the same as the passive strategy, and so the system load is still
smaller than 1.
On the other hand, if , we cannot set because

we would obtain . The maximum value for is thus
, so that we obtain

Now we can compute the bandwidth requested from
servers and show that it tends to zero as the number of
users grows to infinity. Essentially, we use the reason-
ings in the proof of Theorem 2, in Appendix C. Note that

is asymptotically smaller
than . As in (36), we compute as the sum of
the contributions for all the videos in the three categories
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For the first sum in the previous equation, we can use the same
computation as in (38), and we obtain

(45)

Now we can set and , for an
, and we get

(46)

For the second sum, we obtain

(47)

If , we have that , thus , and
we get

(48)

Thus, when , we conclude that .
If and , we get

(49)

For the third part, analogously to (39), we obtain

(50)

Thus, we conclude that when and
and when , .

APPENDIX G
PROOF OF THEOREM 7

We want to compute a lower bound on based on (16). By
Lemma 1, we know that is a Poisson distributed random
variable with parameter . We have that

If , we can use the Taylor expansion for the previous
expression, and we get

thus we obtain that if . On
the other hand, when does not tend to zero, we can always
say that . In the end, we obtain

(51)

Consider now the probability , which is the
probability that no peer is acting as a seed for file : A peer is
not acting as a seed if it is in sleeping mode. We know that the
number of seed is a Poisson distributed random variable
with parameter

(52)

We use now (51) and (52), and therefore (16) becomes

(53)

Remembering that the minimum is equal to

if
if
if

(54)

and that the quantities and do not depend on , we
obtain that

(55)

We use now Jensen's inequality in the following form. Let be
a convex function on the real line and let be
a nonnegative real-valued function that is Lebesgue-integrable.
Then, it holds

(56)

We make use of (56) with , ,
, and we get

if

if

if

(57)

In the previous formula, every time , the exponential
function goes to zero as , and we get a trivial
lower bound . On the other hand, if , we obtain

if
if
if

(58)

Note that since is a trivial upper bound to , in the end we
obtain the following result:

if
if (59)
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