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Abstract 35 

 36 

Sex allocation theory assumes that male and female reproductive functions share a common limited 37 

resource pool and are negatively correlated in hermaphrodites. Here we report on the first artificial 38 

selection experiment designed to test the existence of genetically-based correlations between sex 39 

functions in hermaphroditic animals. The polychaete worm Ophryotrocha diadema has a long 40 

juvenile male phase, and then shifts to the simultaneously hermaphroditic phase. We selected two 41 

sets of lines of worms for a short male phase and, after 4 generations, worms had a significantly 42 

shorter male-phase than their generation-0 ancestors. As negatively correlated responses, generation-43 

4 worms spent more time maturing eggs and produced a higher number of eggs at 1st laying than 44 

worms of generation 0. Both traits contributed to the female function and were not the target of the 45 

selection experiment. In contrast, selection was ineffective in the lines descending from 46 

phenotypically-hermaphroditic worms that reproduced only via their male function. Our results 47 

provide the first empirical support of a genetic basis for a trade-off between traits related to the male 48 

and female function in hermaphroditic animals and highlight that these trade-offs are complex. Our 49 

results also suggest that the trade-off between male and female functions breaks up as hermaphrodites 50 

evolve some sexual specialization where resources are channeled towards a single sexual function. 51 

 52 

KEY WORDS: artificial selection, genetic covariance, correlated traits, phenotypic plasticity, sex 53 

allocation, protandry 54 

 55 
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INTRODUCTION 57 

Natural selection cannot cause an unlimited increase in some components of fitness without 58 

simultaneously causing a decrease in others, as long as these components share the same, limited, 59 

resource pool. Therefore, selection favors those individuals that maximize their fitness by allocating 60 

resources differentially and appropriately to traits that share common, limited resources. This implies 61 

that competing traits are linked by a negative correlation (STEARNS & HOEKSTRA 2000; ROFF & 62 

FAIRBAIRN 2007; COX & CALSBEEK 2010).  63 

An interesting case study of correlations among traits is offered by gender expression in 64 

hermaphrodites, in which the male and the female functions can behave as competing traits. Charnov 65 

was the first to address the consequences of the evolutionary association of sexual functions in a 66 

single organism and modeled how evolution shapes the differential allocation of resources to the two 67 

sexual functions (CHARNOV et al. 1976; CHARNOV 1982). Both the male and the female functions 68 

have nutritional and energetic demands associated with their expression. If they share the same 69 

limited resource budget when they are tied in the same organism, as it occurs in hermaphrodites, a 70 

larger resource allocation to, for example, the female function, will result in a smaller allocation to 71 

the male function and vice versa. In other words, sexual functions are linked by an intrinsic trade-off. 72 

Such a trade-off is expected in functional hermaphrodites but lessens in sexually-specialized 73 

phenotypes where resources are canalized towards only one sexual function (EHLERS	&	BATAILLON	2007).		74 

Empirical evidence for the existence of trade-offs between sexual functions in hermaphrodites 75 

has often been looked for, but straightforward evidence is scarce and results often equivocal 76 

(CAMPBELL 2000; SCHÄRER 2009). Correlations among traits may be investigated by selecting on one 77 

trait and looking for correlated responses in other traits. If the other traits are altered even though the 78 

researcher imposed no direct selection on them, this indicates that they are genetically correlated with 79 

the trait under selection (LANDE 1979; STEARNS & HOEKSTRA 2000; ROFF & FAIRBAIRN 2007). 80 

Genetically based trade-offs between traits emerge when a change in a trait that increases fitness is 81 

linked to a change in another trait that decreases fitness (STEARNS 1992).  82 
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The experiment reported here is, to our knowledge, the first artificial selection experiment 83 

designed to test the existence of genetically-based trade-offs between sex functions in hermaphroditic 84 

animals. We chose the marine polychaete worm Ophryotrocha diadema as our study model. This 85 

hermaphrodite is strictly non-selfing, and, in pairs, worms regularly trade eggs with partners, 86 

producing large number of eggs (SELLA 1985). When the opportunities for mating increase, these 87 

worms drastically reduce their female allocation and desert their reciprocating partners for mating in 88 

the preferred male role (SELLA & LORENZI 2000; LORENZI et al. 2005; LORENZI & SELLA 2008). Since 89 

fitness is often more sensitive to changes in age at maturity than to changes in other life-history traits 90 

