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Abstract Failure mode and effect analysis (FMEA) is a

popular safety and reliability analysis tool in examining

potential failures of products, process, designs, or services,

in a wide range of industries. While FMEA is a popular

tool, the limitations of the traditional Risk Priority Number

(RPN) model in FMEA have been highlighted in the lit-

erature. Even though many alternatives to the traditional

RPN model have been proposed, there are not many

investigations on the use of clustering techniques in

FMEA. The main aim of this paper was to examine the use

of a new Euclidean distance-based similarity measure and

an incremental-learning clustering model, i.e., fuzzy

adaptive resonance theory neural network, for similarity

analysis and clustering of failure modes in FMEA; there-

fore, allowing the failure modes to be analyzed, visualized,

and clustered. In this paper, the concept of a risk interval

encompassing a group of failure modes is investigated.

Besides that, a new approach to analyze risk ordering of

different failure groups is introduced. These proposed

methods are evaluated using a case study related to the

edible bird nest industry in Sarawak, Malaysia. In short, the

contributions of this paper are threefold: (1) a new

Euclidean distance-based similarity measure, (2) a new risk

interval measure for a group of failure modes, and (3) a

new analysis of risk ordering of different failure groups.

Keywords Failure mode and effect analysis �
Fuzzy ART � Similarity measure � Risk interval measure �
Risk ordering

1 Introduction

Failure mode and effect analysis (FMEA) is a popular and

effective problem prevention methodology for defining,

identifying, and eliminating potential failures and errors of

a system, design, process, or service [1]. A search in the

literature reveals that FMEA has been used in a wide

variety of application domains, e.g., aerospace [2], auto-

motive [1], nuclear [3], electronic [4], manufacturing [5],

chemical [6], mechanical [7], health care and hospital [8–

10], agriculture [11, 12], and ocean engineering [13, 14].

The main usefulness of FMEA is to identify potential

failure modes of a system, understand the causes and

effects of each potential failure mode, and determine

actions to eliminate or reduce the risk of failure modes [1].

Traditionally, the risk of a failure mode is determined by

computing the Risk Priority Number (RPN) [1]. The RPN

model considers three factors as its inputs, i.e., severity (S),

occurrence (O), and detect (D), and produces an RPN score

(i.e., multiplication of S, O, and D) as the output [1]. S and

O are seriousness and frequency of a failure mode,

respectively, while D is the effectiveness of the existing

measures in detecting a failure before the failure effect

reaches the customer [1].

Regardless of the popularity of FMEA, the use of the tra-

ditional RPN model in FMEA is arguable [2, 15]. In [15], a

review of various risk evaluation methods as alternatives to the

traditional RPN model was presented. The existing methods

are grouped into five categories, i.e., multi-criteria decision-

making (MCDM) methods, mathematical programming (MP)
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methods, artificial intelligence (AI) methods, integrated

methods, and others. In general, MCDM methods interpret

S, O, and D as the decision criteria (or sub criteria), and

decision alternatives (e.g., causes or failure modes) are

evaluated. Note that S, O, and D scores can be precise or

imprecise. MP methods consider S, O, and D scores to be

precise, or more often imprecise (represented as fuzzy

sets). More complicated mathematical techniques (e.g.,

fuzzy weighted geometric means, fuzzy ordered weighted

geometric averaging, and fuzzy envelopment analysis) are

used to prioritize the failure modes. AI methods use

intelligent algorithms, e.g., rule base system, fuzzy rule

base system, fuzzy adaptive resonance theory (ART), and

fuzzy cognitive map, in FMEA. The fuzzy rule base system

is one of the most popular methods. Both rule base and

fuzzy rule base systems use ‘‘(fuzzy) If–Then’’ rules to

model the relationship between S, O, D, and RPN. In our

previous work [16–18], we argue that it is important to

maintain the monotonicity relationship between S, O, D,

and RPN scores. The monotonicity relationship is exploited

as a useful qualitative information for RPN modeling using

fuzzy rule base systems. Integrated methods are methods

that attempt to combine more than one methods for risk

evaluation, e.g., a hybrid method comprising the fuzzy rule

base system and fuzzy analytical hierarchical process, and

fuzzy evidential reasoning and gray theory. Example of

others methods are Monte Carlo, cost-based model, and

kano graph [15].

