

Engineering Analysis with Boundary Elements 21 (1998) 179–184 © 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain 7 0955-7997/98/\$19.00+0.00

PII: S0955-7997(97)00105-7

Research Note

CVBEM for a system of second-order elliptic partial differential equations

W. T. Ang* & Y. S. Park

Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia

A boundary element method based on the Cauchy's integral formulae and the theory of complex hypersingular integrals is devised for the numerical solution of boundary value problems governed by a system of second-order elliptic partial differential equations. The elliptic system has applications in physical problems involving anisotropic media. © 1998 Elsevier Science Ltd. All rights reserved

Key words: complex variable boundary element method, elliptic partial differential equations, anisotropic media.

1 INTRODUCTION

Consider the system of second-order elliptic partial differential equations given by

$$\sum_{j=1}^{2} \sum_{p=1}^{2} \sum_{k=1}^{N} a_{ijkp} \frac{\partial^2 \phi_k}{\partial x_j \partial x_p} = 0 \ (i = 1, \ 2, \ \cdots, \ N), \tag{1}$$

where ϕ_k $(k = 1, 2, \dots, N)$ are functions of x_1 and x_2 and a_{ijkp} $(j, p = 1, 2 \text{ and } i, k = 1, 2, \dots,$

N) are real constant coefficients which satisfy the symmetry conditions $a_{ijkp} = a_{kpij}$ and are such that

$$\sum_{j=1}^{2} \sum_{p=1}^{2} \sum_{i=1}^{N} \sum_{k=1}^{N} a_{ijkp} \lambda_{ij} \lambda_{kp} > 0$$

for every non-zero $N \times 2$ real matrix $[\lambda_{ii}]$. (2)

We are interested in solving eqn (1) in a region \mathcal{R} bounded by a simple closed curve C (on the $0x_1x_2$ plane) subject to

$$\phi_k(x_1, x_2) = \mu_k(x_1, x_2) \quad \text{for} \quad (x_1, x_2) \in C_1
P_i(x_1, x_2) = Q_i(x_1, x_2) \quad \text{for} \quad (x_1, x_2) \in C_2$$
(3)

where μ_k and Q_i are suitably prescribed functions of x_1 and x_2 , C_1 and C_2 are non-intersecting curves such that $C = C_1 \cup C_2$ and

$$P_{i} = \sum_{j=1}^{2} \sum_{p=1}^{2} \sum_{k=1}^{N} a_{ijkp} \frac{\partial \phi_{k}}{\partial x_{p}} n_{j} \ (i = 1, \ 2, \ \cdots, \ N)$$
(4)

*To whom correspondence should be addressed.

with n_j (j = 1, 2) being components of the unit outer normal vector to \mathcal{R} on C.

The boundary value problem defined by eqns (1) and (3) has important applications in engineering. As an example, the steady-state temperature distribution in a flat plate which is thermally anisotropic and homogeneous obeys eqn (1) with N = 1. The temperature and heat flux are given by ϕ_1 and (P_1, P_2) respectively, and a_{1j1p} are the heat conduction coefficients.

The plane static deformation of a homogeneous anisotropic elastic solid is governed by eqn (1) with N = 2 and x_1 and x_2 as the Cartesian coordinates. The Cartesian displacement and traction are given by (ϕ_1, ϕ_2) and (P_1, P_2) respectively. The coefficients a_{ijkp} are the elastic moduli of the material occupying the solid. For a specific case, the elastostatic behaviour of a transversely isotropic material which has transverse planes perpendicular to the $0x_1x_2$ plane and which undergoes plane deformation is governed by

$$C\frac{\partial^2 \phi_1}{\partial x_1^2} + L\frac{\partial^2 \phi_1}{\partial x_2^2} + (F+L)\frac{\partial^2 \phi_2}{\partial x_1 \partial x_2} = 0,$$

$$C\frac{\partial^2 \phi_2}{\partial x_2^2} + L\frac{\partial^2 \phi_2}{\partial x_1^2} + (F+L)\frac{\partial^2 \phi_1}{\partial x_1 \partial x_2} = 0,$$
(5)

which is a special case that can be recovered from eqn (1) if we let N = 2 and $a_{2222} = A$, $a_{1111} = C$, $a_{1122} = a_{2211} = F$, $a_{1212} = a_{2121} = a_{1221} = a_{2112} = L$ and the remaining a_{ijkl} be zero. [The constants A, F, C and L are independent elastic coefficients.]