(STEARNS & HOEKSTRA 2000), we focused our analyses on the length of the juvenile, protandric, male 91 

phase that precedes the hermaphroditic phase, and we selected for shortening it. The length of the 92 

male phase is related to current fitness via the male function (SELLA & LORENZI 2003), and we tested 93 

whether it was negatively related to fitness via the female function, assuming a genetically-based 94 

trade-off between male and female functions. By selecting for shortening the male phase, we expected 95 

both a direct response to selection (a shorter male phase) and a correlated response in traits that 96 

contributed to the female function (e.g. more time devoted to mature/produce eggs).  Our selection 97 

experiment included two sets of lineages, because O. diadema hermaphrodites have two different 98 

sexual phenotypes: functional hermaphrodites and functional males (i.e., worms that have a 99 

hermaphroditic phenotype but function only as males, DI BONA et al. 2010). It is likely that these 100 

different sexual phenotypes result from the different expression of the multiple sex loci underlying 101 

the two sexual functions, as it occurs in other species of the genus (PREMOLI et al 1996, LORENZI and 102 

SELLA 2013). In this hypothesis, functional males could represent a phenotypic class at one of the 103 

extremes of the range of sex-allocation variation and sex-loci combinations (MOORE & ROBERTS 104 

2012). We predicted that selection outcomes in the two lineages would differ. Whereas we expected 105 

that a genetic correlation between traits related to sex functions emerged in the sets of lines of 106 

functional hermaphrodites, we expected no or little response to selection in the sets of lines of 107 

functional males, as the trade-off between sex functions may not work in these sexually-specialized 108 
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worms.  109 

 110 

 111 

MATERIALS AND METHODS 112 

Study model 113 

Ophryotrocha diadema is an iteroparous, non-selfing, simultaneously hermaphroditic, polychaete 114 

worm with external fertilization. A few worms were originally collected in Los Angeles harbor in 115 

August 1972 (ÅKESSON 1976). Since then, these worms have been cultured in the laboratory. O. 116 

diadema is small-sized (about 4 mm). Larvae hatch from eggs and develop inside their cocoon for 117 

about 8 days. When larvae are 4-segment-long, they leave their cocoon and soon enter their male 118 

phase (SELLA 1990). During the male phase they produce viable sperm (and no eggs) and successfully 119 

fertilize eggs that hermaphrodites lay (SELLA 1990; SELLA & LORENZI 2003). After 30 days, the 120 

young worms develop eggs, which can be seen in the coelom through their transparent body walls 121 

(under stereomicroscope, 40X magnification). At this point, worms stop their male-only phase and 122 

enter their simultaneously hermaphroditic phase, during which functional hermaphrodites reproduce 123 

via the male and female function alternately (SELLA 1985) (Fig. 1). Before their 1st spawning, young 124 

hermaphrodites court each other for 1-4 days. Then, one worm plays the female role and releases 20-125 

25 eggs protected by a jelly egg-cocoon, and its partner plays the male role and releases its sperm 126 

inside the cocoon. Then, generally, worms take turns in either laying or fertilizing eggs in subsequent 127 

mating events (fig. 1) (SELLA 1985; SELLA & RAMELLA 1999; LORENZI & SELLA 2000). During the 128 

hermaphroditic phase, hermaphrodites adjust their sex allocation to male and female function rapidly 129 

and opportunistically (Lorenzi et al. 2005, 2008), basing on cues which inform them on mating 130 

opportunities (SCHLEICHEROVÀ et al. 2006, 2010). Hermaphrodites compete for egg fertilization and 131 

multiple paternity of single egg-cocoons is not rare (LORENZI et al. 2013).  132 

In these worms, a dominant Y allele determines a yellow egg color, while the recessive y allele 133 

determines a white egg color (SELLA & MARZONA 1983). This marker is neutral (ÅKESSON 1976). 134 
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By means of this marker, we can identify focal worms in a group and assign their progeny.  135 