Some of the above-mentioned methods (influenced by

the traditional risk assessment and MCDM practices)

attempt to map S, O, and D scores (either precise or

imprecise) to a common domain for comparison and

ranking. This can be viewed as a mapping or projection of

information from a high-dimensional space to one-dimen-

sional space. Making decision with such methods exploits

the mapped S, O, and D scores, in one (dimensional)

common domain. The use of mapping in FMEA is useful,

as it provides a metric to assess S, O, and D scores.

However, making decision solely based on the mapped S,

O, and D scores can be disadvantageous, as some important

information is lost (i.e., projection from a higher-dimen-

sional space to one-dimensional space) or modified (i.e.,

tuning, optimization, identification, or preprocessing tech-

niques in more complicated risk modeling techniques). In

this paper, the focus is on the use of a clustering technique

for analysis of failure modes in FMEA. It is worth noting

that the use of fuzzy ART in FMEA was examined by

Keskin and Özkan [19], with the reason that different

combinations of S, O, and D could produce the same RPN

scores. In addition to this reason, we further justify the

advantages of using clustering techniques in FMEA in this

paper, as follows: (1) Clustering deals with the original S,

O, and D scores directly; (2) clustering allows failure

modes to be compared, or visualized in the S, O, and

D space as groups of information; and (3) use of the ori-

ginal S, O, and D scores (instead of the mapped S, O, and

D scores into a common domain) avoids loss or modifi-

cation of important information for decision making.

Motivated from the above-mentioned reasons, the main

aim of this paper was to investigate the use of an

Euclidean distance-based similarity measure and an

incremental-learning clustering technique (i.e., fuzzy ART

[20]) for analysis of failure modes in FMEA. The

Euclidean distance-based similarity measure quantifies the

similarity between two failure modes by taking their S, O,

and D scores into consideration. This measure is impor-

tant as it provides a quantity to indicate whether a failure

mode under consideration (represented by its S, O, and

D scores) is similar to others; therefore, serving as a

solution to one of the key issues in FMEA, i.e., different

combinations of S, O, and D can produce the same RPN

scores. As an example, consider two failure modes with S,

O, and D scores of [1 1 10] and [1 10 1]. With the

traditional RPN model, the RPN score of 10 for both

failures is produced. However, with the proposed

Euclidean distance-based similarity measure (as described

in Sect. 3.1), their similarity measure is 0.1835. This

implies that even though both failure modes are associated

with the same RPN score, they can be differentiated by

the similarity measure. It is worth mentioning that the use

of the similarity measure in decision-making problems is

not new, e.g., in perceptual computing, the Jaccard simi-

larity measure was used [21].

In general, clustering is a process of organizing sets of

data samples, which are attributed by multi-dimensional

features, into separate groups based on their similarity [22].

The data samples within a cluster share some similar fea-

tures, as compared to those associated with other clusters

[22]. Examples of popular clustering techniques are k-

means clustering [23], fuzzy ART [20, 24], and fuzzy

c-means [25]. In this paper, the focus is on the use of fuzzy

ART for clustering failure modes in FMEA into different

groups. Fuzzy ART is chosen because of its adaptive and

incremental-learning properties. Besides that, failure

modes should be prioritized. In [19], each group of failure

modes is ranked and prioritized according to its arithmetic

mean. In this paper, the risk of each failure mode is eval-

uated with the (fuzzy) RPN model. Instead of arithmetic

mean, the risk of each group of failure modes is repre-

sented as a risk interval measure, i.e., the minimum and

maximum RPN scores of the failure modes in the group

using the (fuzzy) RPN model. In addition, risk ordering of

different groups of failure modes is analyzed. Such analysis

attempts to provide additional information, i.e., whether the

risk of a group of failure modes is higher than that of

another group of failure modes.
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The contributions of this paper are threefold: (1) an

Euclidean distance-based similarity measure to quantify

the degree of similarity between two failure modes; (2) a

risk interval measure to represent the risk of a group of

failure modes; and (3) a risk ordering analysis for different

groups of failure modes. The Euclidean distance-based

similarity measure provides a measure of ordinary distance

of two failure modes in the S, O, and D space (as in Def-

inition 1). The risk interval measure provides a measure of

risk pertaining to a group of failure modes in the S, O, and

D space. The risk ordering analysis of two groups of failure

modes further indicates whether both groups can be

ordered or one is a subset of another. To evaluate the

proposed method, real-world data and information from

swiftlets farming and edible bird nest (EBN) processing

[11, 12] are used. The experimental results are discussed

and analyzed.

