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Research Note

CVBEM for a system of second-order elliptic
partial differential equations
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A boundary element method based on the Cauchy’s integral formulae and the theory
of complex hypersingular integrals is devised for the numerical solution of boundary
value problems governed by a system of second-order elliptic partial differential
equations. The elliptic system has applications in physical problems involving
anisotropic media. © 1998 Elsevier Science Ltd. All rights reserved
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1 INTRODUCTION

Consider the system of second-order elliptic partial differ-
ential equations given by
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where ¢, (k=1, 2, ---, N) are functions of x; and x; and
@iy (G, p = 1,2 and Lk=1,2,:--,

N) are real constant coefficients which satisfy the symmetry
conditions a;, = ay,; and are such that
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for every non-zero N X 2 real matrix [A;].
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We are interested in solving eqn (1) in a region X bounded
by a simple closed curve C (on the Ox;x, plane) subject to

du(x1, x2) = (g, 1) for  (x, %) €C,
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where pu; and Q; are suitably prescribed functions of x; and
x5, C1 and C, are non-intersecting curves such that C =C, U
C 2 and
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with n; (j = 1, 2) being components of the unit outer normal
vector to X on C.

The boundary value problem defined by eqns (1) and (3)
has important applications in engineering. As an example,
the steady-state temperature distribution in a flat plate which
is thermally anisotropic and homogeneous obeys eqn (1)
with N = 1. The temperature and heat flux are given by
¢, and (P, P,) respectively, and a,;,, are the heat conduc-
tion coefficients.

The plane static deformation of a homogeneous aniso-
tropic elastic solid is governed by eqn (1) with N = 2 and
x; and x, as the Cartesian coordinates. The Cartesian dis-
placement and traction are given by (¢, ¢;) and (P}, Py)
respectively. The coefficients au, are the elastic moduli of
the material occupying the solid. For a specific case, the
elastostatic behaviour of a transversely isotropic material
which has transverse planes perpendicular to the Ox,x,
plane and which undergoes plane deformation is governed
by
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which is a special case that can be recovered from eqn (1) if
welet N=2and app = A, ayn = C, aypn=axn, =F,
d212 = ay121 = A1221 = az112 = L and the remaining a;;; be
zero. [The constants A, F, C and L are independent elastic
coefficients.]