Throughout this paper, we have classified worms as follows: 1)  “worms in male phase” are 136 

individuals in the protandrous phase (i.e., between hatching and the first appearance of eggs in the 137 

coelom); 2) “young hermaphrodites” are worms that are maturing their first eggs (i.e., between the 138 

first appearance of eggs in the coelom and the 1st egg laying); 3) “hermaphrodites” are worms between 139 

the 1st egg laying and their death; and 4) “functional males” are phenotypically hermaphroditic worms 140 

that function only as males (they have eggs in their coelom but do not lay them, DI BONA et al. 2010).  141 

 142 

Correlations between the traits used in the experiment  143 

In a preliminary experiment we checked whether the length of the male phase is correlated to 144 

two traits that contribute to the female function (i.e. number eggs at 1st laying and length of the interval 145 

between the first appearance of eggs in the coelom and the 1st egg laying). To this aim, 256 functional 146 

hermaphrodites were randomly taken from our mass cultures and each of them was paired with a 147 

partner. We found that the longer the male phase, the fewer the number of eggs that worms laid at the 148 

1st laying, suggesting that the trait “length of male phase” traded-off with the number of eggs at the 149 

1st egg laying (Pearson’s r = - 0.158, P = 0.011). Vice versa, the longer the time worms spent as young 150 

hermaphrodites, the larger the number of eggs at the 1st laying  (r = 0.552, P < 0.0001), suggesting 151 

that the trait “time as young hermaphrodite”  contributed mostly to the female function. Additionally, 152 

in a subset of these paired worms, we measured lifetime fecundity and we found that, in paired worms, 153 

the number of eggs at the 1st laying was significantly and positively associated to lifetime fecundity 154 

(r = 0.603, n = 51, P < 0.0001). Therefore, the number of eggs at the 1st laying is a good proxy for 155 

lifetime fecundity. These traits are the main fitness components in O. diadema (PREVEDELLI et al. 156 

2006) 157 

 158 

Rearing conditions 159 

We reared worms in sea water (density of 1024 g*m-3), in 10-ml bowls, in darkened, 160 
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thermostatic chambers at 20°C. We fed animals with spinach ad libitum and changed water in the 161 

bowls twice a week. In each sibship and generation, we kept sibling larvae and protandrous males 162 

together until they were young hermaphrodites. 163 

  164 

Experimental design  165 

We formed the two sets of lines from 269 homozygous yellow-egg hermaphroditic worms, 166 

randomly chosen from our lab population. The 269 selected worms composed the founding 167 

population and were the result of the first episode of selection. In order to use them as founders of the 168 

two sets of selected lines, we checked their functional gender as soon as they entered their 169 

hermaphroditic phase. We paired each of them to a white-egg hermaphrodite for 21 days ( i.e. two 170 

thirds of their fertile life) and noted whether they laid eggs (functional hermaphrodites) or not 171 

(functional males). During 21 days, hermaphrodites are expected to lay 5-10 cocoons of eggs and 172 

functional males no cocoon at all (DI BONA et al. 2010). Of 269 worms, 256 were functional 173 

hermaphrodites and 13 functional males.  174 

Generation 0 of the set of lines of functional hermaphrodites was composed of 20 pairs of 175 

functional hermaphrodites, randomly chosen among the 256 functional hermaphrodites of the 176 

founding population. Generation 0 of the set of lines of functional males was composed of 13 pairs, 177 

each formed by one of the 13 functional males and by a functional hermaphrodite. We based the 178 

selection for a short male phase on the phenotypic variation of this trait. At every new generation, we 179 

selected the worms with the shortest male phase from each sibships of homozygous yellow-egg 180 

hermaphrodites. The selected worms were backcrossed with one of their parents to produce the next 181 

generation. From every sibship, other 4 worms were used to measure the mean values of two traits 182 