This paper is organized as follows. In Sect. 2, the tra-

ditional RPN and fuzzy rule base RPN models are

explained. In Sect. 3, the use of fuzzy ART in FMEA and

our proposed methods are described. In Sect. 4, the

experimental results are presented and discussed. Finally,

concluding remarks are provided in Sect. 5.

2 Background

In this section, S, O, D, and RPN are defined. The tradi-

tional RPN and fuzzy rule base RPN model are explained.

2.1 Severity, occurrence, detect, and Risk Priority

Number

Traditionally, FMEA adopts the RPN model, which con-

siders three risk factors, i.e., S, O, and D, for failure mode

analysis and risk prioritization [1]. In this paper, these three

risk factors are defined as the input space, as follows.

Definition 1: An input space, i.e., S 9 O 9 D, is con-

sidered. Variables s, o, and d are the elements of S, O, and

D, respectively, i.e., s 2 S, o 2 O, and d 2 D. The lower

and upper boundaries of S is represented by s and �s,

respectively. Similarly, the lower or upper boundaries of O

and D are represented by o and �o, as well as d and �d,

respectively.

A set of data samples in the S, O, and D space, as

defined in Definition 1, i.e., [s, o, d], are considered.

Traditionally, the risk of [s, o, d] is compared with other

sets of data samples in the RPN space. The RPN space and

RPN are defined as follows.

Definition 2: The RPN space is the output space con-

taining all possible RPN scores, i.e., RPN 2 RPN space.

The lower and upper boundaries of the RPN space is rep-

resented by RPN and RPN, respectively. The RPN space

follows a monotonic, ordered sequence, i.e., the higher the

RPN score, the higher the risk.

2.2 The traditional and fuzzy inference system-based

RPN models

Traditionally, the risk of [s, o, d] is obtained using Eq. 1

and is designated as the RPN score. Equation 1 can be

viewed as a mapping of [s, o, d] to the RPN space.

RPN ¼ s� o� d ð1Þ

As an alternative to the traditional RPN model, the fuzzy

rule base RPN model was proposed [2, 16–18]. Hereafter,

the fuzzy rule base RPN model is known as the fuzzy

inference system (FIS)-based RPN model. Each S, O, and

D domain is defined using a scale table, with mS, mO, and

mD partitions, respectively. Each partition in the S, O, and

D domains is represented by a fuzzy membership function,

i.e., lnX

X xð Þ, and is associated with a linguistic term, i.e.,

AnX

X , where nX = 1, 2, 3, …, mX, x 2 [s, o, d] and X 2 [S, O,

D]. Note that the fuzzy membership functions follow an

ordered sequence, i.e., lpX

X xð Þ4lpXþ1

X xð Þ, where pX 2 [1, 2,

3, …, mX - 1]. The relationships between S, O, D, and

RPN are formulated as a set of fuzzy rules, as follows.

RnS;nO;nD : If severity is AnS

S and occurrence is AnO

O and detect

is AnD

D , then RPN is BnS;nO;nD where BnS;nO;nD is the fuzzy

consequence in the RPN space. Note that bnS;nO;nD is the fuzzy

singleton [26] for BnS;nO;nD . With the zero-order Sugeno FIS

model [26], the RPN score is obtained using Eq. 2. To ease

the explanation, the RPN score obtained from the FIS-based

RPN model is called the Fuzzy RPN score, where

Fuzzy RPN 2 RPN space and Definition 2 applies.

FuzzyRPN s; o; dð Þ

¼
PmS

nS¼1

PmO

nO¼1

PmD

nD¼1 lnS

S sð Þ � lnO

O oð Þ � lnD

D dð Þ � bnS;nO;nD
� �

PmS

nS¼1

PmO

nO¼1

PmD

nD¼1 lnS

S sð Þ � lnO

O oð Þ � lnD

D dð Þ
� �

ð2Þ

3 The proposed methods

In this section, the proposed Euclidean distance-based

similarity measure is firstly formulated. The use of fuzzy

ART for failure modes clustering is presented. The pro-

posed formulations for risk interval and analysis of risk

ordering of failure groups are further explained.

