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Abstract.  This paper presents a novel harmony search (HS)-based data-driven single input rule modules (SIRMs)-
connected fuzzy inference system (FIS) for the prediction of stress in externally prestressed tendon. The proposed 
method attempts to extract causal relationship of a system from an input-output pairs of data even without knowing 
the complete physical knowledge of the system.  The monotonicity property is then exploited as an additional 
qualitative information to obtain a meaningful SIRMs-connected FIS model.  This method is then validated using 
results from test data from the literature.  Several parameters, such as initial tendon depth to beam ratio; deviators 
spacing to the initial tendon depth ratio; and distance of a concentrated load from the nearest support to the effective 
beam span are considered.  A computer simulation for estimating the bond reduction coefficient  u  is then 
reported.  The contributions of this paper is two folds; (1) it contributes towards a new monotonicity-preserving 
data-driven FIS model in fuzzy modeling and (2) it provides a novel solution for estimating the u  even without a 
complete physical knowledge of unbonded tendons. 
 

Keywords:  bond reduction coefficient; externally prestressed tendon stress; harmony search; monotonicity 

index; single input rule modules (SIRMs)-connected fuzzy inference system (FIS) 

 
 
1. Introduction 
 

Externally prestressed beam is a structural concrete member where the prestressing tendons are 

placed on the outside of the concrete section and are attached by anchors and deviators at discrete 

locations (Naaman and Alkhairi 1991a, Ng 2003). The idea of prestressing tendon placement (or 

sometime known as externally prestressing technique) has been growing rapidly in rehabilitating 

and strengthening existing structure due to progressive aging and corrosion of steel reinforcement 

(Ariyawardena and Ghali 2002, Naaman and Alkhairi 1991a, Ng 2003).  Comparing to the 

conventional prestressing technique (i.e., bonded tendon), externally prestressing technique has 

some advantages, such as simpler to construct, easier to inspect and maintain (Naaman and 

Alkhairi 1991a, Ng 2003).  Regardless of its popularity, the structural behaviour of externally 
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prestressed beam is still not fully understood due to its complicity compared to the conventional 

prestressing technique (Tan and Tjandra, 2007).  The study of externally prestressed beam is 

difficult because of the increase of stress in the external tendons which depends on the overall 

deformation of a beam member that varied over the entire length of the beam.  This causes the 

eccentricity of the unbonded tendons to vary under loading i.e., second-order effects (Alkhairi and 

Naaman 1993, Ariyawardena and Ghali 2002, Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991a, 

b, Ng and Tan 2006a) and it involved complicated numerical analysis (Alkhairi and Naaman, 1993, 

Mutsuyoshi et al. 1995, Rao and Mathew, 1996). 

 

The common approach used for estimating the stress in externally prestressed tendon at 

ultimate, psf , for an externally prestressed beam is to determine the stress increase caused by an 

external loading(s), psf Δ , beyond the effective prestress, pef , i.e., pepsps fff Δ  (Alkhairi 

and Naaman 1993, Naaman and Alkhairi 1991a).  Since the member analysis method involved 

complicated analysis, it can be further simplified by a “pseudo-section analysis” by considering 

the bond reduction coefficient, u  (Alkhairi and Naaman 1993, Mutsuyoshi et al. 1995, Naaman 

and Alkhairi 1991a, Ng 2003).  A search in the literature reveals that efforts to predict an accurate 

u  (via analytical approaches and/or by experiment), either directly or indirectly, have been 

reported.  A number of parameters have been identified to have contributed to u ; e.g., concrete 

strength, '
cf , area of prestressed reinforcement, psA , area of non-prestressed reinforcement, sA , 

span to depth ratio, 0psdL , the effective prestressed, pef , ratio of initial tendon depth to beam 

depth, hd ps0 , the ratio of deviators spacing to the initial tendon depth, 0psd dS , ratio of the 

distance of a concentrated load from the nearest support to the effective beam span, LLs  and so 

on (Harajli et al. 1999, Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991b, Ng 2003).  For 

details, refer to Figs. 1-2. 