(i.e. the number of eggs at 1st laying and the length of the young hermaphroditic phase). These two 183 

traits were correlated to the length of the male phase in the founding population (see above). To 184 

measure the direct and indirect responses to selection, the mean values of the traits of generation 4 185 

were compared to those of generation 0 in the same set of lines. A significant direct response to 186 
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selection was detected when the mean value of the length of the male phase was significantly smaller 187 

in generation 4 than in generation 0. Such a direct response would indicate that the trait “length of 188 

the male phase” is heritable. Significant indirectly correlated responses to selection were detected 189 

when the mean value of the traits that were not the target of selection (i.e. number of eggs at 1st laying 190 

and length of the young hermaphroditic phase) changed in concert with the length of the male phase, 191 

a result that would indicate that the two traits were genetically linked. At every generation, sibships 192 

were reared separately from both parents and other sibships. The selection procedure was performed 193 

on worms homozygous with yellow eggs. When it was necessary to recognize paired worms 194 

individually and to identify which partner in a pair laid cocoons, yellow-egg worms were paired to 195 

white-egg worms.  196 

We backcrossed the selected offspring to their parents in order to strengthen the differences 197 

between lines in their genetic background. In this way we controlled the sex-related genetic 198 

contribution to the next generation to a larger extent than if we had performed crosses between 199 

randomly chosen worms within each line. Because the experimental procedure was the same in the 200 

two sets of lines, we imposed the same level of inbreeding and the same selection pressure on both 201 

lines. We did not include a set of control lines in our experimental design. This would have allowed 202 

us to control for environmental fluctuations, but it would have also reduced the available facilities by 203 

constraining us to reduce the number of replicates in the sets of selected lines. The reduction in the 204 

number of the selected lines would have increased their sampling variance and reduced the accuracy 205 

of the response estimate. Therefore we gave up the set of control lines, considering that while it is 206 

true that random changes in the environment reduce the precision with which the response to selection 207 

is estimated, nevertheless they do not bias the estimate of the response (FALCONER 1989).  208 

 209 

Measures of phenotypic variation of the traits used in the experiment 210 

It is easy to measure female allocation in these worms. After worms have entered the 211 

hermaphroditic phase, they repeatedly produce and lay eggs lifelong. Eggs are large and countable, 212 
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and their contribution to the female function is obvious (SELLA & RAMELLA 1999). It is less easy to 213 

measure male allocation, which consists in almost invariant, low sperm counts and elusive mate 214 

competition (PREMOLI & SELLA 1995; LORENZI et al. 2006). These worms spend about one third of 215 

their life in the protandrous phase, before moving on to the simultaneous hermaphroditic phase. 216 

Therefore, in generation 0 and in generation 4 of the two selected sets of lines we measured the length 217 

of the male phase, the length of the young-hermaphrodite phase and the number of eggs at 1st laying. 218 

In a subset of worms of the founding population and of generation 4, we also checked lifetime 219 

fecundity (i.e., lifetime egg production). To measure lifetime fecundity, we paired each of these 220 

worms, which had a yellow-egg phenotype, to a white-egg hermaphrodite, and then we checked their 221 

egg production. We used these data also to analyze the lifetime temporal pattern of egg production. 222 

We did this in the set of lines of functional-hermaphrodites by comparing the proportion of eggs they 223 

laid in the first half of their layings with respect to lifetime egg production, in worms of generations 224 

0 and 4. Additionally, we measured body size at the end of the male phase (number of chaetigerous 225 

body segments). 226 

 We also estimated the frequencies of functional hermaphrodites and functional males in   the 227 

two sets of  lines at generation 4, by pairing worms with novel partners until they laid eggs (or until 228 

they died). We classified worms as functional hermaphrodites when they laid their first egg-cocoon 229 

within 21 days since they had been paired and as functional males when they did not. We tested 230 

functional males for male-gender sterility by checking whether the eggs they fertilized developed into 231 

embryos. 232 

 233 

Control for selection for ability to acquire resources  234 

By selecting on phenotypic values of a trait it may happen that individuals are selected for 235 

their ability to acquire resources rather than for alleles directly connected to that trait. The two sets 236 

of selection lines originated from worms (founding population) that had different gender expression 237 

(functional hermaphrodites vs functional males). Therefore we checked whether there were 238 
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differences between the two sets of lines in ability to acquire resources. To this aim, we compared 239 

the length of the male phase and body size at the end of the male phase between worms of generation 240 