3.1 Euclidean distance-based similarity measure

A set of failure modes, each represented as a data sample in

the S, O, and D space, as defined in Definition 3, is

considered.

Definition 3: A set of data samples with m failure modes

is considered. Each failure mode is denoted as xk ¼
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sk; ok; dk½ � in the S, O, and D space (Definition 1),

k ¼ 1; 2; 3; . . .;m.

An Euclidean distance-based similarity measure for two

failure modes is formulated. The similarity measure

between two failure modes, i.e., xk ¼ sk; ok; dk½ � and

xj ¼ sj; oj; dj

� �
, j; k ¼ 1; 2; 3; . . .;m, is computed using

Eq. 3.

Similarity xk; xj

� �
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sk � sj

� �2þ ok � oj

� �2þ dk � dj

� �2

�s� sð Þ2þ �o� oð Þ2þ �d � dð Þ2
2

v
u
u
t

ð3Þ

Note that Similarity xk; xj

� �
¼ Similarity xj; xk

� �
. The

higher the similarity measure, the higher the degree of

similarity between xk and xj. If xk ¼ xj,

Similarity xk; xj

� �
¼ 1. If xk ¼ �s; �o; �d½ � and xj ¼ s; o; d½ �,

vice versus, Similarity xk; xj

� �
¼ 0. As an example, if xk ¼

1; 1; 10½ � and xj ¼ 1; 10; 1½ �, Similarity xk; xj

� �
¼ 0:1835.

3.2 Fuzzy ART for clustering of failure modes

The fuzzy ART neural network is adopted for clustering all

failure modes. Each failure mode is fed in sequence, i.e.,

starting from x1, x2, until xm. The architecture of fuzzy

ART is depicted in Fig. 1. In layer 1 (or input layer), there

are 6 nodes, i.e., snor, onor, dnor, snor
c , onor

c , and dnor
c . In layer

2 (or recognition layer), there are s cluster prototypes,

s [ 0, and s can be increased over time depending on the

availability of data samples. Each cluster prototype is

labeled as Cz, where z ¼ 1; 2; 3; . . .; s: The weight con-

necting Cz and xnor is denoted as w:
xnor;z

. As an example, the

weight connecting C1 and snor is denoted as wsnor;1
and that

connecting Cs and dnor
c is denoted as wc

dnor;s
. All weights are

contained in a matrix, i.e., Wxnor;z
. Each component of Wxnor;z

is labeled as Wxnor;z
ðvÞ, where v ¼ 1; 2; 3. . .; 6:.

The dynamics of fuzzy ART can be divided into the

following steps.

(i) Normalization and complement coding

(a) Normalize S, O, and D to [0, 1].

(b) Normalize each sk, ok, and dk to [0, 1]

using Eq. (4). Normalized xk is denoted as

xk;nor ¼ sk;nor; ok;nor; dk;nor

� �

xk;nor ¼
xk � x

�x� x
; where x 2 s; o; d½ � ð4Þ

(c) Perform complement coding [20] of sk,nor,

ok,nor, and dk;nor, i.e., sk,nor
c , ok,nor

c , and dk,nor
c ,

using Eq. (5).

xc
k;nor
¼ 1� xk;nor; where x 2 s; o; d½ � ð5Þ

(d) Form the complement-coded failure mode

of xk;nor, i.e., xc
k;nor ¼ sk;nor; ok;nor;

�

dk;nor; s
c
k;nor; o

c
k;nor; d

c
k;nor�. Again, each com-

ponent of xc
k;nor is labeled as xc

k;norðvÞ where

v ¼ 1; 2; 3; . . .; 6: As an example,

xc
k;nor 1ð Þ ¼ sk;nor.

(ii) Parameters setting: The choice (�), vigilance

(q), and learning rate (b) parameters are deter-

mined. Among these three parameters, q plays

the key role as it regulates the granularity of the

cluster structures formed in fuzzy ART [20]. In

this paper, � = 0.0001 and b = 1 (i.e., fast

learning) are adopted, while q is varied, with its

effect examined.

(iii) Initialization: The number of cluster is set to 1

(i.e., s = 1), but is incremental as learning

progresses. The weights connecting C1 and x:nor

are initialized to 1.

