

COMPARISON OF MARSHALL MIX PROPERTIES BETWEEN NORMAL ACW14 HOT MIX ASPHALT MIXTURE AND ACW14 WITH CARBIDE LIME AS FILLER REPLACEMENT MATERIAL

AZIZAH UMMIRA BT HJ ABOT

Bachelor of Engineering with Honours (Civil Engineering) 2010

UNIVERSITI MALAYSIA SARAWAK

BORANG PENGESAHAN STATUS TESIS				
Judul: <u>COMPARISON OF MARSHAI</u>	L MIX PROPERTIES			
BETWEEN NORMAL ACW14 HOT M	IIX ASPHALT MIXTURE AND			
ACW14 WITH CARBIDE LIME AS F	ILLER REPLACEMENT			
MATERIAL				
SESI PENGAJIAN	:2009/2010			
Saya, <u>AZIZAH UMMIRA BT HJ ABOT</u> (HURUF BE	SAR)			
mengaku membenarkan tesis * ini disimp. Universiti Malaysia Sarawak dengan syarat-sy	an di Pusat Khidmat Maklumat Akademik, arat kegunaan seperti berikut:			
 Tesis adalah hakmilik Universiti Malaysia Sarawak. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan untuk tujuan pengajian sahaja. Membuat pendigitan untuk membanguankan Pangkalan Data Kandungan Tempatan. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. ** Sila tandakan (√) di kotak yang berkenaan. 				
	it yand berdarjah keselamatan atau kepentingan Malaysia di dalam AKTA RAHSIA RASMI 1972).			
TERHAD (Mengandungi makluma mana penyelidikan dija	t TERHAD yang telah ditentukan oleh organisasi/badan di lankan).			
TIDAK TERHAD				
	Disahkan oleh			
(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)				
Alamat tetap:No.4274, Lrg Cenderawasih 6A2Kpg Semariang Baru Fasa 293050 Kuching, Sarawak93050 Kuching, SarawakEn. Larry ak Silas TirauNama Penyelia				
Tarikh:	Tarikh:			

CATATAN * Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda ** Jika tesis ini SULIT dan TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

The following Final Year Project Report:

- Title : Comparison of Marshall Mix Properties between Normal ACW14 Hot Mix Asphalt Mixture and ACW14 with Carbide Lime as Filler Replacement Material
- Name : Azizah Ummira Bt Hj Abot

Matric No.: 17889

Has been read and approved by:

EN. LARRY SILAS TIRAU Supervisor

Date

COMPARISON OF MARSHALL MIX PROPERTIES BETWEEN NORMAL ACW14 HOT MIX ASPHALT MIXTURE AND ACW14 WITH CARBIDE LIME AS FILLER REPLACEMENT MATERIAL

AZIZAH UMMIRA BT HJ ABOT

This project is submitted in partial fulfilment of the requirements for the degree of Bachelor of Engineering with Honours (Civil Engineering)

> Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2010

"Dedicated to my beloved family..."

ACKNOWLEDGEMENT

I would like to take this opportunity to express a million thanks and appreciation to my final year project supervisor, Mr. Larry ak Silas Tirau for his ideas, support, motivation and guidance along the research. I am greatly indebted to him for his encouragement and incessant help to achieve more than I expected of myself.

My sincere appreciation also extends to lab technicians, Mr. Saiful Edi and Mr. Adha Abd. Wahab and all staffs of Highway and Transportation Laboratory for their guidance and help when using the apparatus and useful technique to conduct test on prepared sample.

To all my dearest friends, thanks for always be there. Last but not least, I would like to convey my appreciation to my beloved parent and brother for always supporting me.

ABSTRACT

Many researchers have been using Marshall Mixture design method for designing Hot Mix Asphalt (HMA) mixtures. The objective of this study is to evaluate the Marshall Mix properties for both types of mixtures using normal aggregate and carbide lime as filler material in ACW 14 mix. One using ordinate aggregate available at UNIMAS civil lab and another one the filler size of 75 µm was replace by carbide lime. The asphalt cement use varies from 4.5% to 6.5% and having penetration grades of 80/100. The mix were compare in term of Marshall Properties such as stability and flow; and volumetric properties are mixture density, Voids Filled with Asphalt (VFA), Voids in Mineral Aggregate (VMA), and Voids in Total Mix (VTM). Study show that the hot mix asphalt for the normal aggregate mix having a greater density but carbide mix having greater stability. The optimum binder content for the normal mix asphalt was 5.67% and 5.63% for the carbide mix. The ACW 14 for the carbide mix does not satisfied JKR requirement for flow, void in total mix and voids in aggregate filled with asphalt mean while the ACW 14 for normal only fail to satisfy the void in total mix and voids in aggregate filled with asphalt.

