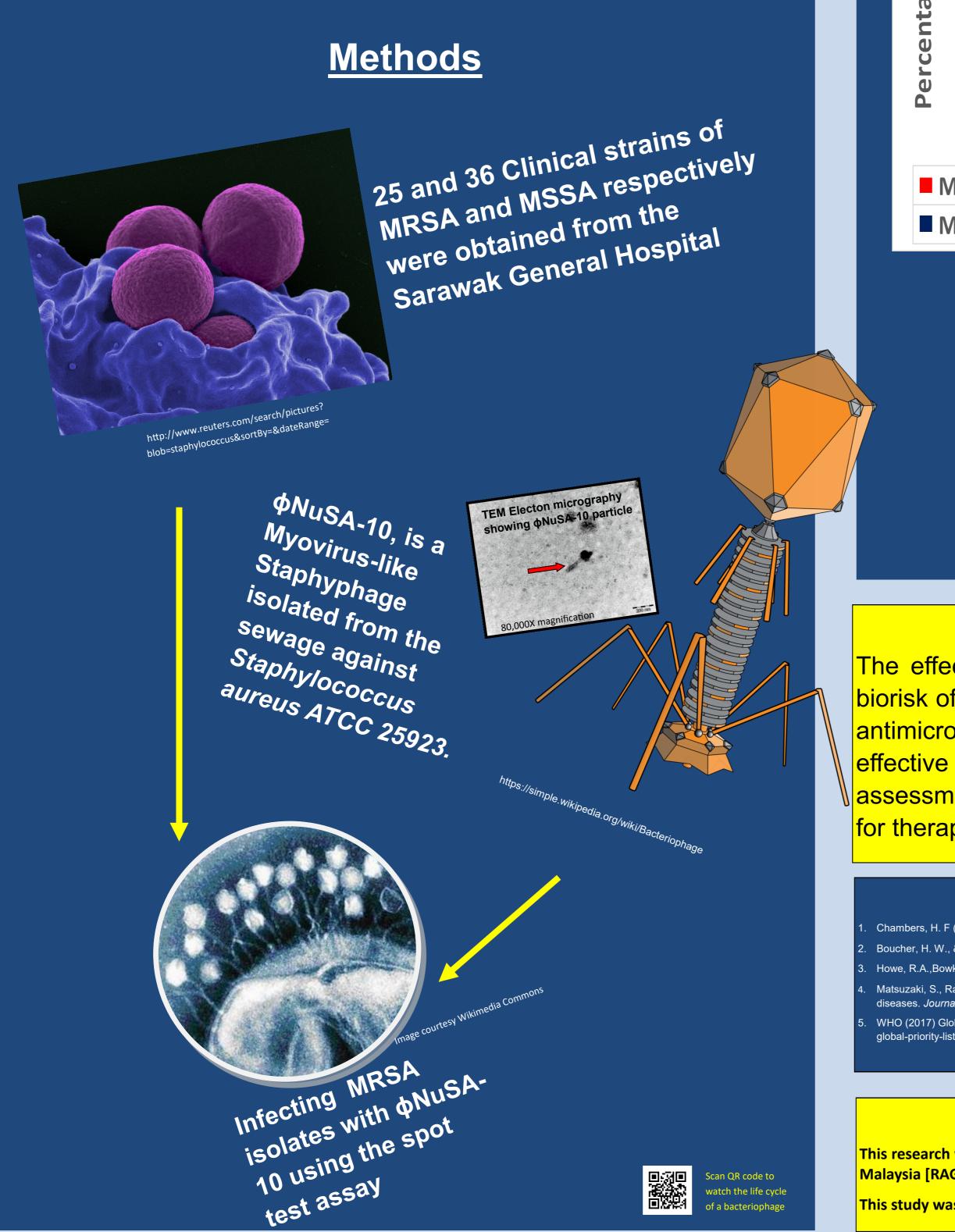


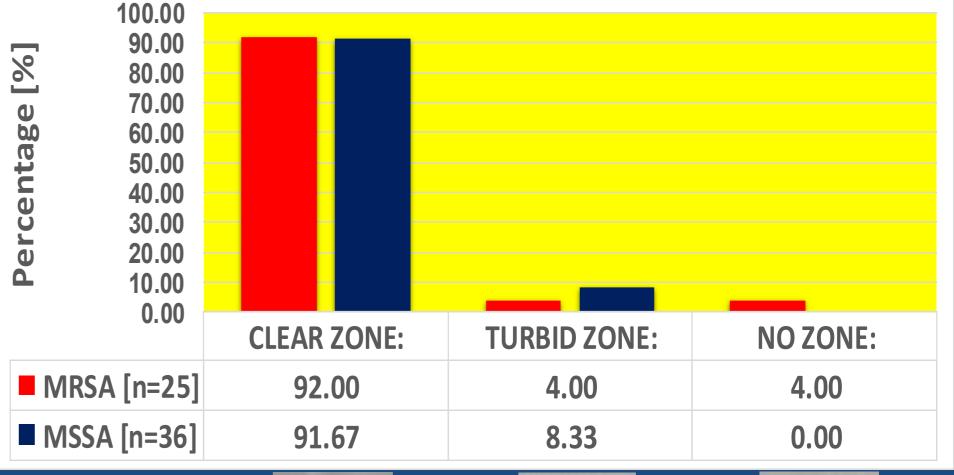
Staphyphage: Biorisk reduction in MRSA research **Cheng Siang Tan^{1,2}*,** Nurul Aqilah Aqiludeen², Ruixin Tan³, Annabel Gowbei³, Alexander Beemer

Mijen³, Santhana Raj L⁴, and Siti Fairouz Ibrahim²

¹Centre for Tropical and Emerging Diseases, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia. ²Department of Para-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia. ³Microbiology Unit, Department of Pathology, Sarawak General Hospital, 93568 Kuching, Sarawak, Malaysia. ⁴Institute for Medical Research, 50588 Kuala Lumpur, Malaysia *E-mail: cstan@unimas.my


Introduction

Staphylococcus aureus is an opportunistic human pathogen that has the ability to cause both health careassociated and community-acquired infections [1]. It has been identified as one of the 'high priority pathogen' by the World Health Organization (WHO) [5] The infections were once, easily treated with antibiotics before resistance against beta-lactams (eg. Methicillin) and glycopeptides (eg. Vancomycin) began to emerge over the years and caused an increase in mortality and morbidity rates in patients infected with S. aureus [2,3]. This has led to an increased interest in the exploration of the use of bacteriophage as an alternative approach way to combat MRSA because a bacteriophage has bacteriolytic mechanism independent from those of any known antibiotics [5]. The availability of a virulent and broad spectrum bacteriophage against MRSA may significantly reduce the overall biorisk as it acts as an effective treatment in case of exposure.