(iv) Category Choice, Test, and Search: Each input

vector (i.e., xc
k;nor) is transmitted from layer 1 to

layer 2. The response of each node in layer 2 is

computed using the choice function (Eq. 6). The

node that has the highest response, denoted as

node J 2 1; 2; 3; . . .; sð Þ, is selected as the win-

ning node (Eq. 7). If there is a tie on Tk;z, the

node with the smallest index is chosen.

Tk;z ¼
Pv¼6

v¼1 xc
k;norðvÞ

V
Wxnor;z

ðvÞ
� �

/ þ
Pv¼6

v¼1 Wxnor;z
ðvÞ

� � ð6Þ

TJ ¼ max Tk;z : z ¼ 1; 2; 3; . . .; s
� �

ð7Þ

Winning node J propagates its weight vector

back to layer 1. A vigilance test (Eq. 8) is per-

formed to measure the similarity against the

Layer 2
(Recognition layer)

Layer 1
(Input layer)

. . . 

Fig. 1 Fuzzy ART architecture, in which layer 2 is an incremental

layer
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vigilance threshold between the transformed

category prototype and the input vector.

MðJÞ ¼
Pv¼6

v¼1 xc
k;norðvÞ

V
Wxnor;J

ðvÞ
� �

Pv¼6
v¼1 xc

k;norðvÞ
� � ð8Þ

If the vigilance test is satisfied, resonance is said to

occur and learning takes place (the next step).

However, if the vigilance test fails, node J is inhib-

ited, i.e., it is prohibited from participating in sub-

sequent competitions. Input xc
k;nor is re-transmitted

to layer 2 to search for a new winner. This process is

repeated, consecutively disabling nodes in layer 2,

until either an existing winning node is able to pass

the vigilance test, or, if no such node is available, a

new node is created to encode the input vector.

(v) Learning: Once the search process ends, learning

takes place by adjusting Wxnor;J
using Eq. (9).

Wxnor;J;new
ðvÞ ¼ b xc

k;norðvÞ
^

Wxnor;J;old
ðvÞ

� �

þ 1� bð ÞWxnor;J;old
ðvÞ;where v

¼ 1; 2; 3; . . .; 6 ð9Þ

3.3 Risk interval measure

In this study, the risk of a group of failure modes (xk 2 Cz)

is represented as a risk interval, i.e., RPNz ¼
RPNz;RPNz

h i
. The traditional or FIS-based RPN model

(as explained in Sect. 2.2) is used to obtain the RPN score

of xk ¼ sk; ok; dk½ � and is denoted as RPNk. The risk interval

of Cz is obtained using Eqs. (10) and (11).

RPNz ¼ min RPNk; for all xk 2 Czð Þ ð10Þ

RPNz ¼ maxðRPNk; for all xk 2 CzÞ ð11Þ

3.4 Risk ordering

In this study, risk ordering of different failure groups is

analyzed with the risk interval produced from Sect. 3.3.

Consider two failure groups Cz1 and Cz2, where

z1; z2 2 1; 2; 3; . . .; s, with their risk intervals, RPNz1 ¼

RPNz1;RPNz1

h i
and RPNz2 ¼ RPNz2;RPNz2

h i
, respec-

tively. The ordering relationship between RPNz1 and

RPNz2 is summarized in Table 1. If RPNz1\RPNz2 and

RPNz1\RPNz2, then RPNz1 \ RPNz2. If RPNz1 ¼ RPNz2

and RPNz1\RPNz2, then RPNz1 B RPNz2. If RPNz1 ¼
RPNz2 and RPNz1 ¼ RPNz2, then RPNz1 = RPNz2. If

RPNz1 [ RPNz2 and RPNz1\RPNz2, then RPNz1 2 RPNz2

and Cz1 and Cz2 cannot be ordered.

4 A case study

In this section, a case study related to swiftlets farming and

EBN processing is presented. The background of EBN [11]

and its S, O, and D definitions are explained. The experi-

mental results are analyzed and discussed.

