Differences in Decline: Quantile Regression of Male-Female Earnings Differential in Malaysia

Goy Siew Ching Univerisiti Malaysia Sarawak

Gender inequality in the labour market outcomes

- The economic structural transformation has led to unprecedented numbers of women participation in the economic activity.
- The labour market continues to display significant disparities in the opportunities presented to men and women in the workplace.

Occupational Category	2008
Legislators, senior officials and managers	0.58
Professionals	1.07
Technicians and associate professionals	0.97
Clerical workers	1.70
Services and shop and market sales workers	1.14
Craft and related trade workers	0.42
Plant and machine-operators and assemblers	0.87
Elementary occupations	1.01

Representation Ratio in Eight Major Non-Agricultural Occupations by Gender in Malaysia, 2008

- Household Income Survey Data 1995 full-time employed male workers earn 1.3 times more than their female counterparts (Nagaraj *et al.*, 2002).
- Malaysian Household Survey data 1984, 1989 and 1997 -Millanovic (2001) reported that the female-male real hourly wages ratio stood as 0.64 in 1984 and improved to 0.82 in 1989. The gap remained noticeable in 1997 at around 28%.
- Other studies in Malaysia also revealed that women consistently earn less than men (see Chua, 1984; Chapmen and Harding, 1986; Lee and Nagaraj, 1995; Ariffin et al., 1996; Mohamad-Nor, 1997;Low and Goy, 2006 and Fernandez ,2006).

- A substantial fraction of the persistent gender earnings gap is attributed to the unequal treatment of workers of equal productivity.
- In literature, when a wage gap remains after controlling for differences in productivity-link characteristics between sexes, it reflects discriminatory constraints in the labour market for women.
- This interpretation, however, is perceived as a less than wholly satisfactory measure.

Empirical measurement of wage discrimination

In analysing gender wage gap, research efforts tend to separate the gap into 2 components: differences in characteristics and differences in the rewards to those characteristics.

• Parametric – OLS

Oaxaca (1973), Blinder (1973); Oaxaca and Ransom (1994), Juhn *et al*. (1991, 1993), Blau and Khan (1997, 2003)

• Semiparametric – Quantile Regression

Gardeazabal and Ugidos (2005), Machado and Mata (2005), Felgueroso *et al*. (2007), Nicodemo (2009)

• Nonparametric

DiNardo *et al*. (1996)

Motivations of this study

- The existing wage gap evidence in Malaysia focuses solely on OLS decomposition. It focuses the gap at the mean, it ignores an important part of the story, in that it heroically assumes the gap to be constant at other points of wage distribution.
- Attention has been shifted to quantile regression in developed countries, this line of research has yet been explored in the context of the Malaysian labour market.
- Official statistics of income distribution in Malaysia across the whole distribution display only according to ethnic groups and states.
- The mandatory minimum wages policy will be implemented for the first time in Malaysia in January 2013.

Data

• The data are drawn from the Malaysia Family and Population Survey (MFPS), a cross-section survey conducted separately at two points in time, 1994 and 2004.

Year of Survey and Type	Male	Female
MPFS 3 1994	4238 (4097)	4444 (2020)
Married women aged 15-49, 2004		3693 (1726)
Spouses of married women, 2004	2626 (2504)	
Youths aged 13-24, 2004	268 (199)	227 (164)
Citizens aged 50 and above, 2004	354 (219)	927 (316)
Unmarried aged 25-49, 2004	370 (318)	251 (205)

 Table 1: The Distribution of Respondent by Gender and Type of Survey, 1994-2004

Note: The numbers in parentheses represent respondents who are in the 16-64 age groups and in paid employment.

Individual	1994		Restricted	Sample 2004	Unrestricted Sample 2004		
Variables	Men	Women	Men	Women	Men	Women	
Experience	24.29	21.16	24.58	20.45	23.75	21.80	
	(10.37)	(9.64)	(9.85)	(9.71)	(12.06)	(12.98)	
Age	39.03	35.58	40.53	36.91	39.63	37.94	
	(8.54)	(7.30)	(8.33)	(7.58)	(10.34)	(10.25)	
Secondary	0.495	0.450	0.596	0.526	0.586	0.489	
	(0.50)	(0.50)	(0.49)	(0.50)	(0.49)	(0.50)	
Beyond	0.114	0.124	0.176	0.255	0.174	0.252	
secondary	(0.32)	(0.33)	(0.38)	(0.44)	(0.38)	(0.43)	
Metropolitan	0.342	0.398	0.367	0.405	0.369	0.407	
	(0.47)	(0.49)	(0.48)	(0.42)	(0.48)	(0.49)	
Urban	0.204	0.205	0.222	0.243	0.215	0.243	
	(0.403)	(0.404)	(0.49)	(0.43)	(0.41)	(0.43)	
Bumiputra	0.609	0.575	0.726	0.708	0.703	0.671	
	(0.49)	(0.49)	(0.45)	(0.46)	(0.46)	(0.47)	
Chinese	0.253	0.255	0.171	0.177	0.194	0.216	
	(0.43)	(0.44)	(0.38)	(0.38)	(0.40)	(0.41)	
Married					0.846	0.850	
					(0.36)	(0.36)	
Female		0.331		0.408		0.426	
		(0.47)		(0.49)		(0.50)	
Monthly	984.98	616.82	1625.55	1121.55	1524.53	1099.22	
earnings (RM)	(1051.84)	(714.47)	(1500.81)	(1077.43)	(1436.64)	(1157.36)	
Log monthly	6.5736	6.0440	7.1049	6.6528	7.0379	6.6129	
earnings	(0.77)	(0.87)	(0.74)	(0.89)	(0.74)	(0.90)	