ABSTRAK

Banyak pengkaji telah menggunakan kaedah rekabentuk campuran Marshall dalam mereka bentukan asfal campuran panas (HMA). Objektif kajian ini adalah untuk menilai parameter ujian Marshall untuk dua jenis sampel yang menggunakan "carbide lime" dan agregat biasa telah digunakan dan dicampurkan dalam campuran asphalt haus ACW 14. Satu menggunakan agregat biasa yng tersedia di makmal sivil UNIMAS. Satu lagi agregat berukuran 75µm digantikan dengan "carbide lime". Kandungan asfal berbeza dari 4.5% ke 6.5% dengan gred penembusan 80/100. Kedua-dua campuran ini dibandingkan dari segi Marshall parameter seperti kestabilan, aliran: dan ciri-ciri volumetric seperti lompang dalam campuran (VTM), lompang dalam agregat (VMA), lompang terisi simen asfal (VFA) dan kekukuhan. Keputusan kajian menunjukan campuran menggunakan agregat biasa mempunyi ketumpatan yang lebih besar tetapi campuran menggunakan "carbide lime" akan mempunyai kestabilan yang lebih tinggi. Kandungan asfal optimum untuk campuran biasa adalah 5.67% manakala 4.67% untuk campuran "carbide lime". ACW14 untuk campuran "carbide lime" gagal menepati piawaian JKR dari segi aliran, lompang dalam campuran (VTM) dan lompang dalam agregat (VFA) manakala campuran agregat biasa gagal nenepati lompang dalam campuran(VTM) dan lompang dalam agregat (VFA) sahaja.

TABLE OF CONTENTS

Content	Page
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
ABSTRAK	iv
TABLE OF CONTENT	v
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF SUBSCRIPTS	xvi

CHAPTER 1: INTRODUCTION

1.1	General	1
1.2	Problem statement	3
1.3	Objectives	3
1.4	Scope of Study	4

CHAPTER 2: LITERATURE REVIEW

2.1	Introd	uction		5
2.2	Hot M	lix Asphalt		6
	2.2.1	Basic Mater	ials in Hot Mix Asphalt	7
		2.2.1.1	Aggregate	7
		2.2.1.2	Asphalt Binder	8
		2.2.1.3	Mineral Filler	9
		2.2.1.4	Gradation Specification for	
			Asphaltic Concrete	9
2.3	Bitum	inous		10
2.4	Prope	rties Consider	ation in Mix Design	11
	2.4.1	Durability o	f HMA	14
	2.4.2	Stability of I	HMA	16
	2.4.3	Impermeabi	lity of HMA	17
	2.4.4	Workability	of HMA	17
	2.4.5	Safety of HM	МА	18
	2.4.6	Fatigue Resi	stance of HMA	18
	2.4.7	Skid Resista	nce of HMA	19
2.5	Altern	ative Materia	ls to be used in Road Construction	19
2.6	Carbio	de Lime		19
2.7	Marsh	all Mix Desig	<u>ș</u> n	20
	2.7.1	Bulk Specifi	c Gravity	20
	2.7.2	Density		21
	2.7.3	Voids in the	Mineral Aggregate	21

CHAPTER 3: METHODOLOGY

3.1	Gener	al		22
3.2	Marsh	all Method of Mix Design		23
3.3	Prepar	ration of S	Sample Aggregate	25
	3.3.1	Aggrega	te Preparation (Sieve Analysis of	
		Coarse a	and Fine Aggregate)	25
	3.3.2	Determi	nation of Aggregate Specific Gravity	29
		3.3.2.1	Determination of Coarse Aggregate	
			Specific Gravity	29
		3.3.2.2	Determination of Fine Aggregate	
			Specific Gravity	31
3.4	Marsh	all Mix D	Design (ASTM D1559)	32
	3.4.1	Asphalt	Binder Selection	33
	3.4.2	Sampler	Preparation	33
	3.4.3	Determi	nation of Specific Gravity for Blended	
		Aggrega	ites	35
		3.4.3.1	Specific Gravity (gmb) Determination	
			for Coarse Aggregates	36
		3.4.3.2	Specific Gravity (gmb) Determination for	
			Fine Aggregates and Carbide Lime	37