4.1 Background of swiftlets farming and edible bird

nest processing

Edible bird nest (or known as ‘‘the Caviar of the East’’) is

the nest of swiftlets, which is consumed as a type of

(healthy) food [27]. With a high demand of EBN from

China, swiftlets farming and EBN processing have emerged

as a popular urban industry among Southeast Asia coun-

tries, including Malaysia [28]. It is worth noting that Sar-

awak and Sabah (two states of Malaysia in the Borneo

Island) are the second ranked resource area (after Indonesia)

of the world for EBN production [11]. Despite the popu-

larity of EBN as a food source, it is challenging to ensure its

quality of EBN processing. Indeed, many activities on

enhancing the quality of EBN have been reported, as

summarized in [11]. EBN production comprises five sub-

processes [11], i.e., (i) swiftlets farming, (ii) harvesting, (iii)

EBN cleaning, (iv) EBN drying and reshaping, and

(v) storing and packaging. The use of FMEA (with FIS-

based RPN) for improving these sub-processes was reported

in [11]. Information and data were gathered from several

swiftlets farms and EBN production plants in Sarawak [11].

Based on the preliminary investigation in [11], we extend

the work using a clustering-based FMEA technique in this

study. Specifically, information and data from [11] are

further analyzed with several proposed methods, as men-

tioned in Sect. 3. Two continuous sub-processes of EBN

production, i.e., EBN cleaning as well as EBN drying and

reshaping, are examined in details, as follows.

4.2 Severity, occurrence, and detect scale tables

The scale tables of S, O, and D are presented in Tables 2, 3

and 4, respectively. In each scale table, column ‘‘Ranking’’

states the score intervals. These intervals are tagged with a

linguistic term, as in column ‘‘Linguistic Term AnX

Xð Þ’’,
where nX = 1, 2, 3, …, mX and X 2 [S, O, D]. There are mX

intervals for each S, O, and D, respectively. A detailed

description of each interval is summarized in column

‘‘Description’’. As an example, a score from 1 to 2 is

assigned with the linguistic term of ‘‘Very Low’’ for S, i.e.,

AS
1. This interval is used to indicate a failure with a minor

effect, which can be ignored. Besides that, even if the

failure occurs, the yield and the product quality are still

excellent.
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4.3 Results and discussions

4.3.1 Risk evaluation and clustering results

Table 5 summarizes the risk evaluation results with the

traditional and FIS-based RPN models, together with the

clustering results of fuzzy ART. Sub-columns ‘‘k’’ and

‘‘Description’’ are the label and description of a failure

mode, respectively. Columns ‘‘Sev,’’ ‘‘Occ,’’ and ‘‘Det’’

contain the S, O, and D score of each failure mode,

respectively. The risk evaluation results with the traditional

and FIS-based RPN models are presented in columns

‘‘RPN’’ and ‘‘Fuzzy RPN,’’ respectively. Columns Ck are

the clustering results using fuzzy ART with three different

settings of the vigilance parameter, i.e., q = 0.7, 0.9, and

0.95. As an example, the first failure mode (i.e., k = 1) is

described as ‘‘Tearing of raw EBN.’’ Its S, O, and D scores

are 4, 9, and 1, respectively. With the traditional RPN

model (i.e., Eq. (1)) and fuzzy RPN model (i.e., Eq. (2)),

the RPN and fuzzy RPN scores for this failure mode are 36

and 422, respectively. With fuzzy ART, this failure mode

belongs to the first cluster, for the three q settings.

As shown in Table 5, all failure modes are clustered into

1, 3, and 5 groups with q = 0.7, 0.9, and 0.95, respectively.

When q = 0.9, failure modes 1, 3, and 4 belong to the first

group; failure modes 5–13 belong to the second group;

failure mode 2 belongs to the third group. When q = 0.95,

there are five groups. Cluster 1 contains failure mode 1;

cluster 2 contains failure modes 3 and 4; cluster 3 contains

failure modes 6, 7, 11, and 12; cluster 4 contains failure

Table 1 Risk ordering of

RPNz1 and RPNz2

RPNz RPNz1\RPNz2 RPNz1 ¼ RPNz2 RPNz1 [ RPNz2

RPNz

RPNz1\RPNz2 RPNz1 \ RPNz2 RPNz1 B RPNz2 RPNz1 2 RPNz2

RPNz1 ¼ RPNz2 RPNz1 B RPNz2 RPNz1 = RPNz2 RPNz1 C RPNz2

RPNz1 [ RPNz2 RPNz1 3RPNz2 RPNz1 C RPNz2 RPNz1 [ RPNz2

Table 2 Scale table for severity (from [11])