0 in the two sets of lines. We speculated that if we had selected for ability to acquire resources, the 241 

two sets of lines would have responded to selection in the same way (resulting in no significant 242 

differences between worms of generation 4). Additionally, in the functional hermaphrodite set of lines 243 

only, we checked whether lifetime fecundity increased from generation 0 to generation 4. If we had 244 

selected for better resource acquisition ability, we would have found an increase in lifetime fecundity 245 

between generations. 246 

 247 

Statistical analyses 248 

We performed the statistical tests to detect the responses to selection by comparing the trait 249 

values of the worms in generation 0 vs those in generation 4. In these comparisons, we avoided 250 

pseudo-replications by using the trait values of one worm per sibship. We used general linear models 251 

(GLMs) to test for the effects of line and generation on trait values. Data were not normally distributed 252 

and/or had non-homogenous variances. To account for assumptions of normality and homogeneity of 253 

variances, we ln-transformed the length of male phase, the interval of time spent as young 254 

hermaphrodite, the number of eggs at the 1st laying, and body size. We also transformed lifetime 255 

fecundity as 1/lifetime fecundity.  256 

We also used generalized linear models (GZLMs) for binomial distributions with a logit link 257 

to test for differences in trait values when traits had a binomial distribution. We analysed in this way: 258 

1) the proportion of worms that were either functional males or functional hermaphrodites within 259 

each sibship; 2) the proportions of time each worm spent either in the male phase or as a young 260 

hermaphrodite; and 3) the proportion of eggs each individual produced in the first half of its layings 261 

in relation to lifetime egg production (temporal pattern of lifetime egg production).  262 
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Because some worms died and/or we could not measure some traits, sample sizes vary among 263 

analyses. Descriptive statistics were reported as mean ± 1 SE. Tests were two-tailed and statistical 264 

analyses were performed using IBM SPSS statistics version 20.  265 

 266 

RESULTS 267 

Direct response to selection for a short male phase  268 

The response to selection was significantly different between sets of lines (as indicated by a 269 

significant interaction term set of line * generation in the GLM, F
1,94

 = 19.546, P < 0.0001). In the set 270 

of lines of functional hermaphrodites, the male phase shortened significantly of about 10 days after 271 

selection (F
1,58 = 41.039, P < 0.0001), whereas in the set of lines of functional males it did not change 272 

(F
1,36 = 0.320, P = 0.575) (Fig. 2A). Adding body size as a covariate yielded substantially similar 273 

results. 274 

 275 

Correlated responses to selection for a short male phase 276 

Number of eggs at 1st laying 277 

The correlated response in the number of eggs at 1st laying differed between sets of lines 278 

(GLM, interaction term set of lines*generation: F
1,85 = 9.855, P < 0.002).  The worms of generation 279 

4 laid twice as many eggs as those in generation 0 in the set of lines of functional hermaphrodites 280 

(F
1,58 = 53.515, P < 0.0001), whereas worms in the set of lines of functional males did not vary their 281 

the number of eggs at 1st laying significantly (F
1,27 = 0.222, P = 0.641) (Fig. 2B). Adding body size 282 

as a covariate yielded substantially similar results. 283 

Time spent as young hermaphrodite 284 

The correlated response in the time that individuals spent as young hermaphrodites differed between 285 

sets of lines (GLM, interaction term set of lines*generation: F
1, 94

 = 10.736, P = 0.001) (Fig. 2C). 286 

Worms of generation 4 spent on average 3 days more than worms of generation 0 as young 287 
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hermaphrodites in the set of lines of functional hermaphrodites (F
1, 58

 = 9.921, P = 0.003), whereas 288 

worms of the set of lines of functional males at generation 4 spent approximately as much time as 289 

their ancestors of generation 0 as young hermaphrodite (F
1, 36

 = 2.895, P = 0.097). 290 

 291 

The trade-off between the proportions of time spent as males and as young hermaphrodites 292 

The proportion of time that worms spent as males relatively to that spent as young 293 

hermaphrodites varied significantly between generations and lines (GZLM, interaction term set of 294 

lines*generation: Wald χ2 = 66.314, df = 1, P < 0.0001) (Fig. 3). It decreased significantly in the set 295 

of lines of functional hermaphrodites (Wald χ2 = 61.238, df = 1, P < 0.0001), whereas it increased 296 

significantly in the set of lines of functional males (Wald χ2 = 17.297, df = 1, P < 0.0001) (Fig. 3).  297 