Gender Earnings Gap across Earnings Distribution

Figure 6.1: Unconditional Gender Earnings Gap, 1994

Figure 6.2: Unconditional

Gender Wage Gap, Restricted

Figure 6.3: Unconditional Gender Wage Gap, Unrestricted Sample 2004

Quantile Regression and the Wage Gap Decomposition

• Following Koenker and Bassett (1978) and Buchinsky (1998), the wage equation at different quantiles of wage distribution is specified as $lnw_{ij} = X_{ij}\beta_{\theta} + \mu_{ij\theta}$ with $Quant_{\theta}(lnw_{ij}|X_{ij}) = X_{ij}\beta_{\theta}$

the distribution function of the error term for the θ th quantile is left unspecified, but with the assumption that $Quant_{\theta}(\mu_{i\theta}|X_i) = 0$

• the vector of coefficients is estimated by minimising the sum of *absolute* value of the weighted residual, ranging from $0 < \theta < 1: \min_{\substack{\beta_{\theta} \\ i:lnw_i \ge X_i\beta_{\theta}}} \theta |lnw_i - X_i\beta_{\theta}| + \sum_{\substack{i:lnw_i < X_i\beta_{\theta}}} (1 - \theta) |lnw_i - X_i\beta_{\theta}|)$ (2)

Correction for Sample Selection based on Buchinsky (1998)

• In the presence of sample selection, the conditional quantile of the observed wage equation is specified as:

 $Quant_{\theta}(lnw_{i}|X_{i}, EMP = 1) = X_{i}\beta_{\theta} + Quant_{\theta}(\mu_{i\theta}|X_{i}, EMP = 1)$ (3) where $Quant_{\theta}(\mu_{i\theta}|X_{i}, EMP = 1) \neq 0$.

- Assuming the quantity is a function of a known index g, the observed wage specification can be expressed as: $Quant_q(lnw_i|X_i) = X_i\beta_q + h_q(q) + v_q$ (4) with $Quant_q(v_{i\theta}|X_i, EMP = 1) = 0$.
- Buchinsky suggests a series of estimators and we restrict to two selection bias terms (namely the linear bias term and its square). These are then used to compute the unknown form of sample selection in the quantile regression in the second stage.

Quantile wage decomposition

• The wage differential at various quantiles between men and women at the θth unconditional quantiles can be expressed as:

$$\overline{lnW}_{m\theta} - \overline{lnW}_{f\theta} = \beta_{m\theta} \left[E(X_m | lnW_m = lnW_{m\theta}) - E(X_f | lnW_{fm} = lnW_{f\theta}) \right] + (\beta_{m\theta} - \beta_{f\theta}) E(X_f | lnW_{fm} = lnW_{f\theta}) + E(\mu_{m\theta} | lnW_m = lnW_{m\theta}) - E(\mu_{f\theta} | lnW_f = lnW_{f\theta})$$
(6)

• Follow the procedure developed by Felgueroso *et al.* (2007) which based on Machado and Mata (2005) to determine the counterfactual female wage density.

Inw^c_{fi}= $X_{if}\beta_{m\theta}$ if women's labour market characteristics are rewarded by the same prices as are paid to men at each quantile; or **Inw**^c_{fi}= $X_{im}\beta_{f\theta}$.

• The decomposition of the difference between men and women wage densities can be specified as:

$$Q_{\theta}(\overline{lnW_{m}}) - Q_{\theta}(\overline{lnW_{f}}) = [Q_{\theta}(X_{im}\hat{\beta}_{m\theta}) - Q_{\theta}^{c}(X_{if}\hat{\beta}_{m\theta})] + [Q_{\theta}^{c}(X_{if}\hat{\beta}_{m\theta}) - Q_{\theta}(X_{if}\hat{\beta}_{f\theta})] + \text{resd.}$$
(7)

- While the application of the Buchinsky method is instructive, it comes at a cost – estimation of the first stage of the model (using the Klein and Spady estimator) is highly computerintensive.
- we simply follow the simpler approach of Manquilef-Bachler et al. (2009) – that is we estimate the selection terms under a probit model in the first stage.

