Available online at www.sciencedirect.com ## ScienceDirect ## ICCSE 2018 ## Fe Doped Titania Photocatalyst for Degradation of Methyl Orange Devagi Kanakaraju^a", Muhamad Hazim bin Ya^a, Muhamad Akif Aizuddin bin Jasni^a, Mohammad Sufian bin Endra^a, Ying-Chin Lim^b "Faculty Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia ^b School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia ## Abstract Surface modification of titanium dioxide (TiO₂) by doping method is one of the ways to lower TiO₂ band gap and thus increasing its absorption to the visible region. This study was conducted to demonstrate a feasible modification of TiO₂ by using iron (Fe) metal as the doping agent. Fe-doped TiO₂ photocatalyst with the ratio of 1:1 was prepared by using the wet-impregnation method. The prepared photocatalyst was applied for the degradation of methyl orange (MO) under ultraviolet (UV) and visible light irradiation. A 0.20 g/L of Fe-doped TiO₂ efficiently degraded 82.8% and 74.4% of 5 ppm MO under UV light and visible light irradiation, respectively. MO removal up to 85% was attained using bare TiO₂ in the presence of UV compared to only 11% under visible light. The UV-Vis Diffuse Reflectance spectroscopy confirmed the reduction of TiO₂ band gap upon Fe doping. © 2019 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Chemical Sciences and Engineering: Advance and New Materials, ICCSE 2018. Keywords: Doping, titanium dioxide; methyl orange; photocatalysis; wet-impregnation; photodegradation Corresponding author. Tel.: +6082 583023. E-mail address: kdevagi@unimas.my 2214-7853 © 2019 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Chemical Sciences and Engineering: Advance and New Materials, ICCSE 2018.