 298 

 299 
Control for selection on the ability to acquire resources and temporal pattern of lifetime egg 300 

production 301 

   The two sets of selected lines originated from worms that had similar abilities to acquire 302 

resources, as can be inferred by their similar length of male phase and body size at the end of male 303 

phase (GLM, generation 0 of the two sets of lines: length of the male phase, F1,64 = 0.449, P = 0.505, 304 

body size at the end of male phase, Wald χ2 = 0.015, P = 0.904).  In contrast, at generation 4, the 305 

worms of the two sets of lines differed significantly in the length of their male phase (see above, P < 306 

0.0001) but not in their body size (Wald χ2 = 0.009, P = 0.926). These results confute the hypothesis 307 

that worms were selected for ability to acquire resources.  308 

Additionally, in the set of lines of functional hermaphrodites, worms of generation 4 had a 309 

lower lifetime fecundity than worms of generation 0 (generation 0: 665.92 ± 43.18; generation 4: 310 

189.05 ± 37.626 eggs) (Welch statistic = 6.523, df1 = 1, df2 = 19.238, P = 0.019). If we had selected 311 

for a larger or faster ability to acquire resources, we would have found an increase (rather than a 312 

decrease) in lifetime fecundity across generations.  313 
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Finally, as a result of selection, the temporal pattern of lifetime egg production changed in the 314 

set of lines of functional hermaphrodites (Fig. 4). Worms of generation 4 produced a significantly 315 

smaller proportion of eggs in the first half of their layings (in relation to lifetime egg production) than 316 

worms of generation 0 (GZLM, Wald χ2 = 348.996, df = 1, P < 0.0001). 317 

 318 
Proportion of functional males in generation 4 319 

There was a significant difference between sets of lines in the proportions of functional males 320 

and hermaphrodites in generation 4 (Wald χ2 = 6.943, df = 1, P < 0.008). In the set of lines of 321 

functional hermaphrodites, the average proportion of males in generation 4 was 0.02 ± 0.02, whereas 322 

in that of functional males it was 0.22 ± 0.09 (Fig. 5). 323 

Once paired to mature hermaphrodites, all these functional males fertilized their partners’ eggs 324 

repeatedly and successfully. None of them laid any egg lifelong. Of their 13 ancestors in generation 325 

0, only 7 behaved as males lifelong.  326 

 327 

DISCUSSION    328 

Our results represent the first test in hermaphroditic animals, to our knowledge, of the prediction of 329 

the sex allocation theory that assumes that, within the fixed budget of reproductive resources, 330 

resource-sharing between male and female reproductive traits generate a negative genetic correlation 331 

between reproductive traits. In effect, we selected functional hermaphrodites for a shorter male phase 332 

and after selection we found that worms allocated significantly less time to the male phase and more 333 

time to the young hermaphrodite phase (during which they mature the 1st batch of eggs) than their 334 

progenitors. The responses to selection were clear cut and consistent across replicates. Worms that 335 

have a long male phase will subtract a relatively larger amount of time and resources to the female 336 

function (i.e., egg production) than worms with a short male phase. Saving time devoted to the male 337 

function means saving time and resources that will be later devoted to the female function. The larger 338 

the savings during the male phase, the higher the number of eggs that will be produced in the 339 
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hermaphroditic phase, and the longer the time available to produce them. In this sense, the length of 340 

the male phase and the length of the hermaphroditic phase are proxies for the partitioning of resources 341 

between male and female function. 342 

During artificial selection, genetic correlations may be caused by genetic drift. This hypothesis 343 

is usually supported by large within-line variances in the values of the correlated traits (MAZER et al. 344 

2007). Such large variances did not occur here. Instead, we found a consistency in the values of the 345 

two traits connected by the negative genetic correlation (the length of male phase and the number of 346 

eggs at 1st laying) among replicates of the set of lines of functional hermaphrodites. These 347 

observations led us to conclude that the responses to selection in the set of lines of functional 348 

hermaphrodites were the expression of a negative genetic correlation that was caused by pleiotropy 349 

or linkage disequilibrium and not caused by random genetic drift or selection for resource acquisition. 350 