3.5	Mix Design of Asphalt Materials	40
	3.5.1 Apparatus	40
	3.5.2 Experimental Procedure	40
3.6	Marshall Stability and Flow Test	43
	3.6.1 Apparatus	43
	3.6.2 Experimental Procedure	43
3.7	Density-Voids Analysis	47
	3.7.1 Specimen	48
	3.7.2 Binder	48
	3.7.3 Aggregate	48
	3.7.4 Mass and Volume of Marshall Specimens	49
	3.7.5 Mass and Volume of Binder	50
	3.7.6 Mass and Volume of Aggregate	50
	3.7.7 Volume of Air in Total Mix (VMA)	51
	3.7.8 Volume of Void-Less Mix	51
	3.7.9 Binder Contents	51
	3.7.10 Bulk Density, (d)	51
	3.7.11 Maximum Theoretical Density, D	52
	3.7.12 Voids in Total Mix, VTM	52
	3.7.13 Voids in Mineral Aggregate, VMA	52
	3.7.14 Voids Filled with Binder, VFA	52
3.8	Interpretation of Marshall Test Data	53
3.9	Determination of Optimum Asphalt Content	54
3.10	Summary	54

CHAPTER 4 : RESULTS

4.1	Introduction		
4.2	Sieve Analysis		
4.3	Aggregate Gradation	57	
4.4	Bulk Specific Gravity of Aggregate	58	
	4.4.1 Bulk Specific Gravity of Coarse Aggregates	59	
	4.4.2 Bulk Specific Gravity of Fine Aggregates	60	
	4.4.3 Mineral Filler Specific Gravity	60	
	4.4.4 Specific Gravity of Asphalt	61	
4.5	Marshall Properties Analysis	61	
	4.5.1 Analysis of Mixture Density	62	
	4.5.2 Analysis of Void in Total Mixture (VTM)	63	
	4.5.3 Analysis of Void Filled with Asphalt (VFA)	64	
	4.5.4 Analysis Void in Mineral Aggregate in the Mix	65	
	4.5.5 Stability Analysis	66	
	4.5.6 Flow Analysis	67	
	4.5.7 Stiffness Analysis	68	
4.6	Determine the Optimum Binder Content	69	
4.7	Comparing the Characteristic with the Jabatan Kerja	69	
	Raya Standard. (JKR/SPJ/1998)		

CHAPTER 5 : DISCUSSION

5.1	Introduction	72
5.2	Hot Mix Asphalt (HMA) modified with Normal	72
	Aggregate and Carbide	

CHAPTER 6 : CONCLUSION AND RECOMMENDATION

6.1	Introduction	75
6.2	Conclusion	75
6.3	Recommendation	77

78

REFERENCES

APPENDIX 80

LIST OF TABLES

Table

Page

Table 2.1	Gradation Limit for Asphaltic Concrete (JKR,2008)	10
Table 3.1	Weight in Percentage of the Aggregate Should Obtain	27
Table 3.2	Minimum Sample Size Requirement for Coarse	30
	Aggregate Specific Gravity Test	
Table 3.3	Weight of Aggregate and Binder the Each in Sample	34
Table 3.4	Stability Correction Table (ASTMD1559)	44
Table 3.5	Test and Analysis Parameter for Asphaltic Concrete	55
Table 4.1	Gradation Limit for ACW14	58
Table 4.2	Bulk Density for Normal and Carbide Mix Specimens	59
Table 4.3	Comparing the JKR Standard (JKR/SPJ/1998) with the	70
	Normal Mix	
Table 4.4	Comparing the JKR Standard (JKR/SPJ/1998) with the	71
	Carbide Mix	
Table 6.1	Comparing the JKR Standards (JKR/SPJ/1998) with the	76
	Normal Mix	

LIST OF FIGURES

Figure

Page

Figure 2.1	The component of an asphalt concrete	12
Figure 2.2	Mass/volume relationships in Asphalt Mix (Atkin,1997)	13
Figure 3.1	Flowchart of test methodology	24
Figure 3.2	Sieving Process Using Mechanical Sieve Shaker	28
Figure 3.3	Aggregate Divided According to Sieve Sizes	28
Figure 3.4	Aggregate was Prepare and Weight Accordingly Before Mix	35
Figure 3.5	Sample was Mix with Asphalt	41
Figure 3.6	Sample was Mix on the Hot Plate	42
Figure 3.7	Sample was Compacted 75 blows for Each Side	42
Figure 3.8	Sample Weighted in Air	46
Figure 3.9	Sample Weighted in Water	46
Figure 3.10	Mass/Volume Relationship in Asphalt Mix (Atkin,1997)	47
Figure 3.11	Sample Result Graph	53
Figure 4.1	Gradation Limit and Mix Design Curve for ACW14	57
Figure 4.2	Maximum Theoretical Density (g/cm ³) vs Asphalt Content (%)	62
Figure 4.3	Void in Total Mix (%) vs Asphalt Content (%)	63
Figure 4.4	Void Filled with Asphalt (%) vs Asphalt Content (%)	64
Figure 4.5	Void in Mineral Aggregate (%) vs Asphalt Content (%)	65

Figure 4.6	Stability (kN) vs Asphalt Content (%)	66
Figure 4.7	Flow (mm) vs Asphalt Content (%)	67
Figure 4.8	Stiffness (kN/mm) vs Asphalt Content (%)	68