Findings

Table 3: Quantile Regression With and Without Correction for Selection Bias,1994-2004

Panel A:	Female 1994			Male 1994		
Variable	Correction	Correction	Without	Correction	Without	
	for Selection	for Selection	Correction	for Selection	Correction	
	Bias ^a	Bias ^b	for Selection	Bias ^b	for Selection	
			Bias		Bias	
	0.3452	0.3389	0.3378	0.4030	0.3923	
Metro	(0.0383)	(0.0418)	(0.0364)	(0.0267)	(0.0181)	
	0.1189	0.1235	0.1141	0.2040	0.1855	
Urban	(0.0446)	(0.0445)	(0.0425)	(0.0394)	(0.0201)	
	-0.0361	-0.0409	-0.0507	-0.1441	-0.1291	
Bumiputra	(0.0549)	(0.0430)	(0.0439)	(0.0531)	(0.0225)	
	0.1977	0.2019	0.1817	0.3986	0.4026	
Chinese	(0.0507)	(0.0446)	(0.0483)	(0.0357)	(0.0247)	
	0.4965	0.4942	0.5144	0.3766	0.3747	
Secondary	(0.0459)	(0.0491)	(0.0437)	(0.0289)	(0.0195)	
Beyond	1.1369	1.3617	1.3876	1.1098	1.1065	
secondary	(0.0688)	(0.0692)	(0.0636)	(0.0587)	(0.0303)	
	0.0292	0.0278	0.0298	0.0290	0.0313	
Experience	(0.076)	(0.0081)	(0.0072)	(0.0134)	(0.0031)	
Experience	-0.0006	-0.0005	-0.0006	-0.0005	-0.0006	
square	(0.0002)	(0.0002)	(0.0002)	(0.0003)	(0.0001)	
Self-						
selection	0.0073	-0.1670		-1.2503		
correction	(0.0133)	(0.1521)		(2.0129)		
Self-						
selection						
correction	-0.0001	0.0819		2.2789		
square	(0.0004)	(0.1033)		(2.7004)		
	5.1497	5.2932	5.2342	5.7883	5.7231	
Constant	(0.1235)	(0.1146)	(0.0925)	(0.2060)	(0.0484)	
Pseudo R ²	0.2207	0.2206	0.2202	0.2586	0.2582	
Ν	2018			4077		

Panel B:	Female 2004 Restricted		Male 2004 Restricted		
	Sample		Sample		
	Correction Without		Correction	Without	
	for Selection	Correction	for Selection	Correction	
	Bias ^b	for Selection	Bias ^b	for Selection	
		Bias		Bias	
	0.3341	0.3390	0.4894	0.4694	
Metro	(0.0479)	(0.0417)	(0.0349)	(0.0270)	
	0.1874	0.1790	0.2090	0.1983	
Urban	(0.0566)	(0.0461)	(0.0397)	(0.0298)	
	-0.0734	-0.0851	-0.2222	-0.1846	
Bumiputra	(0.0696)	(0.0557)	(0.0526)	(0.0373)	
	0.0718	0.0605	0.3247	0.3155	
Chinese	(0.0834)	(0.0652)	(0.0548)	(0.0435)	
	0.5354	0.5390	0.5366	0.4455	
Secondary	(0.0709)	(0.0594)	(0.0726)	(0.0324)	
	1.4669	1.4701	1.2459	1.1445	
Beyond secondary	(0.0834)	(0.0697)	(0.0810)	(0.0422)	
	0.0243	0.0245	0.0307	0.0445	
Experience	(0.0080)	(0.0078)	(0.0104)	(0.0050)	
	-0.0004	-0.0004	-0.0003	-0.0008	
Experience square	(0.0002)	(0.0002)	(0.0003)	(0.0001)	
	0.0190	5.6577	-1.2891		
Self-selection correction	(0.1888)	(0.1007)	(0.8763)		
Self-selection correction	0.0036		0.5944		
square	(0.1294)		(0.6309)		
	5.6413		6.0100	5.9514	
Constant	(0.1317)		(0.0916)	(0.0769)	
Pseudo R ²	0.2604	0.2602	0.2639	0.2631	
Ν	1724		2503		