Objectives

To evaluate the antibacterial property of Staphyphage ϕ NuSA-10 against Methicillin Resistant (MRSA) and Methicillin Sensitive (MSSA) Staphylococcus aureus.

The lytic efficacy of ϕ NuSA-10 on MRSA and MSSA

ΦNuSA-10 kills ~92% of both MRSA and **MSSA**

()

Conclusion

The effectiveness of ϕ NuSA-10 against MRSA and MSSA reduces the biorisk of MRSA research as it acts as a potential alternative yet effective antimicrobial against MRSA and potentially VRSA in the absence of effective antibiotics. Nevertheless, complete characterization, risk assessment and purification of ϕ NuSA-10 are required before being used for therapeutic purpose.

References

- Chambers, H. F (2001) The Changing Epidemiology of Staphylococcus aureus. Emerging Infectious Diseases. 7(2)
- Boucher, H. W., & Corey, G. R. (2008). Epidemiology of Methicillin-Resistant Staphylococcus aureus. Clinical Infectious Diseases, 46(Supp. 5), S344–349.
- Howe, R.A., Bowker, K.E., Walsh, T.R., Feest, T.G., MacGowan, A.P. (1998) Vancomycin-resistant Staphylococcus aureus. The Lancet, 351(9102), 602
- Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., ... Imai, S. (2005). Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 11(5), 211-9.
- WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/ global-priority-list-antibiotic-resistant-bacteria/en/

Acknowledgement

This research was funded by the Research Acculturation Grant Scheme (RAGS) from the Ministry of Higher Education, Malaysia [RAGS/SSK04(1)1037/2013(04)].

This study was approved by the National Medical Research Register (NMRR) (NMRR-13-1779-17325).