 
 

 
 

 
Fig. 1 Strain and stress distributions at critical section of an externally prestressed beam at ultimate flexural 

limit state. (Ng 2003) 
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Fig. 2 Type of loading and configurations of external tendons and deviators (Ng 2003) 

 

 

To predict psf  at ultimate flexural failure, numerical technique (Pisani, 2009), nonlinear 

analysis (Dall’Asta et al. 2007, Zona et al. 2009), rational analysis (Ozkul et al. 2008), and finite 

element analysis (Lou and Xiang 2006, Sivaleepunth et al. 2006, 2007) have been adopted to 

estimate u  analytically.  However, it was argued that the aforementioned analytical solutions 

maybe tedious due to the second-order effects (Harajli et al. 1999, Mutsuyoshi et al. 1995) and 

maybe inconsistent with actual test values (He and Liu 2010, Nataraja et al. 2006, Sivaleepunth et 

al. 2006).  Many tests had been carried out to estimate psf , that is, indirectly estimating, u  

(Alkhairi and Naaman 1993, Ariyawardena and Ghali 2002, Harajli et al. 1999, Lee et al. 1999, 

Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991a, b, Ng and Tan 2006b, Ng 2003).  Various 

statistical tools, e.g., linear regression (Naaman and Alkhairi 1991a) and correlation (Ng 2003), 

were used to approximate u .  These lines of study results in various approximated 

mathematical models which best describe a set of experimental data.  However, it is realized that 

most of these equations may not cover all the parameters that have significant effects on psf  and 

tend to overestimate it. 

 

Instead of using statistical tools in approximating u , soft computing approach is an 

alternative solution to solve this approximation problem.  The soft computing model introduced 

herein is a data-driven harmony search (HS) zero-order single input rule modules (SIRMs)-

connected fuzzy inference system (FIS) hereafter abbreviated as HS-SIRMs connected FIS.  FIS 

model is used because of its interpretability capability to express the behaviour of the system in a 

human understandable way (Jin, 2000).  It is worth mentioning that the use of fuzzy set related 

techniques in civil engineering is new.  It is a popular research direction in the predictions of 

compressive strength (Subaşı et al. 2012) and shear strength (Nasrollahzadeh and Basiri, 2014) of 

concrete.  SIRMs-connected FIS is chosen because of its capability to overcome the issue related 

to the curse of dimensionality when the number of input increases (Yubazaki et al. 1997).  To 

improve the validity of the resulting SIRMs-connected FIS model, additional qualitative 
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knowledge (i.e., monotonicity property) is imposed in the modelling process.  Three non-

dimensionless parameter (i.e., hd ps0 , 0psd dS , and LLs ) are chosen.  HS is then used to 

search for an SIRMs-connected FIS model which best fit the experimental data.  To preserve the 

monotonicity property, monotonicity index (MI) from previous works (Lau, et al. 2013; Tay, et al. 

2012) is used as the constraint of the HS search.  

 

This study is significant because it contributes to a new data-driven SIRMs-connected FIS 

model with monotonicity preserving capability.  A musical-inspired meta-heuristic optimizer (i.e., 

HS) is used to search for a set of parameters that best describe u .  The proposed approach may 

further lead to time saving and cost reduction in externally prestressed beams analysis. 

 

 

2.0 Background 
 

In this section, existing prediction equations for externally prestressed tendon using simplified 

method (i.e., pseudo-section analysis) is described.  This is followed by a review of a SIRMs-

connected FIS, monotonicity index (MI), and HS.  

 

 

2.1 Review of Prediction Equations 
 

Several pseudo-section analysis based u  equations have been developed to evaluate the psf  

and flexural strength of externally prestressed beam (Alkhairi and Naaman 1993, Mutsuyoshi et al. 

