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In this paper, a fuzzy Failure Mode and Effect Analy-
sis (FMEA) methodology incorporating an analogical
reasoning technique is presented. FMEA methodol-
ogy was introduced as a formal and systematic pro-
cedure for evaluation of risk associated with potential
failure modes in the 1960s. Bowles and Peláez [1] pro-
posed a Fuzzy Inference System (FIS)-based Risk Pri-
ority Number (RPN) model as an alternative to the
conventional RPN model. For an FIS-based RPN (a
three-input FIS model), a large set of fuzzy rules are
required, and it is tedious to collect the full set of rules.
With the grid partition strategy, the number of fuzzy
rules required increases in an exponential manner, and
this phenomenon is known as the “curse of dimen-
sionality” or the combinatorial rule explosion prob-
lem. Hence, a rule selection and similarity reason-
ing technique, i.e., Approximate Analogical Reason-
ing Schema (AARS) technique are implemented in a
fuzzy FMEA in order to solve the problem. The exper-
iment was conducted using a set of data collected from
a semiconductor manufacturing line, i.e., underfill dis-
pensing process, and promising results were obtained.

Keywords: similarity reasoning, failure mode and effect
analysis, fuzzy inference system

1. Introduction

Failure Mode and Effect Analysis (FMEA) was intro-
duced as a formal design methodology by the aerospace
industry with their well-known reliability and safety re-
quirements [1]. Conventional FMEA has been presented
by either developing a Risk Priority Number (RPN) or
calculating an item criticality number. The RPN model
is used to evaluate the risk associated with each failure
mode in FMEA by multiplication of three factors scores,
i.e., Severity (S), Occurrence (O), and Detect (D).

A fuzzy FMEA methodology incorporating a Fuzzy
Inference System (FIS)-based RPN model allows failure
risk evaluation prioritization to be conducted based on ex-
perts’ knowledge. It aggregates the three factors with an
FIS model and produces a fuzzy RPN score. The relation-
ship between S, O, and D, and RPN is expressed using a

set of fuzzy production rules. There are several reasons
why FIS-based RPN is preferred, instead of the conven-
tional RPN. (1) An FIS-based RPN assumes that the re-
lationship between the RPN score and the S, O, and D to
be non-linear, which may be a better representation than
that of the conventional RPN [1], (2) FIS could be a good
solution against uncertainty and vagueness [1], and (3)
scales used may be qualitative instead of quantitative [2].
From the literature review, fuzzy FMEA has been suc-
cessfully applied to various designs and processes; for ex-
ample, a fishing vessel [3], an auxiliary feed water system
and a chemical volume control system in a nuclear power
plant [4, 5], a semiconductor manufacturing line [6], and
also health care [7].

Over the years, several enhancements have been pro-
posed to improve the fuzzy FMEA methodology. In [8],
a fuzzy rule-based Bayesian reasoning model for prior-
itization of failures in fuzzy FMEA was proposed. A
method to reduce the number of fuzzy rules in fuzzy
FMEA was proposed in [9]. Other advanced FMEA
methodologies are as follows: (1) a fuzzy weighted ge-
ometric mean for risk evaluation was presented and im-
plemented [10]; and (2) fuzzy logic and expert database
were integrated with FMEA for system safety and reliabil-
ity analysis [11]. An Evidential Reasoning (ER) approach
was presented to enhance the multiple attribute decision
analysis in FMEA [12].