The two traits connected by the negative genetic correlation seem to evolve interdependently and 351 

therefore they may be under the control of pleiotropic genes. These genes may affect one trait 352 

favorably and the other unfavorably. The link between traits constrains the action of natural selection 353 

within the limits of the trade-off and maintains the genetic variation underlying the trade-off 354 

(STEARNS 1992; ROFF 2002).  355 

In fact, the differences in male and female investment between generation 0 and generation 4 356 

might reflect the consequences of both inbreeding depression and artificial selection. Overall, we 357 

found more genetic variation than we expected under the inbreeding level caused by our backcross 358 

design, suggesting that O. diadema laboratory populations may have purged most deleterious alleles 359 

during the long period of laboratory rearing. However,	inbreeding depression usually reduces lifetime 360 

fecundity (REED & FRANKHAM 2003) and this reduction occurred here. Yet, if inbreeding effects 361 

would have been the main cause of trait variations in our experiment, we could not explain why we 362 

observed a twofold increase in the number of eggs at the 1st laying in the set of lines of functional 363 

hermaphrodites.		364 

 It could be argued that the shortening of the male phase affected not only the length of the 365 
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young hermaphroditic phase, but also the trade-off between current and future reproduction through 366 

the female function, with an increase in current egg production, disfavoring the future one. Our data 367 

do not support this hypothesis. Indeed, with respect to their ancestors in generation 0, worms in 368 

generation 4 decreased their current egg production in favor of the future one, notwithstanding a peak 369 

in the 1st laying and an overall decrease in lifetime fecundity. 370 

 Finally, we cannot rule out the hypothesis that a short juvenile male phase could be 371 

compensated by a larger investment in the male function during the functional hermaphroditic phase. 372 

In this hypothesis, the observed results would indicate an indirect effect of selection on the allocation 373 

of resources to the female function, but not a direct negative correlation between the two traits 374 

analyzed. We cannot rule out this hypothesis, but if this was the case, we could explain neither the 375 

peak in egg production at the 1st laying, nor that selected worms reciprocated eggs regularly. 376 

The absence of a control line in the design of the experiment did not allow us to estimate the 377 

role of uncontrolled environmental effects on the response to selection. Therefore our estimates of 378 

the differences in trait values between generations may be flawed by random effects. Notwithstanding 379 

the limits of our experimental design, the differences in mean values of the selected traits were 380 

significant. The success of this selection experiment could be further validated by an experiment 381 

where two sets of lines are selected in opposite directions ( i.e. for a short or long male phase). In this 382 

case, each set of selected lines would act as a control for the other and the response would be measured 383 

as the divergence between the upward and the downward set (FALCONER 1989). 384 

Experiments on the genetic covariance between male and female functions have been 385 

performed on hermaphroditic plants (MAZER et al. 2007), but they have never been performed on 386 

hermaphroditic animals before, as far as we know, possibly because it is not easy to measure male 387 

and female traits. Generally, sexual functions may require different resource investments and we may 388 

not be able to compare the resource currencies of the two sexual functions (SCHÄRER 2009). In our 389 

study model we were able to compare the traits linked by a trade-off using the same currency – time, 390 

i.e., the proportion of time spent as male vs that spent as young hermaphrodite.  391 
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The	trait	 targeted	by	artificial	selection	did	not	respond	to	selection	 in	the	set	of	 lines	of	392 

functional	males.	This	indicates	that	the	genetic	architecture	underlying	sexual	functions	is	different	393 

in	this	set	of	lines	or	that	genetic	variation	for	sex	allocation	was	exhausted	in	this	set	of	lines.	We 394 

recall that these worms originated from founders that were identified through their male-biased 395 

gender expression: they had eggs but never laid them. They differed from the worms of the set of 396 

lines of functional hermaphrodites in the genetic background of the traits linked to gender expression 397 

and in the responses to selection on these traits.	In	functional	males,	the	trade-off	was	almost	fixed	398 

and	most	reproductive	resources	were	channeled	to	the	male	function.		399 

	 The	results	we	obtained	by	selecting	on	functional	hermaphrodites	and	functional	males	400 

can	help	us	to	outline	the	first	steps	in	the	evolutionary	transition	from	hermaphroditism	to	separate	401 

sexes.	Theoretical evolutionary models indicate that the transition from hermaphroditism to separate 402 

sexes (or vice versa) requires changes in the allocation of reproductive resources in response to natural 403 

selection and a trade-off between the two sexual functions in hermaphrodites (CHARLESWORTH & 404 