1995, Naaman and Alkhairi 1991b, Ng and Tan 2006a, Ng 2003).   

 

Naaman and Alkhairi (1991) proposed that  
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in which psE  is modules of elasticity of tendon; cu  is concrete strain in top tendon at ultimate; 

0psd  is initial depth of the external tendon; c  is depth of neutral axis at critical section at 

ultimate; L  is total span length; pef  and pyf  is effective prestress and yield strength of 

prestressing tendons respectively.   



 

Mutsuyoshi et al. (1995) then modified u  in Naaman’s Equation (Naaman and Alkhairi 

1991a) based on a numerical analysis and introduced a depth reduction factor, dR , to estimate the 

tendon depth at ultimate.  The tendon stress is given as: 
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with the depth reduction coefficient given by 
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and bond reduction coefficient given by  
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where dS  is deviator spacing; b  is beam width of compression zone; dL  is distance between 

loading points; sA , sd , yf  is area, depth and yield strength of tension reinforcement 

respectively; and '
cf  are cylinder compressive strength of the concrete.  

 

Aravinthan et al. (1997) then improved the equation proposed by Mutsuyoshi et al. (1995) 

based on the investigation on simply-supported externally prestressed beams.  The proposed 

equation considered several factors that influenced the second-order effect such as: distance 

between deviators-to-span ratio, LSd , span-to-effective depth ratio, 0psdL , bonded-to-total 

tendon area ratio totpsps AA ,int, .  

The u  is proposed as:  
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with depth reduction factor given as; 
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      loadpoint  onefor  0.1 19.0 005.014.1
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From a series of theoretical and experimental investigations, Ng (2003) showed that the span to 

depth ratio, 0psdL , has insignificant effect on psf .  A new dimensionless parameter, 

0psd dS , is introduced to cater for the second-order effects for longer span beam.  Ng (2003) 

proposed a modified equation for u  using the correlation of average strains in the external 

tendons obtained through the rational analysis based on strain compatibility and force equilibrium 

on externally prestressed beam: 
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with coefficient accounting for second-order effect given as; 
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where h  is beam height and sL  is shear span.  

 

The preceding description have identified several significant non-dimensionless parameters 

(i.e., hd ps0 , 0psd dS , and LLs ) which then served as the basis for prediction of external 

tendon stress, psf , for externally prestressed beams using HS-SIRMs connected FIS model, 

which indirectly approximates the bond reduction coefficient, u . 

 

 

2.2 A general formulation of the Zero-order SIRMs-Connected FIS 
 

A relatively new fuzzy inference model, SIRMs-connected FIS model is proposed for multi-

input fuzzy system with n -input (Yubazaki et al. 1997).  Consider a zero-order SIRMs-

connected FIS model with n -input (i.e.,  ; xfy  ), where  nxxxx ,...,, 21  and 

 n
n
jjjn cccAAAwww ,...,,;,...,,;,...,, 21

21
21 .  It consists of n  fuzzy rule modules as in Fig. 3.  

Note that iSIRM   represents the i -th rule module, where ix  is the sole variable in the 

antecedent, where ni , ... 2, 1, .  ij
iR  is the j -th rule in iSIRM  , where imj , ... 2, 1, , 

while ij
ic  is a variable output value in the consequent part.  A fuzzy rule ij

iR  can be viewed as 



a mapping from ij
iA  to ij

ic .   
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Fig. 3 Fuzzy rules for a zero-order SIRMs-connected FIS model 

 

 

The output of iSIRM  , i.e.,  ii xy  is obtained using Eq. (10).  The membership function 

(MF) for ij
iA  is denoted as  i

j
i xi .  The final inference result of SIRMs-connected FIS is 

obtained by a weighted sum of rule modules, as in Eq. (11).  In which iw  reflects the relative 

importance of the iSIRM   which is defined according to the contribution of the input item to the 

system performance.   
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2.3 A Monotonicity Index (MI) for Zero-order SIRMs-Connected FIS 
 