Recent advances in fuzzy modeling focus on rule re-
duction [13–16] and similarity reasoning [17–20]. The
former attempts to reduce the fuzzy rules for a better
computation time, storage space, and data collection pro-
cess [13–16]. In [13], a data-driven fuzzy modeling tech-
nique with redundant rules removal and optimization of
structure and parameters was presented. A method to re-
duce fuzzy rule base via singular value decomposition
was proposed in [14, 15]. In [16], rule base reduction
using orthogonal transform was proposed. The latter fo-
cuses on deducing the conclusions for observations in an
incomplete rule base. Approximation Analogical Reason-
ing Schema (AARS) [17] and Fuzzy Rule Interpolation
(FRI) [18–20] are examples of similarity reasoning tech-
niques. In a conventional FIS model, unknown conse-
quents are assumed to be zero where this might not be
true. This phenomenon is known as the “tomato classifi-
cation” [20].
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The aim of this paper is to develop a fuzzy FMEA
methodology with a rule reduction and similarity reason-
ing technique (i.e., an AARS). The rule reduction tech-
nique is used to ease the data collection process. The rule
reduction technique systematically selects a set of rules to
be collected from the engineer. With the rule reduction
procedure, a set of incomplete fuzzy rules that are evenly
distributed over the entire input space is selected. The
AARS is further used to allow the unknown fuzzy rules
to be deduced on the basis of the incomplete rule base.
The antecedents for the unknown fuzzy rules are assumed
to be observations. The AARS is used to deduce conclu-
sions associated with these observations, which are pre-
dictions for unknown consequents. Our proposed method
reduces the time required to collect a full set of the rule
base by collecting the selected rules only. Hence, it eases
the fuzzy FMEA procedure. The proposed fuzzy FMEA
procedure is then evaluated using a set of data collected
from a semiconductor manufacturing line.

This paper is presented as follows: in Section 2, an FIS,
an AARS, and a fuzzy FMEA methodology are reviewed.
Our proposed fuzzy FMEA methodology is explained in
Section 3. Experimental results are discussed in Section 4.
Finally, concluding remarks are presented.

2. Background

2.1. Fuzzy Inference System
A Fuzzy Inference System (FIS) is a popular comput-

ing framework based on the concepts of fuzzy set the-
ory, fuzzy production rules, and fuzzy reasoning. It has
found successful application in a wide variety of fields,
such as in achieving classification tasks, offline process
simulation and diagnosis, online decision support tools,
and process control [21]. An FIS employing fuzzy if-then
rules can model the qualitative aspects of human knowl-
edge and reasoning processes without employing precise
quantitative analyses [22].

Generally, a Fuzzy Production Rule (FPR) has the form
shown below.

IF (x1 is μ j1
1 ) AND (x2 is μ j2

2 ) . . . AND (xn is μ jn
n )

THEN y is B j1 j2... jn

where xn and y are the inputs and output of an FIS, re-
spectively; μ and B are the input and output linguistic
variables/fuzzy sets, respectively.

The estimated score can be obtained by using a simpli-
fied FIS, as given in Eq. (1).

y =
jn=Mn

∑
jn=1

· · ·
jn=M2

∑
jn=1

jn=M1
∑

jn=1
μ j1

1 (x1)×μ j2
2 (x2)×···μ jn

n (xn)×b
j1 j2... jn

jn=Mn

∑
jn=1

· · ·
jn=M2

∑
jn=1

jn=M1
∑

jn=1
μ j1

1 (x1)×μ j2
2 (x2)×···μ jn

n (xn)

. . . . . . . . . . . . . . . . . . (1)

where

b j1 j2... jn = rep(B j1 j2... jn) . . . . . . . . . (2)

rep(B j1 j2... jn) is a representative value of B j1 j2... jn . It
represents the overall location where B j1 j2... jn is. In this
paper, rep(B j1 j2... jn) is the point where the membership
function value of B j1 j2... jn is 1.

2.2. Review of the Approximate Analogical Reason-
ing Schema (AARS)

Analogical reasoning provides a basic mechanism for
effective connection between a reasoner’s past and present
experiences [23]. This notion is further extended; an
AARS was proposed to allow unknown fuzzy rules to
be deduced from an incomplete rule base in FIS model-
ing [17].

The AARS can be divided into three steps: (i) deter-
mining the similarity measure of an observation with each
antecedent of the known fuzzy rules, (ii) selecting the
fuzzy rule(s) for deducing the conclusion, (iii) finding the
aggregate of conclusions associated with the observation.

