
MLP Neural Networks

Using Octave NN

Package
Nung Kion, Lee

Faculty of Cognitive Sciences and Human Development

UNIVERSITI MALAYSIA SARAWAK

Introduction

 Octave provides a simple neural network package to construct the Multilayer

Perceptron Neural Networks which is compatible (partially) with Matlab.

 Only feedforward backprogation neural network is implemented.

 Only one training algorithm is available (the Levenberg-Marquardt)

Steps of Using Neural Networks as Classifier

Prepare input-

output patterns

Pre-processing

data

Creating Neural

Network classifier

Training/cross

validation

Testing for

performance

Steps in creating NN in Octave

Pre-processing

• standardize inputs and

outputs (if necessary).

• E.g. normalization

• prestd function

Divide data into

train, cross

validation, test
Use subset function or own

coding

,

Create the neural

network structure

newff function

Train the neural

network

train function

Predict class of

inputs of test

dataset

sim function

Take Note!!!

 In Octave, the training, test, or

validation data must be prepared in

columns. That is the rows are features

and the columns are training input

patterns.

 The target patterns/desired output of

corresponding to input patterns must

be arranged in columns as well.

Input-output patterns format for Octave NN

package Input Target

Input

Target

Examples of Iris data

Input output pairs for

Octave NN

Exercise 1

 Download the iris.data from Morpheus and extract the input and output

patterns into inputdata and outputdata respectively.

 Prepare the inputdata and outputdata in the format suitable for Octave NN

input.

Min_Max Function

 Pulangkan nilai minimum dan maximum setiap baris dalam matrix untuk

kegunaan fungsi newff.

Exercise 2

 Use the min_max function to determine the min and max value of each

feature value of the iris dataset you have loaded into Octave workspace in

Exercise 1.

 Record your result.

subset function

 Use to divide dataset into train, test and cross-validation.

 Recall that cross-validation data is used during training to achieve generalization.

 Reference: http://octave.sourceforge.net/nnet/function/subset.html

 Syntax:

[mTrain, mTest, mVali] = subset (mData,nTargets,iOpti,fTest,fVali)

mData – the complete training data with input and output values. E.g. in iris data, the mData is a 7

x 150 matrix (4 inputs and 3 outputs).

nTargets – the number of outputs (e.g. 3 in iris data).

iOpti – randomize the columns of data (permute). 0- No; 1 or 2 – Yes (see ref)

fTest – percentage of data use for testing (default is 1/3 of data)

fVali – percentage of data use for cross-validation (default is 1/6 of data).

http://octave.sourceforge.net/nnet/function/subset.html
http://octave.sourceforge.net/nnet/function/subset.html
http://octave.sourceforge.net/nnet/function/subset.html

Exercise 3

Note that: the value of fTest + fVali < 1. If fTest + fVali = 1, then no data for

training. It is suggested to use the default.

E.g.: [mTrain, mTest, mVal] = subset(mData,1);

returns three subsets mTrain – 0.5, mTest – 1/3 and mVal – 1/6 of the mData

without random shuffling. mData has one output value.

Load the iris.data into mData variable. Create train, test, validation

subsets with 0.6, 0.2, 0.1 percentage. Verify your subsets using the size

command on the produced subsets.

Standardization of inputs

 Read the following articles to understand why standardization of input feature

values.

1. http://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-

the-input-for-an-artificial-neural-network

2. http://stats.stackexchange.com/questions/7757/data-normalization-and-

standardization-in-neural-networks

3. ftp://ftp.sas.com/pub/neural/FAQ2.html#A_std

 Standardization converts feature values to have zero mean and standard deviation

is 1.

 We can standardize both input feature values and/or target values depending on

the data used.

 The prestd is available by Octave for standardization which syntax can be found at

http://dali.feld.cvut.cz/ucebna/matlab/toolbox/nnet/prestd.html?cmdname=prestd

http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks
http://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks

Exercise 4

 Standardize the input values of iris data you have loaded.

 Check the result for correctness.

Creating MLP neural networks

The MLP NN implemented by Octave is very limited. It only support the

Levenberg-Marquardt (LM) backpropagation training algorithm, not the gradient

descent method discussed in the class.

See

http://nopr.niscair.res.in/bitstream/123456789/8460/1/IJEMS%2012(5)%20434-

442.pdf

for LM training method.

http://nopr.niscair.res.in/bitstream/123456789/8460/1/IJEMS 12(5) 434-442.pdf
http://nopr.niscair.res.in/bitstream/123456789/8460/1/IJEMS 12(5) 434-442.pdf
http://nopr.niscair.res.in/bitstream/123456789/8460/1/IJEMS 12(5) 434-442.pdf
http://nopr.niscair.res.in/bitstream/123456789/8460/1/IJEMS 12(5) 434-442.pdf

Syntax for creating MLP NN

net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description

PR - R x 2 matrix of min and max values for R input elements.