Let  xf  denote as n -input zero-order SIRMs-connected FIS model, where 

  nn XXXxxxx  ...,...,, 2121 .  The i -th input in x  is represented by ix  is excluded 

from s , i.e., xs  ; sxi  .  The definition for monotonicity of  xf  can be formally written 

as:  

 

Definition 1  An SIRMs-connected FIS model is said to fulfill the monotonicity increasing or 

decreasing property between its output, y , and its input, ix , when y  monotonically increases 

or decreases respectively, as ix  increases, i.e.,    ',, ii xsfxsf   or    ',, ii xsfxsf  , 

respectively, where iii Xxx  ' .   

 

The proposed procedure for MI is summarized as follows: 



 

(i) Determine the upper and lower limits of the universe of discourse for ix , and denote as ix  

and ix respectively. 

(ii) Divide ix  domain to in  divisions.  Determine the grid size of ix ,   iiii nxxs  . 

(iii) Compare each pair of  
isiii nsxy   and   1

isiii nsxy  with a function denote as 

  
isiii nsxymonotone   .  Eq. (12) or Eq. (13) is adopted for a monotonic increasing or 

decreasing relationship respectively.  
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(iv) Obtain the MI between iy  and ix  for an SIRMs-connected FIS model using Eq. (14) 
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2.4 Harmony Search (HS) Algorithm 
 

The SIRMs-connected FIS model is then optimized using a music-inspired meta-heuristic 

optimizer (i.e., HS).  The HS is conceptualized using the musical process of searching for a 

perfect state of harmony.  HS is chosen because it does not require initial values for the decision 

variables.  Besides, it uses a stochastic random search based on the memory considering rate 

(HMCR) and the pitch adjusting rate (PAR) so that derivative information is unnecessary (Geem et 

al. 2008, Geem et al. 2001).  Consider an optimization problem with m  variables (i.e., 

 mzzzz ,...,, 21 ).  The aim is to search for a set of z  in such that  zg  is optimized.  Fig. 4 

summarizes the optimization procedure for HS. 

 

 

 

 

 

 

 

 



Begin 

Define objective function  zg ,  Tmzzzz ,...,, 21  and  

Define harmony memory size (HMS), harmony memory considering rate (HMCR), 

pitch adjusting rate (PAR), and termination criterion (maximum number of search) 

Generate Harmony Memory (HM) with random harmonies 

while  iterations ofnumber max  t  

while   variablesofnumber  i   

if  PARrand  , choose a value from HM for the variable   

if  PARrand  , adjust the value by adding certain amount 

end if 

else Choose a random value 

end if 

end while 

Accept the new harmony (solution) if better  

end while 

Find the current best solution 

end 
 

Fig. 4 Pseudo code for HS algorithm (Geem et al. 2001) 

 

 

3.0 Proposed Framework 
 

In this section, the HS-SIRMs connected FIS model is expressed as a constraint optimization 

problem.  In this study, the non-dimensional parameters considered are: hd ps0 , 0psd dS , and 

LLs . 

 

 

3.1 The Zero-order SIRMs-Connected FIS for Estimating u  

 

A zero-order SIRMs-connected FIS model with three inputs (i.e.,  ; xfu  , where 

 LLdShdx spsdps  , , 00  and   is the parameters describing the model is considered.  It 

consists of three fuzzy rule modules as in Fig. 5, i.e., 3 2, 1,i .  hdSIRM ps0  represents the 

hd ps0  rule module, where 1

1

j
A  is the sole variable in the antecedent.  ijR1  is the ij -th rule in 

hdSIRM ps0 , where ii mj  , ... ,2 ,1  and ijc1  is a numerical output in the consequent or fuzzy 

singleton.  Thus, a fuzzy rule ijR1  can also be viewed as a mapping from 1
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j
A  to ijc1 , i.e., 
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Fig. 5 Fuzzy rules for a zero-order SIRMs-connected FIS model 