Panel C:	Female 2004 Unrestricted		Male 2004 Unrestricted			
	Sample		Sample			
	Correction	Without	Correction	Without		
	for Selection	Correction	for Selection	Correction		
	Bias ^b	for Selection	Bias ^b	for Selection		
		Bias		Bias		
	0.3320	0.3252	0.4686	0.4653		
Metro	(0.0422)	(0.0348)	(0.0288)	(0.0325)		
	0.1511	0.1481	0.1998	0.1794		
Urban	(0.0506)	(0.0384)	(0.0373)	(0.0365)		
	-0.0677	-0.0647	-0.2269	-0.1947		
Bumiputra	(0.0459)	(0.0462)	(0.0446)	(0.0450)		
	0.2031	0.2025	0.2217	0.2358		
Chinese	(0.0547)	(0.0525)	(0.0554)	(0.0516)		
	0.4914	0.4895	0.4948	0.3964		
Secondary	(0.0557)	(0.0465)	(0.0698)	(0.0389)		
	1.3481	1.3461	1.1670	1.0645		
Beyond secondary	(0.0678)	(0.0553)	(0.0788)	(0.0513)		
	0.0311	0.0310	0.0253	0.0377		
Experience	(0.0046)	(0.0042)	(0.0079)	(0.0047)		
	-0.0006	-0.0006	-0.0003	-0.0007		
Experience square	(0.0001)	(0.0001)	(0.0002)	(0.0001)		
	0.0397	0.0445	0.0752	0.2413		
Married	(0.0628)	(0.0450)	(0.1002)	(0.0459)		
	-0.0387		-0.8123			
Self-selection correction	(0.1608)		(0.4381)			
Self-selection correction	0.0331		0.4428			
square	(0.1128)		(0.2879)			
	5.6209	5.6166	6.1220	5.8938		
Constant	(0.0985)	(0.0759)	(0.1401)	(0.0739)		
Pseudo R ²	0.2695	0.2695	0.2678	0.2670		
Ν	2379		3204			

Figure 6.7: Kernel Density Earning Differential between Men and Women if Women had Men's Characteristics and Women's Returns, 1994

Figure 6.8: Kernel Density Earning Differential between Men and Women if Women had Men's Characteristics and Women's Returns, Restricted Sample 2004

8

---- counterfactual wage female

6

Inwage

wage male

10

œ.

4

Ņ

0

2

Figure 6.9: Kernel Density Earning Differential between Men and Women if Women had Men's Characteristics and Women's Returns, Unrestricted Sample 2004

Wage Differential between Men and Women that had Men's Characteristics and Paid Like Women

Restricted sample

Unrestricted sample

	10 th	25 th	50 th	75 th	90 th	Mean	
	Percentile	Percentile	Percentile	Percentile	Percentile	(OLS)	
Panel A: 1994							
Differences in	-0.0275	-0.0183	-0.0033	-0.1084	0.0914	-0.0218	
characteristics							
Differences in	0.7206	0.6069	0.5629	0.3961	0.4194	0.5514	
rewards	(0.6931)	(0.5878)	(0.5298)	(0.3041)	(0.4813)		
Total raw wage gap	0.6931	0.5878	0.5596	0.2877	0.5108	0.5296	
Panel B: restricted s	ample 2004						
Differences in	-0.0385	-0.1081	-0.0340	0.0030	-0.0894	-0.0500	
characteristics							
Differences in	0.7316	0.5499	0.4394	0.2847	0.3771	0.5020	
rewards	(0.7601)	(0.5203)	(0.4777)	(0.4149)	(0.3200)		
Total raw wage gap	0.6931	0.4418	0.4054	0.2877	0.2877	0.4520	
Panel C: unrestricted sample 2004							
Differences in	0.0309	-0.0430	-0.0661	-0.0075	-0.0016	-0.0483	
characteristics							
Differences in	0.6622	0.6026	0.4491	0.2439	0.3260	0.4731	
rewards	(0.7747)	(0.5457)	(0.4335)	(0.4197)	(0.3829)		
Total raw wage gap	0.6931	0.5596	0.3830	0.2364	0.3102	0.4248	

Table 4: Quantile Wage Decomposition Based on Counterfactual Density, 1994-2004

Note: Figures in parentheses are computed based on counterfactual women density if they had men's characteristics but were paid like women.

Conclusions

- We have found that the gender earnings gap declines as we move up the wage distribution. The gap is bigger at the bottom of earnings distribution.
- Most of the earnings gap is explained by differences between the price that the market pays to male and female endowments. But the extent of the price effect is larger at the bottom end of the distribution than at the top.
- In terms of policy, these findings suggest that the focus should be on finding ways to improve the returns to characteristics earned by women at the bottom end of the distribution.
- One possibility would be to require large employers to undertake job evaluations and to remunerate their workers, regardless of gender. Another possibility is to introduce affirmative action.

THANK YOU