In Fig. 1, we explained the concept of predicting nempty
conclusions, (each conclusion associated to an observa-
tion), via the AARS technique from a fuzzy rule base that
comprises of navailable fuzzy rules. The nempty observa-
tions and conclusions are represented as μRi → BRi

, re-
spectively, i = 1,2,3, . . .nempty. The navailable fuzzy rules
are represented as μR j → BR j

, j =1,2,3, . . .navailable.
μRi∩R j

is the area of overlapping between μRi
and μR j

,
as shown in Fig. 2. In step (i), similarity between an ob-
servation and antecedent is determined by their supreme
or the maximum point of the μRi∩R j

, i.e., Sup(Ri ∩R j) =
max(μRi∩R j

). A threshold value λ is adopted to decide
the consequent of the antecedent, BR j

, whether it is to be
or not to be selected for deducing the conclusion,BRi

. In
step (ii), the consequent is selected if Sup(Ri ∩R j) > λ .
In step (iii), representative value of the conclusion of an
observation is calculated using a weighted average in or-
der to obtain the final result as in Eq. (3).

b =
∑k=m

k=1 Sup(Ri ∩Rk)× rep (BRk
)

∑k=m
k=1 Sup(Ri ∩Rk)

. . . . (3)

where Rk is the set of selected fuzzy rules, k ≤ nselected .

2.3. Review of the Fuzzy Failure Mode and Effect
Analysis (FMEA) Methodology and its Risk
Priority Number (RPN) Models

Conventional FMEA determines the RPN score by
multiplying the three input factors which are S, O, and
D, as given in Eq. (4).

RPN = Severity×Occurrence×Detect . . . (4)

The traditional RPN ranking has been well-known for
its application in FMEA but it suffers from several weak-
nesses [1]. FIS-based RPN is introduced as an alternative
to conventional RPN [1]. Instead of simple multiplica-
tion, an FIS model is used to compute the RPN score. S,
O, and D are estimated by experts with reference to scale
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Fig. 1. AARS algorithm.

Fig. 2. Depiction of the antecedents’ overlapping area.

tables, ranging from 1 to 10 based on a commonly agreed
evaluation criteria. Tables 1, 2, and 3 define the scale ta-
ble for S, O, and D respectively. Figs. 3, 4, and 5 show the
membership functions for S, O, and D respectively. The
membership function of S, O, and D are denoted as μS,
μO, and μD, respectively.

Membership functions for RPN are represented as its
representative value. The relationship between S, O, and
D, and RPN is described using a set of fuzzy production
rules. An example of fuzzy production rules is as follows:

Rule 1:

If Severity is Extremely High and Occurrence is Very
High and Detect is Extremely Low, then RPN is High.

Rule 2:

If Severity is Very High and Occurrence is Very High
and Detect is Very Low, then RPN is High.

With the use of grid partition, the number of fuzzy rules
required increases in an exponential manner, and this phe-
nomenon is known as the “curse of dimensionality” or the
combinatorial rule explosion problem. The Risk Priority
Number (RPN) for S, O, and D can be obtained using an
FIS model, as given in Eq. (5).

RPN =
∑MS

a=1 ∑MO
b=1 ∑MD

c=1 μa
S ×μb

O ×μc
D ×Ba,b,c

∑MS
a=1 ∑MO

b=1 ∑MD
c=1 μa

S ×μb
O ×μc

D

(5)

where MS, MO, and MD are the numbers of partition for S,
O, and D, respectively. MS, MO, and MD are 5, 6, and 6,
respectively.

3. The Proposed FIS-Based FMEA
Methodology

Our proposed fuzzy FMEA methodology is summa-
rized in Fig. 6. A detailed description is as follows:

a) The scale tables for S, O, and D are defined.

b) The membership functions for S, O, and D are de-
signed, i.e., μS, μO, and μD, respectively.

c) 50% of the fuzzy rules (i.e., R j) are selected for
data collection. Fuzzy rules are alternatively selected
from the full rule base.
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Table 1. Scale table for severity.

Table 2. Scale table for occurrence.

Table 3. Scale table for detect.
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Fig. 3. Membership function of severity.
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Fig. 4. Membership function of occurrence.
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Fig. 5. Membership function of detect.
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Fig. 6. FMEA with FIS-based RPN model with the AARS technique.

d) R j are collected from the experts (the process engi-
neer).

e) The process is then continued with the prediction of
unknown fuzzy rules Ri, using the AARS.

f) The intention, purpose, goal, and objective of a prod-
uct/process are studied, which are commonly rec-
ognized by interaction among components/processes
and followed by task analysis.

g) Potential failures of the product/process which in-
clude problems, concerns, and opportunity of im-
provement are identified.

h) Effects of failure on other components/next pro-
cesses, operation, customers, and government im-
provement are identified.

i) The potential root causes of potential failures are
identified.

j) The first level method/procedure to detect/prevent
failures of the product/process is conducted.

k) Severity score rating is evaluated.

l) Occurrence score rating is evaluated.

m) Detect score rating is evaluated.

n) RPN is computed using Eq. (5).

o) Return to Step f) if there is any correction.

p) End.
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Table 4. Failure risk evaluation, ranking, and prioritization results of using the fuzzy RPN model
and AARS fuzzy RPN model for the underfill dispensing process.