 

 

The zero-order SIRMs-connected FIS model is written as Eq. (15). 
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3.2 Monotonicity Index (MI) 
 

The monotonicity relationship between the inputs and output of the zero-order SIRMs-

connected FIS model can be observed from experiments.  It is generally agreed that when 

hd ps0  increases, u  increases.  Besides, when 0psd dS  and LLs  increase, u  

decrease (Ng, 2003).  An input  LLdShdx spsdpsi  , , 00  is considered, the proposed 

procedure is summarized as follows:  

 

(i) Determine the upper and lower limits of the universe of discourse for ix , and denote as ix  

and ix respectively. 

(ii) Divide ix  domain to in  divisions.  Determine the grid size of ix ,   iiii nxxs  . 

(iii) Compare each pair of  
ii siiu nsx   and   1

ii siiu nsx  with a function denote 

as   
ii siiu nsxmonotone   .  Eq. (16) or Eq. (17) is adopted for a monotonic 

increasing or decreasing relationship respectively.  
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(iv) Obtain the MI between 
iu  and ix  for an SIRMs connected FIS model using Eq. (18) 
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In this paper, iMI  is preprocessed with Eq. (19) 
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3.2 A Monotonicity Preserving HS-SIRMs Connected FIS Model for Estimating u  

 

A HS-SIRMs connected FIS model, i.e.,  ; xfu  , is considered.  A system 

identification problem attempts to determine a set of ' , in such a way that  '; xf  best 

represents a system when it is observed by j  desired input-output pairs of data, i.e.,  
kukx , , 

where       
kskpsdkpsk LL,dS,hdx 00 , jk , ... 2, 1, .  Fig. 6 shows the schematic diagram 

of parameter identification for an HS-SIRMs connected FIS.   

 

 

  

Fig. 6 Proposed model 
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A data set composed of j  desired input-output pairs  
kukx , , where jk  ..., ,3,2,1 , is used 

to construct an HS-SIRMs connected FIS model.  The inputs (i.e., hd ps0 , 0psd dS , and LLs ) 

is applied to both the system and the HS-SIRMs connected FIS model, while the square of the 

difference between the target system output (i.e., u ) and the model output (i.e., û ), is 

 2ˆ
uu  .  The total of  2ˆ

uu   for the j  set of data is used to give an indication of 

how near the FIS model with the target system.  The constrained optimization problem is 

formulated as Eq. (20): 
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Subjected to 1' iMI , in which  3 2, ,1i  

 

Thereafter, the objective function to be minimized by HS is as shown in Eq. (21). 
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where w  is a weightage constant.  

 

 

4.0 Model Development 
 

4.1 Data Collection 
 

A total of 27 beams  27j from experimental investigations were used to examine the 

applicability of the proposed model in estimating psf  and psf  of the externally prestressed 

beams and hence u .  The flexural strength of the beams were analysed based on strain 

compatibility and force equilibrium on beams reported in Table 1 and Figs. 1-2.  These beams 

were: (i) Series T, ST, and SR beams with straight tendons, tested under third-point loading in (Ng 

2003); (ii) Series M beams with an effective span of 5200 mm and draped tendons, tested under 

two symmetrical loads spaced at 900 mm apart by (Mutsuyoshi et al. 1995) and (iii) Series Y with 

an effective span of 4000 mm and straight tendons, tested under two symmetrical loads spaced at 

600 mm apart (Yaginuma 1995).  Data used in this paper is obtained from (Mutsuyoshi et al. 

1995, Ng 2003), as summarized in Table 1. 