LIST OF SYMBOLS

%	percent
°C	Celsius
°F	Fahrenheit
μ	Micron
mm	Millimeter
m	Meter
G _{Sa}	Apparent specific gravity
G _{Sb}	Bulk specific gravity
G _{Sc}	Effective specific gravity
V _B	Volume of constituent binder
М	Mass of specimen
V	Bulk volume of specimen
V _{MM}	Volume of void-less mix
V _A	Volume of air between coated aggregate particles in the mix
M _G	Mass of aggregate
V _G	Bulk volume of aggregate
V _{GE}	Effective volume of aggregate
Wa	Weight of specimen in air (kg)
W_{w}	Weight of specimen in water (kg)
$ ho_{ m w}$	Density of water (= 1000 kg/m3)
\mathbf{W}_{pa}	Weight of specimen and paraffin wax coating in air (kg)

W_{pw}	Weight of specimen and paraffin wax coating in water (kg)
G _p	Relative density of paraffin wax
M _B	Mass of constituent binder
P _{AG}	Binder absorption, % of mass of aggregate
P _B	Binder content, % of total mass of specimen
$ ho_{B}$	Density of binder
$ ho_{G}$	Bulk density of aggregate
m ³	Meter cubic
kg	kilogram
g	Gram

LIST OF SUBSCRIPTS

HMA	Hot Mix Asphalt
VMA	Voids in Mineral Aggregates
VTM	Voids in Total Mix
VFA	Voids Filled with Asphalt Cement
SMA	Stone Matrix Asphalt
OGFCs	Open graded asphalt friction courses
ASTM	The American Society for Testing and Materials
OPC	Ordinary Portland Cement
OAC	Optimum Asphalt Content
SSD	Saturated Surface Dry

CHAPTER 1

INTRODUCTION

1.1 General

Asphalt concrete pavement, or hot mix asphalt (HMA) pavement as it is more commonly called, refers to the bound layers of a flexible pavement structure. For most applications, asphalt concrete is placed as HMA, which is a mixture of coarse and fine aggregate, and asphalt binder. Hot mix asphalt (HMA) is the widely used primarily as paving material for road construction and consists of a mixture of aggregate and liquid asphalt cement, which are heated and mixed in measured quantities.

During World War II, the U.S. Army Corps of Engineers (USCOE) began evaluating various HMA mix design methods for use in airfield pavement design. Motivation for this search came from the ever-increasing wheel loads and tire pressures produced by larger military aircraft.

The most promising method eventually proved to be the Marshall Stability Method developed by Bruce G. Marshall at the Mississippi Highway Department in 1939. Wes took the original Marshall Stability Test and added a deformation measurement (using a flow meter) that was reasoned to assist in detecting excessively high asphalt contents [White, 1985].

Marshall Mix Design was widely use because it had several advantage: Firstly, it was designed to stress the entire sample rather than just a portion of it. Secondly, it facilitated rapid testing with minimal effort. Thirdly, it was compact, light and portable. It produced densities reasonably close to field densities. Lastly, it also cheap to be carries out.

The aggregates size smaller than 75 μ m are call filler. Filler was a very importance element in term of producing high quality of hot mix asphalt. The filler act as the fill up material between the aggregate void and give the maximum contact surface to all the binder aggregate and avoid segregation of aggregate. Suitable amount of filler added in the hot mix asphalt will produce a dense-grade and strong material.

The filler use in the hot mix asphalt must be not rotten in nature and must able to withstand the heavy load of the traffic flow hence normally nature material like limestone dust or river sand will be chosen as a filler material. In this study the filler will be replace by the carbide lime dust. Carbide was chosen because is a hard metal and stable in term of physically and chemistry. Carbide lime mostly exist in gray color since it was a hard metal hence it able to sustain a very high temperature.

1.2 Problem statement

Carbide lime is the byproduct of liquid oxygen processes. Since carbide lime was belong to metal hydroxide family hence it need to be treated before it can be dump safely. In term of sustainable development it is encourage turning the waste into useable material and in this scope of study the carbide was tested its potential for replacing the fine aggregate in the pavement design.

Then normally use fine aggregate were obtain by harvesting limestone or river sand they need to blast down the mountain or dig the big hole near the river just to obtain the sand. When all this activities were done in big scale it will create a big impact to the nearby ecosystem. In term of sustainable development this should be avoid or reduce.

1.3 Objectives

This study is conducted to achieve several objectives. The objectives for this study are to:

- a) Determine the Marshall properties of hot mix asphalt ACW14 by using carbide as a replacement material for filler element.
- b) Compare the Marshall properties of the carbide HMA ACW14 with the normal HMA ACW14