4. Experiments and Results

Our proposed methodology was evaluated using a set
of data collected from an underfill dispensing process in
a semiconductor manufacturing line. During the under-
fill dispensing process, the bottom side of a silicon die of
a flip chip is encapsulated. The main purpose of this pro-
cess is to couple the chip and substrate over the entire area
of the chip and to reduce the effective thermomechanical
stress on the flip chip interconnections. It also intends to
protect the flip chip interconnections from environmental
effects and absorb harmful alpha particle emissions from
the lead in solders, which can cause errors in logic cir-
cuits [24].

From Tables 1, 2, and 3, the complete rule base is ex-
pected to have 180 rules [5 (S) × 6 (O) × 6 (D)]. In
this experiment, 90 rules are systematically selected. The
other 90 rules are predicted using the AARS.

Table 4 summarizes the failure risk evaluation, i.e.,
the ranking and prioritization results using the FIS-based
RPN model (with selected fuzzy rules only) and the FIS-
based RPN with the AARS (with selected fuzzy rules and
predicted fuzzy rules) of the underfill dispensing process.
The column “Failure No.” summarizes the 26 potential
failure modes. Columns S, O, and D show the three input
ranking/rating describing each failure.

The column “Fuzzy RPN” shows the predicted RPN
score with the FIS-based RPN without the AARS-

predicted rule. “Fuzzy RPN rank” is the ranking of fail-
ure modes with the FIS-based RPN without the AARS-
predicted rule. The column “AARS Fuzzy RPN” shows the
predicted RPN score with FIS-based RPN and the AARS-
predicted rule. Its ranking result is presented in the col-
umn “Fuzzy RPN rank.” For example, for failure No.1,
S = 3, O = 1, D = 1, fuzzy RPN = 1 and fuzzy rank = 1.
The same goes for AARS Fuzzy RPN and its rank.

Figures 7 and 8 depict the surface plot RPN score ver-
sus its input without the predicted rules. Fig. 7 shows the
RPN scores versus O and D at S = 1, and Fig. 8 shows
the RPN scores versus S and D at O = 10. Figs. 9 and 10
illustrate the surface plot RPN score versus its inputs with
the AARS predicted rule. Fig. 9 shows the RPN scores
versus O and D at S = 1, and Fig. 10 shows the RPN
scores versus S and D at O = 10.

From the results obtained, it is observed that the surface
plots for FIS-based RPN without the AARS are fluctuat-
ing. This scenario can be explained as the “tomato classi-
fication problem” [20]. Thus, AARS is adopted to predict
the empty rules. Smoother surface plots are obtained with
the AARS.

It is then noticed that the results for FIS-based RPN
with the AARS do not fulfill the monotonicity property.
For failure number 5, when S = 3, O = 2, and D = 2,
AARS RPN is 148. This value is smaller than that of the
condition where S = 3, O = 2, and D = 1, with the AARS
RPN of 207. The same goes for failure numbers 9, 13, 21,
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Fig. 7. RPN versus occurrence and detect at severity = 1
for the FIS-based RPN without the AARS.
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Fig. 8. RPN versus severity and detect at occurrence = 10
for the FIS-based RPN without the AARS.

22, 23, and 27. This non-monotonicity scenario can also
be observed in Figs. 9 and 10.

5. Conclusions

In this paper, a fuzzy FMEA methodology with the
AARS technique is proposed. Collecting a full rule base is
tedious, and our proposed procedure reduces the rules col-
lected. Our proposed methodology is able to ease the rule
base collection process and reduce the time consumed.
The AARS is further used to predict these uncollected
fuzzy rules. Our empirical results show that without the
AARS, the output has the “tomato classification problem”
and that with the AARS, the results are better. However,
the results still show that FIS-based RPN with the AARS
does not provide a monotonic prediction.