Ranking Linguistic term

Ans

S

� � Description

1–2 Very low Effect of the potential failure mode is not obvious and can be ignored

Excellent yield and product quality

3–4 Low Very minor impact to the production yield

Failures cause a minor impact to EBN food production process control. The consequence will cause a minor effect

to the products’ cosmetic appearance and packaging

5–7 Medium Failures lead to the issue of minor security breaches of the farm, and habitat of the swiftlets is affected by some of

the pests and enemies of the swiftlets. The consequence will cause a reduction in the population of the swiftlets

and the yield of the farm

Failures cause a minor impact to the production yield

8–9 High Failures lead to the issue of serious security breaches of the farm. Safety of the swiftlets will be threatened by its

enemies, such as thieves and predators

Failures cause a major impact to the production yield

10 Very high Failures lead to impacts to product safety and quality

Compliance to law

Major impact to the reputation of the company and the products

Lead to failure to yield management

Table 3 Scale table for

occurrence (from [11])
Ranking Linguistic term, AnO

O

� �
Description

1 Extremely low Failures happen at least once ever

2–3 Very low Failures happen at least once within 6–12 months

4–5 Low Failures happen at least once within 1–6 months

6–7 Medium Failures happen at least once within 1–30 days

8–9 High Failures happen at least once within 1–8 working hours

10 Very high Failures happen many times within an hour
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modes 5, 8, 9, 10, and 13; and cluster 5 contains failure

mode 2.

4.3.2 Similarity measures among failure modes

The similarity measures among all failure modes in

Table 5 are obtained using the proposed Euclidean dis-

tance-based similarity measure (i.e., Eq. (3)). The results

are shown in Table 6. As an example, for j; k ¼ 1,

Similarity x1; x1ð Þ ¼ 1. Similarity between the first and

second failure modes can be obtained by setting j = 1,

k = 2, i.e., Similarity x2; x1ð Þ = 0.79714 (as shaded in

Table 6). From Table 6, the minimum and maximum

similarity measures are 0.7971 and 1, respectively. These

failure modes are close to each other in the

S 9 O 9 D space.

Table 4 Scale table for detect (from [11])

Ranking Linguistic term, AnD

Dð Þ Description

1–3 Very high Detection is excellent

Control actions can almost detect the failure on the spot and appropriate actions are taken to solve

the failure and the weakness.

Prevent the excursion from occurring

4–6 High Detection is good

Control actions can almost detect the failure on the spot within the same process module or steps

In farm management, control actions can detect the failure within 1 day

Appropriate actions are available to solve the failure and the weakness

7–8 Medium Detection is acceptable

Control actions can detect the failure within one to two process modules or steps

In farm management, control actions can detect the failure within one to three days

Appropriate actions are available. However, the failure can be tricky and hard to solve

9 Low Hard to detect

Control actions may not detect the failure

Appropriate actions may not be available and the failure cannot be solved

10 Very low Detection is almost impossible

No control action is available

No solution is available for solving the failure

Table 5 Risk evaluation and clustering results of failure modes

Failure mode Sev Occ Det RPN Fuzzy RPN

(from [11])

Ck

k Description q = 0.7 q = 0.9 q = 0.95

1 Tearing of raw EBN 4 9 1 36 422 1 1 1

2 Dissolution of EBN 4 6 2 48 339 1 3 5

3 Dirty EBN 3 10 1 30 447 1 1 2

4 Tearing of raw EBN 4 10 1 40 465 1 1 2

5 EBN is not dry enough for the reshaping process 3 7 4 84 532 1 2 4

6 Spraying is uneven 4 7 4 112 549 1 2 3

7 Cracking of the EBN 4 8 4 128 591 1 2 3

8 Cracking of the EBN

Too much gaps

3 8 4 96 574 1 2 4

9 Failure in molding 3 8 4 96 574 1 2 4

10 EBN is too dry 3 7 4 84 532 1 2 4

11 Spraying is uneven 4 7 4 112 549 1 2 3

12 Cracking of the EBN 4 7 4 112 549 1 2 3

13 EBN is too dry and may crack 3 7 4 84 532 1 2 4
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4.3.3 Risk interval and the risk ordering analysis

Table 7 summarizes the risk intervals and risk ordering

analyses of failure modes. Column ‘‘q’’ is the vigilance

parameter setting of fuzzy ART. Column ‘‘RPN model’’ is

the RPN model used for risk evaluation. Column

‘‘RPNz ¼ RPNz;RPNz

h i
’’ shows the risk interval for each

group of failure modes. Column ‘‘risk ordering analysis’’

shows risk ordering of different failure groups. As an

example, when q = 0.7, there is only one failure group.

