
2016 Third International Conference on information Retrieval and Knowledge Management 

Integration of Use Case Formal Template using Mapping Rules 

Swee Yin Wong', Edwin Mitt, Jonathan Sidi3 
Faculty Computer Science and Information Technology 

Universiti Malaysia Sarawak, 
94300 Kota Samarahan, Sarawak, Malaysia 

23 ýcyinwsva, gmail. com, edwin@fit. unimas. my, jonathannafit. unimas. mv 

Abstract-The integration of use case and formal specification 
plays an essential role in addressing the issue of gaining the 
rigor and reliable software model such as formal model via 
easy and economic model such as object model. Although 
extensive research has been carried out on this Integration, 
however there is a huge challenge on bridging the gaps 
between natural language used In use case scenario and the 
mathematics model used in formal model. This Is mainly 
because of the differences In syntax and semantic of these two 
models. Natural language requirement is well documented that 
it is being inconsistent, inherently ambiguous, and incomplete 
even though natural language Is universal, widespread, and 
flexible. As a consequence, It may lead to misunderstanding 
and produce an incorrect and inaccurate analysis and design 
model. Therefore, this paper aims to propose a use case formal 
template and define a new set of mapping rules that Is used for 
formalizing UML use case by transforming use case scenarios 
which are written In natural language Into VDM++ formal 
specification. The formal verification for the generated 
VDM++ formal specification can be further conducted by 
adopting the existing support tool of VDM++ (i. e. VDM++ 
ToolBox) to verify the correctness of the specification. 

Keywords-integration; use case; Vienna Development 
Method; formal specillcation; formal template; mapping rules 

I. INTRODUCTION 

Use case diagram in Unified Modeling Language (UML) 
is an essential tool for capturing user requirement. This is a 
high level model that bridges the gap between user and 
developer so that they can get a common understanding of 
the software model [1]. However, majority of the use case 
specifications arc described in natural language such as 
English as semi-formal or informal structured text. It is well 
documented that natural language requirement is being 
inconsistent, inherently ambiguous, and incomplete even 
though natural language has the benefits of universal, 
widespread, and flexible [2]. In [3], the researchers also 
showed that the less accuracy in specification is main 
caused by the inherent ambiguity of natural language. Thus, 
the ambiguity and flexibility of natural language may lead to 
misunderstanding among developers, domain experts and 
end users of a system. As a result of this, it will produce 
incorrect and inaccurate analysis and design model and this 
will lead to software failures or rework cost. In particular, 
error cannot be accepted in critical and safety systems 
because any errors in those systems will involve 
catastrophic loss. 

Besides that, software analysis model is often represented 
by using use case model during analysis phase, one of the 
early stages in Software Development Life Cycle (SDLC). 
All requirements should be produced in that phase as it is the 
most important phase in SDLC. Any error during the 
analysis phase will lead to the wrong analysis, design, and 
implementation models, which is the main reason for the 
software failure. Meanwhile, some critical decisions that 
should be done in analysis phase are also always deferred by 
developers until the design phase and implementation phase. 
As a consequence, a lot of re-design cost may be caused and 
the design time is lengthened. 

In addition, based on Shen and Liu [4], they stated that a 
lot of misunderstanding and confusion among developers 
and end users can be reduced through formalism of use cases 
in a high level and such can be very beneficial in improving 
software quality. In work [5], Bakri et al. also stated that 
formal method is the optimum technique in error reduction 
especially at the earlier stages of software development. 
Furthermore, it is a well acknowledged fact that formal 
methods have been also quite successful in the area of 
uncovering ambiguities, incompleteness, and inconsistencies 
in requirements representation [6]. At the same time, by 
using formal specification, it can be very effective in 
improving system comprehensibility, reliability, and design 
time [7]. 

To deal with the ambiguity in requirements, UML use 
case has to be formalized into a rigor and reliable software 
model such as formal specification that use mathematical 
notation in describing software requirement description 
precisely with minimum confusion and ambiguity. In this 
research, VDM++ (Vienna Development Method ++) formal 
specification is chosen to formalize UML use case because it 
is executable and able to support both object-oriented 
concept and concurrency control. VDM has also a proven 
track record in industrial application [8], [9]. At this current 
stage, there is still a youthful and active Overture research 
community in supporting VDM [9]. Unfortunately, there is a 
formalism gap between UML use case and VDM++ due to 
their different syntax and semantics. This is a huge challenge 
to bridge the formalism gap. Hence, this work is to propose a 
use case formal template and define a new set of mapping 
rules for formalizing UML use case scenario written in 
natural language (i. e. English) into VDM++ formal 
specification. Through this formalization, a precise, 
complete, unambiguous, and consistent software 
specification is expected to be produced and such can 
improve the software quality, reliability, comprehensibility. 

25 