For future studies, the use of fuzzy rule interpola-
tion [18–20] to predict the empty rules will be investi-
gated. Besides, more experiments will be conducted and
other optimization tools, e.g., Particle Swarm Optimiza-
tion (PSO) [25] and Harmony Search (HS) [26], will be
investigated. Monotonicity property in FIS modeling will
also be studied in order to solve the non-monotonicity
problem [2, 6].
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Fig. 9. RPN versus occurrence and detect at severity = 1
for the FIS-based RPN with the AARS.
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Fig. 10. RPN versus severity and detect at occurrence = 10
for the AARS with FIS-based FMEA.
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[18] L. T. Kóczy and K. Hirota, “Size Reduction by Interpolation in
Fuzzy Rule Bases,” IEEE Trans. on Systems, Man, and Cybernetics
– Part B, Vol.27, No.1, pp. 14-25, 1997.

[19] Z. H. Huang and Q. Shen, “Fuzzy interpolation and extrapolation: a
practical approach,” IEEE Trans Fuzzy System, Vol.16, pp. 13-28,
2008.

[20] K. M. Tay and C. P. Lim, “On the Use of Fuzzy Rule Interpolation
Techniques for Monotonic Multi-Input Fuzzy Rule Base Models,”
FUZZ-IEEE 2009, pp. 1736-1740, 2009.

[21] S. Guillaume, “Designing Fuzzy Inference Systems from Data: An
Interpretability-Oriented Review,” IEEE Trans on Fuzzy Systems,
Vol.9, No.3, pp. 426-443, 2001.

[22] J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference
System,” IEEE Trans. on Systems, Man, and Cybernetics, Vol.23,
No.3, pp. 665-685, 1993.

[23] R. P. Hall, “Computational Approaches to Analogical Reasoning:
A Comparative Analysis,” Artificial Intelligence, pp. 39-120, 1989.

[24] R. R. Tummala, “Fundamentals of Microsystems packaging,”
McGraw-Hill Professional, 2000.

[25] J. Kennedy & R. C. Eberhart, “Particle Swarm Optimization,” In
Proc. IEEE Int. Conf. on Neural Networks, Vol.4, pp. 1942-1948,
1995.

[26] Z. W. Geem, “Music-Inspired Harmony Search Algorithm: Theory
and Applications,” Springer, 2009.

Name:
Tze Ling Jee

Affiliation:
Masters Student, Faculty of Engineering, Uni-
versiti Malaysia Sarawak

Address:
94300 Kota Samarahan, Sarawak Malaysia

Name:
Kai Meng Tay

Affiliation:
Lecturer, Faculty of Engineering, Universiti
Malaysia Sarawak

Address:
94300 Kota Samarahan, Sarawak, Malaysia
Brief Biographical History:
2003- Joined Intel Technology Sdn, Bhd., Pulau Pinang, Malaysia
2005- Joined Motorola Technology Sdn, Bhd., Pulau Pinang, Malaysia
2006- Joined Universiti Malaysia Sarawak, Malaysia
Main Works:
• fuzzy modeling
• failure analysis
• monotonicity property
Membership in Academic Societies:
• The Institute of Electrical and Electronics Engineers (IEEE)
• IEEE Computational Intelligence Society

Name:
Chee Khoon Ng

Affiliation:
Professor, Faculty of Engineering, Universiti
Malaysia Sarawak

Address:
94300 Kota Samarahan, Sarawak, Malaysia
Brief Biographical History:
1994- Research Assistant, National University of Singapore
1998- Joined RJ Crocker Consultants Pte, Singapore
1998- Joined Universiti Malaysia Sarawak
Main Works:
• “Tendon Stress and Flexural Strength of Externally Prestressed Beams,”
ACI Structural Journal, Vol.100, No.5, pp. 644-653, Sept.-Oct., 2003.
Membership in Academic Societies:
• The Institution of Engineers, Malaysia

1210 Journal of Advanced Computational Intelligence Vol.15 No.9, 2011
and Intelligent Informatics