Si - Size of ith layer, for Nl layers.

TFi - Transfer function of ith layer, default = 'tansig'.

BTF - Backprop network training function, default = 'trainlm'.

BLF - Backprop weight/bias learning function, default = 'learngdm'.

PF - Performance function, default = 'mse'. Means square error.

and returns an N layer feed-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as tansig, logsig, or purelin.

The net is a struct data type (e.g. struct in c++).

Newff example

 Here is a problem consisting of inputs P and targets T that we would like to

solve with a neural-network.

P = [0 1 2 3 4 5 6 7 8 9 10]; #one input with eleven examples

T = [0 1 2 3 4 3 2 1 2 3 4]; #one output

 Here a two-layer feed-forward network is created (one hidden layer, one

output layer). The network's input ranges from [0 to 10]. The first layer has

five tansig neurons, the second layer has one purelin neuron. The trainlm

network training function is to be used.

MLPnet = newff([0 10],[5 1],{'tansig' 'purelin'}); or

MLPnet = newff([0 10],[5 1],{'tansig' 'purelin'},’trainlm’,’learngdm’,’mse’);

 MLPnet = newff([0 10],[5 1],{'tansig' 'purelin'});

tansig

purelin

Hidden

layer

Output layer Input

layer

Pay attention to which activation function

to be used for output neurons.

Different activation functions have

different output range values. E.g. tansig

is -1 to 1 and logsig is 0 to 1.

Training the neural network

[net,tr,out,E] = train(MLPnet,mInputN,mOutput,[],[],VV);

 left side arguments:

 net: the trained network of the net structure MLPnet

 right side arguments:

 MLPnet : the untrained network, created with newff

 mInputN: normalized input matrix

 mOutput: output matrix (normalized or not)

 [] : unused parameter

 [] : unused parameter

 VV : validation data as struct. VV has two members:

 VV.P and VV.T. VV.P is the validation input data. VV.T is the validation target output.

Training neural network (continue)

Example:

 Suppose using Iris data.

[Traindata, Testdata, Validation] = subset(Inputdata, 3,1, 0.4, 0.1);

VV.P = Validation(1:4, :); #first four rows are input features

VV.T = Validation(5:7, :); #5th to 8 rows are target output values

trainsubset = Traindata(1:4, :);

traintarget = Traindata(5:7, :);

trainednet = train(MLPNet, trainsubset, traintarget, [], [], VV);

Training will stop once one of the stopping criteria is met (see next slides).

Training neural network (continue)

 The training parameters are stored in the neural network trainParam struct.

 Default values for trainParam are:

 net.trainParam.epochs = 100; #number of epochs

 net.trainParam.goal = 0; #minimum means square error to achieve

 net.trainParam.max_fail = 5;

 net.trainParam.min_grad = 1.0000e-010; #gradient of the mse graph

 net.trainParam.show = 50; #show mse every 50 epochs

 net.trainParam.time = Inf; #maximum training time in seconds

 net.show = 50; #how frequent the mse is displayed in training progress
graph?

max_fail: Validation vectors are used to stop training early if the network
performance on the validation vectors fails to improve or remains the same for
max_fail epochs in a row.

Training neural networks (continue)

 Training stops when any of these conditions occurs:

 The maximum number of epochs (repetitions) is reached.

 The maximum amount of time is exceeded.

 Performance is minimized to the goal.

 The performance gradient falls below min_grad.

 Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

Training Neural Networks (continue)

You should change the trainParam before using the train function to be effective.

E.g.:

MLPNet.trainParam.epochs = 500; #change maximum epochs to 500

MLPNet.trainParam.goal = 0.01; #stop training if mse is <= 0.01

trainednet = train(MLPNet, trainsubset, traintarget, [], [], VV);

Test trained neural networks

 To test the trained neural network use the sim function

 Syntax:

netoutput = sim (net, mInput)

net : trained neural network using train function

mInput: standardized test input values

Exercise 5

 Download the mlpnn.m file from Morpheus and run the program in Octave.

 Please also download the input data file mData.txt.

 The input data has 13 columns: 12 inputs and 1 output.

 Put the mData.txt and mlpnn.m in the same folder.

 Read through the codes carefully and modify the training parameters.

1. Change the neural networks number of hidden neurons.

2. Run the network several times and observe the training progress graph.

3. Change the trainParam with different values. Make sure suitable values are

used.

Exercise 6 – Using Iris.data

 Create a suitable neural network for the Iris.data file.

 Create suitable train, test, validation subsets.

 Train the neural networks using suitable parameters.

 Determine the accuracy of the neural network you have created.

