Research Note

CVBEM for a system of second-order elliptic partial differential equations

W. T. Ang* \& Y. S. Park
Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia

Abstract

A boundary element method based on the Cauchy's integral formulae and the theory of complex hypersingular integrals is devised for the numerical solution of boundary value problems governed by a system of second-order elliptic partial differential equations. The elliptic system has applications in physical problems involving anisotropic media. © 1998 Elsevier Science Ltd. All rights reserved

Key words: complex variable boundary element method, elliptic partial differential equations, anisotropic media.

1 INTRODUCTION

Consider the system of second-order elliptic partial differential equations given by

$$
\begin{equation*}
\sum_{j=1}^{2} \sum_{p=1}^{2} \sum_{k=1}^{N} a_{i j k p} \frac{\partial^{2} \phi_{k}}{\partial x_{j} \partial x_{p}}=0(i=1,2, \cdots, N), \tag{1}
\end{equation*}
$$

where $\phi_{k}(k=1,2, \cdots, N)$ are functions of x_{1} and x_{2} and $a_{i j k p}(j, p=1,2$ and $i, k=1,2, \cdots$,
N) are real constant coefficients which satisfy the symmetry conditions $a_{i j k p}=a_{k p i j}$ and are such that

$$
\begin{equation*}
\sum_{j=1}^{2} \sum_{p=1}^{2} \sum_{i=1}^{N} \sum_{k=1}^{N} a_{i j k p} \lambda_{i j} \lambda_{k p}>0 \tag{2}
\end{equation*}
$$

for every non-zero $N \times 2$ real matrix $\left[\lambda_{i j}\right]$.
We are interested in solving eqn (1) in a region \mathcal{R} bounded by a simple closed curve C (on the $0 x_{1} x_{2}$ plane) subject to

$$
\left.\begin{array}{lll}
\phi_{k}\left(x_{1}, x_{2}\right)=\mu_{k}\left(x_{1}, x_{2}\right) & \text { for } \quad\left(x_{1}, x_{2}\right) \in C_{1} \tag{3}\\
P_{i}\left(x_{1}, x_{2}\right)=Q_{i}\left(x_{1}, x_{2}\right) & \text { for } \quad\left(x_{1}, x_{2}\right) \in C_{2}
\end{array}\right\}
$$

where μ_{k} and Q_{i} are suitably prescribed functions of x_{1} and x_{2}, C_{1} and C_{2} are non-intersecting curves such that $C=C_{1} \cup$ \mathcal{C}_{2} and

$$
\begin{equation*}
P_{i}=\sum_{j=1}^{2} \sum_{p=1}^{2} \sum_{k=1}^{N} a_{i j k p} \frac{\partial \phi_{k}}{\partial x_{p}} n_{j}(i=1,2, \cdots, N) \tag{4}
\end{equation*}
$$

[^0]with $n_{j}(j=1,2)$ being components of the unit outer normal vector to R on C.

The boundary value problem defined by eqns (1) and (3) has important applications in engineering. As an example, the steady-state temperature distribution in a flat plate which is thermally anisotropic and homogeneous obeys eqn (1) with $N=1$. The temperature and heat flux are given by ϕ_{1} and (P_{1}, P_{2}) respectively, and $a_{1 j 1 p}$ are the heat conduction coefficients.

The plane static deformation of a homogeneous anisotropic elastic solid is governed by eqn (1) with $N=2$ and x_{1} and x_{2} as the Cartesian coordinates. The Cartesian displacement and traction are given by (ϕ_{1}, ϕ_{2}) and (P_{1}, P_{2}) respectively. The coefficients $a_{i j k p}$ are the elastic moduli of the material occupying the solid. For a specific case, the elastostatic behaviour of a transversely isotropic material which has transverse planes perpendicular to the $0 x_{1} x_{2}$ plane and which undergoes plane deformation is governed by

$$
\begin{align*}
& C \frac{\partial^{2} \phi_{1}}{\partial x_{1}^{2}}+L \frac{\partial^{2} \phi_{1}}{\partial x_{2}^{2}}+(F+L) \frac{\partial^{2} \phi_{2}}{\partial x_{1} \partial x_{2}}=0, \tag{5}\\
& C \frac{\partial^{2} \phi_{2}}{\partial x_{2}^{2}}+L \frac{\partial^{2} \phi_{2}}{\partial x_{1}^{2}}+(F+L) \frac{\partial^{2} \phi_{1}}{\partial x_{1} \partial x_{2}}=0,
\end{align*}
$$

which is a special case that can be recovered from eqn (1) if we let $N=2$ and $a_{2222}=A, a_{1111}=C, a_{1122}=a_{2211}=F$, $a_{1212}=a_{2121}=a_{1221}=a_{2112}=L$ and the remaining $a_{i j k l}$ be zero. [The constants A, F, C and L are independent elastic coefficients.]

[^0]: *To whom correspondence should be addressed.