With the traditional RPN and FIS-based RPN models, the

risk intervals for RPN1 are [30, 128] and [339, 591],

respectively.

When q = 0.9, there are three failure groups and their

risk intervals are [30, 40], [84, 128], and [48, 48],

respectively, with the traditional RPN model. From the risk

intervals, it can be observed that RPN1 \ RPN3 \ RPN2.

This implies that the degree of risk associated with the

second group is higher than that of the third, which is

followed by the first group. Using the FIS-based RPN

model, the risk intervals are [422, 465], [532, 591], and

[339, 339], respectively. A different risk ordering is

obtained, i.e., RPN3 \ RPN1 \ RPN2. This is because

different RPN models produce different RPN values.

Group 1 consists of three potential failures (k = 1, 3, 4),

and group 3 consists of one potential failure (k = 2). It can

be observed that group 1 consists of failures with higher

O scores (i.e., 9 or 10, which implies once within 1–8 h or

many times in an hour, see Table 3) than that of group 3

(i.e., 6, which implies at least once within 1–30 days). All

potential failures in both groups 1 and 3 have very good

D scores, i.e., 1 or 2, which implies good detection actions

and prevention measures are available. Even though

potential failures in group 1 has better D score (i.e., 1) than

that of group 3 (i.e., 2), the detection actions are still

excellent and effective (see Table 4). Therefore, based on

the feedback and opinions from domain experts, the risk of

group 1 should be higher than that of group 3, owing to its

O scores. For group 2, both the RPN and FIS-based RPN

models suggest that its potential failures have the highest

risk.

When q = 0.95, there are five failure groups. With the

traditional RPN model, it can be observed that RPN1,

RPN2 \ RPN5 \ RPN4 \ RPN3, and RPN1 2 RPN2.

Again, with the FIS-based RPN model, a different risk

ordering is obtained, i.e., RPN5 \ RPN1, RPN2 \
RPN4 \ RPN3. Based on the above-mentioned reasons,

feedback and opinions from domain experts suggest that

the risk of groups 1 and 2 should be higher than that of

group 5. Both the RPN and FIS-based RPN models suggest

that the potential failures in group 3 have the highest risk,

which is followed by group 4.
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In short, the proposed risk interval and risk ordering

analysis allow different failure groups to be ranked and

analyzed. The outcome of the analysis is dependent on the

RPN model used. The empirical results show that the FIS-

based RPN model is able to produce a better risk ordering

than that of the traditional RPN model.

4.3.4 Remarks

The applicability of an incremental-learning clustering

technique (i.e., fuzzy ART [20]) for analysis of failure

modes in FMEA has been demonstrated. Fuzzy ART is

capable of rapid and stable learning of recognition cate-

gories in response to arbitrary sequences of failure modes

[20]. Besides that, its incremental-learning feature [20]

allows new failure modes to be included and analyzed from

time to time. However, it is not guaranteed that fuzzy ART

will always provide an optimal clustering outcome.

5 Summary

In this paper, the use of fuzzy ART for clustering failure

modes in FMEA has been investigated. Three new con-

cepts in FMEA have been proposed. First, the new

Euclidean distance-based similarity measure allows the

similarity of failure modes to be quantified. Next, fuzzy

ART allows failure modes in FMEA to be clustered into

different groups effectively, even if a new failure

mode(s) is included. Then, the risk interval measure allows

the risks associated with failure mode groups to be

obtained and ordered. The usefulness of these proposed

concepts have been demonstrated using real data and

information gathered from the EBN industry in Sarawak

[11]. Positive results have been obtained. The results have

also been properly analyzed and discussed. The outcomes

are in line with the opinions of the domain experts. For

further work, visualization of failure modes in FMEA using

a self-organizing map [29] and an evolving tree [30, 31]

will be investigated. Besides that, the use of clustering and

visualization techniques in other decision-making and

assessment problems, e.g., education assessment [32], will

be further examined.
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