 

 
Table 1. Parameter for predicting bond reduction equation [18-21] 

Beam No 0psd dS
 

hd ps0
 

LLs  psf
 psf

 

M-1 7.2000 0.7692 0.4135 357.4000 1347.6000 

M-2 12.0000 0.7692 0.4135 341.5000 1331.7000 



NA-1 3.5211 0.7100 0.4250 179.2000 670.3000 

OA-1 14.2349 0.7025 0.4250 160.9000 651.8000 

SA-1 2.1127 0.7100 0.4250 187.8000 676.7000 

SR1 0.0000 1.1000 0.3333 815.5000 1784.5000 

SR2 0.0000 1.1000 0.3333 602.6000 1647.6000 

SR3 0.0000 1.1000 0.3333 422.4000 1809.4000 

SR4 0.0000 1.1000 0.3333 426.6000 1737.6000 

SR5 0.0000 0.7000 0.3333 621.3000 1704.3000 

SR6 0.0000 0.7000 0.3333 360.7000 1462.7000 

ST-1 0.0000 0.6667 0.3333 443.2000 1207.6000 

ST-2 0.0000 0.6667 0.3333 380.9000 1152.1000 

ST-2C 0.0000 0.6667 0.3333 330.2000 1099.3000 

ST-2P 0.0000 0.6667 0.5000 259.2000 1017.7000 

ST-3 0.0000 0.6667 0.3333 409.2000 1159.6000 

ST-4 0.0000 0.6667 0.3333 366.2000 1122.7000 

ST-5 0.0000 0.6667 0.3333 269.6000 1029.9000 

ST-5A 10.0000 0.6667 0.3333 376.0000 1137.7000 

ST-5B 7.5000 0.6667 0.3333 412.4000 1154.2000 

T-0 15.0000 0.6667 0.3333 410.8000 1707.5000 

T-0A 22.5000 0.6667 0.3333 260.7000 1005.1000 

T-0B 30.0000 0.6667 0.3333 224.0000 965.9000 

T-1 0.0000 0.6667 0.3333 589.5000 1786.0000 

T-1A 0.0000 0.8333 0.3333 810.9000 1137.6000 

T-1D 0.0000 0.8333 0.3333 954.9000 1242.8000 

T-2 5.0000 0.6667 0.3333 527.5000 1709.4000 

 
 
4.2 Simulation  
 

In the simulation, Gaussian membership function (MF) is used.  It is further assumed that 

there are five Gaussian MFs for each of the non-dimensional parameter. The parameters setting for 

HS-SIRMs connected FIS model is depicted in Table 2.  

 

 
Table 2 Parameter setting used for the simulation 

Parameter Setting 

Harmony memory size (HMS) 30 

Harmony consideration rate (HMCR) 0.90 

Pitch adjusting rate (PAR) 0.20 

Number of iterations 10,000 



Number of inputs, N 3 

Number of MF for each input 5 

Grid size for MI, in  1000 

Weight, w  0; 1,000,000 

 

 

5.0 Results and Discussions 
 

5.1 Comparison with Previous Equations 
 

Fig. 7 show the plot for  predictedpsf  versus  alexperimentpsf and  predictedpsf  

versus  alexperimentpsf  in externally prestressed tendons between the existing prediction 

equations (Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991a, Ng 2003) and the proposed model.  

It is observed that most of the existing prediction equations can reasonably predict psf , but they 

tend to overestimate psf , except for Ng (2003) which underestimates psf , and showed the 

scattering phenomenon far from the perfect line.  Besides, it is observed that the existing 

prediction equations (Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991b, Ng 2003) tend to give 

inconsistent and unconservative results in predicting psf  and psf .   

 

Table 3 further shows the results of the correlation between the experimental results (Alkhairi 

and Naaman 1993, Mutsuyoshi et al. 1995, Ng 2003) and the proposed model with and without 

considering monotonicity property for beams listed in Table 1 and the predicted values.  The HS-

SIRMs connected FIS model is first tested with the data from Table 1 without considering MI as a 

constraint.  The study shows a relatively good coefficient correlation of 0.8468 and 0.9538 

respectively for psf , and psf  in the external tendons at ultimate, with relatively less variability 

compared to the other proposed equations (Naaman and Alkhairi, 1991b; Mutsuyoshi et al. 1995; 

Ng 2003).   