CHARLESWORTH 1978; CHARNOV 1982; DELPH & WOLF 2004, PANNELL & VERDU 2006) Under these 405 

conditions, if mutant hermaphrodites appear that specialize in, for example, more male functions (at 406 

the expense of the female functions), natural selection will favor other hermaphrodites that specialize 407 

in the female function. Our results document that in hermaphroditic worms there was genetic variation 408 

for sex allocation patterns and there was a genetic covariance between the traits that contributed to 409 

the two sexual functions. There were also hermaphrodites specialized in more male function. The 410 

evolutionary pathway of the transition could	be	this: hermaphroditic progenitors lose their negative 411 

genetic correlation between the traits connected to the sexual functions, as it occurred to functional 412 

males, and this is the first step towards gonochorism. Then, natural selection will favor other 413 

hermaphrodites that specialize in the opposite function, as it was nicely shown in plants (DORKEN & 414 

PANNELL 2009). In this perspective, functional males and specialized hermaphrodites could be the 415 

ancestors of separate-sex descendants as suggested for another species of worms, in which multiple 416 
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sexual phenotypes are present and trade-off between sexual functions are almost completely broken 417 

up (LORENZI et al. 2013).  418 

 Our results provide the first empirical support of a genetic basis for a trade-off between 419 

traits related to the male and female function in hermaphroditic animals and highlight that these trade-420 

offs are complex. Our results also suggest that the trade-off between male and female functions breaks 421 

up as hermaphrodites evolve some sexual specialization where resources are channeled towards a 422 

single sexual function.  423 

  424 

425 
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Legends to Figures 514 

 515 

Figure 1. Life cycle and sexual pattern in O. diadema. Soon after hatching, worms enter their male 516 

phase during which they fertilize eggs laid by mature hermaphrodites. When the male phase ends, 517 

worms mature eggs in their coelom (eggs are visible through their transparent body walls). During 518 

the hermaphroditic phase, mating events occur each 1 - 2 days between paired worms (fertilization is 519 

external and occurs via pseudocopulation). At each mating, worms either play the female role (i.e., 520 

they lay eggs) or the male role (i.e., they fertilize eggs). At the next mating event, the worm which 521 

played the female role will play the male role, and, vice versa, the one which played the male role 522 

will play the female role. Usually, 20 - 40 mating events occur during the hermaphroditic phase, 523 

before worms die when they are 80 - 100 days-old. 524 

 525 

Figure 2. Direct and correlated responses to selection for a shorter male phase in generations 0 and 4 526 

in the sets of lines of functional hermaphrodites and functional males. A: The shortening of the male 527 

phase occurred in the set of lines of functional hermaphrodites, whereas in that of functional males it 528 

did not. B: The variation in the number of eggs at 1st laying occurred in the set of lines of functional 529 

hermaphrodites, whereas in that of functional males it did not. C: The lengthening of the time as 530 

young hermaphrodite occurred in the set of lines of functional hermaphrodites, whereas in that of 531 

functional males it did not. 532 

 533 

Figure 3. Proportion of time spent as male and as young hermaphrodite. The dashed lines between 534 

the bars show the variation across generations within line.  535 

 536 

Figure 4. Variation in the temporal patterns of egg production in the set of lines of functional 537 

hermaphrodites. Worms of generation 4 produced a significantly smaller proportion of eggs in the 538 

first half of their layings (in relation to lifetime egg production) than their ancestors in generation 0 539 
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(notwithstanding the peak in the 1st egg laying).  540 

 541 

Figure 5. Proportion of functional males and functional hermaphrodites in generation 4 in the two 542 

selected lines. 543 