 

 

Table 3 Correlation of test results and theoretical predictions for psf  and psf  

Methodology 

Stress increase, psf  Ultimate stress, psf  

Correlation 

Coefficient 

Variability within 

95% confidence 

Correlation 

Coefficient 

Variability within 

95% confidence 

Proposed Without MI 0.8468 0.0874 0.9538 0.0321 

Proposed With MI 0.7815 0.1097 0.9262 0.0404 

Naaman (Naaman and 

Alkhairi, 1991b) 

0.7356 0.1572 0.8661 0.0563 

Mutsuyoshi (Mutsuyoshi 

et al. 1995) 

0.7228 0.1610 0.8613 0.0569 

Ng (Ng 2003) 0.8573 0.0971 0.9532 0.0308 

 

 



 
(a) Experimental psf  versus predicted psf  

 
(b) Experimental psf  versus predicted psf  

Fig. 7 Comparison of experimental results with predicted values 
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5.2 Comparison between Model with and without MI  
 

An evaluation of HS-SIRMs connected FIS model with and without MI as a constraint was also 

carried out in this study.  It is observed that although HS-SIRMs connected FIS model without 

MI yields better correlations and less variability compared to other researchers as in Table 3, the 

monotonicity property of the model is not preserved as shown in Fig. 8.  To improve the validity 

of the model, MI is considered as a constraint to the HS-SIRMs connected FIS model.  It is 

identified that the model yields slight increase in correlation coefficient value and variability but 

the monotonicity property of the model is fulfilled as depicted in Fig. 8.  

 

Fig. 8 shows in detail the surface plot for the HS-SIRMs connected FIS model with and without 

MI as a constraint.  By considering 0psd dS  to be constant (i.e., 120 psd dS ), it is observed 

that when the ratio of hd ps0  increases, the observed output increases monotonically; when the 

ratio of LLs  increases, the observed output decreases monotonically.  Furthermore, when the 

ratio of hd ps0  is kept to be constant (i.e., 0.70 hd ps ), the increased in the ratio of 0psd dS  

and LLs  caused the observed output to decrease monotonically.  Eventually, when the ratio of 

LLs  is kept constant (i.e., 0.4LLs ), the increase in the ratio of 0psd dS  causes the observed 

output to decrease, while the increase in the ratio of hd ps0  causes the observed output to 

increase monotonically.   

 

Without MI as a constraint With MI as constraint 

  

(a) Surface plot for 120 psd dS  



  
(b) Surface plot for 7.00 hd ps  

  

(c) Surface plot for 4.0LLs   
 

Fig. 8 Surface plots for the effects of MI to HS-SIRMs connected FIS model 

 

 

6.0 Conclusions 
 

In this paper, HS-SIRMs connected FIS model is proposed in a data-driven FIS model. The 

objective function is formulated as a constrained optimization problem.  A HS optimization 

procedure is then used to search for a set of variables that obey the monotonicity property as the 

sufficient conditions.  Experiments are conducted with data obtained from the u  developed by 

other researchers to study psf  and psf  in externally prestressed beams. The results show that 

the proposed approach is useful to generate a HS-SIRMs connected FIS model with HS 

optimization procedure for the predicting u  and hence psf  and psf with acceptable 

computation complexity and error.  

 

The parametric study was carried out for determining psf  and psf  in externally prestressed 

beams.  The influential non-dimension parameters include (i) hd ps0 ; (ii), 0psd dS ; and (iii) 

LLs  were examined by HS-SIRMs connected FIS model analysis.  The proposed model overall 

provides a better correlation for predicting psf  and psf  compared with other existing 

prediction equations while preserving the monotonicity property of the model.   
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