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Preface

Geometric numerical integration has been an active research area for the last three
decades. The subject has redefined numerical analysis. Attention has turned to
the development of numerical methods for particular classes of equations such as,
Hamiltonian dynamical systems, Hamiltonian and multisymplectic partial differen-
tial equations, Poisson systems, Euler-Lagrange equations, etc. Geometric methods
have found their applications in celestial mechanics, rigid body dynamics, molecular
dynamics, geophysical fluid dynamics and statistical mechanics, among others.

Thermostats, deterministic and stochastic, are built upon Hamiltonian structure
to allow trajectories to sample a (possibly modified) Gibbs measure and have been
used as modelling devises in molecular dynamics simulations with great success. As
such, thermostat methods can be viewed as model reduction techniques and may be
applicable to stochastic modelling of unresolved scales or used for development of
closure models with applications in geophysical fluid dynamics and fluid dynamics
in general.

For the interested reader this thesis may serve as motivation, from the appli-
cation point of view, for the use of geometric numerical methods and give some
insights on the particular research areas conducted under this thesis, that is, struc-
ture preserving discretization of the Euler-Boussinesq equations and study of wave
attractors in a confined stratified fluid, stochastic-dynamical thermostat methods
applied to Hamiltonian systems with holonomic constraints and weakly coupled heat
bath models for nonlinear wave equations.

This research was supported by the Netherlands Organisation for Scientific Re-
search (NWO) under project number 613.000.552 and conducted in the Modelling,
Analysis and Computing (MAC) department of the Centrum Wiskunde & Infor-
matica (CWI) in Amsterdam.

Chapters 2 through 4 of this thesis have appeared as published or submitted
journal articles:

Chapter 2 J. Bajars, J. Frank & L.R.M. Maas, “On the appearance of internal
wave attractors due to an initial or parametrically excited disturbance”, Jour-
nal of Fluid Mechanics, in press.

Chapter 3 J. Bajars, J. Frank & B. Leimkuhler, “Stochastic-dynamical thermostats
for constraints and stiff restraints”, The European Physical Journal - Special
Topics 200 (2011), 131-152.
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Chapter 4 J. Bajars, J. Frank & B. Leimkuhler, “Weakly coupled heat bath models
for Gibbs-like invariant states in nonlinear wave equations”, submitted, 2012.

Chapter 1 provides an introduction to geometric numerical integration and ther-
mostated dynamics, and collects much of the background material needed to read
the rest of the thesis.

Janis Bajars
Amsterdam, August 2012



Chapter 1

Introduction to Geometric
Integration and Thermostats
for Hamiltonian Systems

1.1 Geometric numerical integration

In this thesis we are concerned with geometric numerical integration of wave equa-
tions and thermostat methods with applications to molecular dynamics and geo-
physical fluid dynamics. Under geometric numerical integration we understand the
structure preserving numerical methods for the ordinary and partial differential
equations, (ODEs) and (PDEs), respectively. In particular: Hamiltonian dynam-
ical systems and Hamiltonian PDEs, with extensions to the Hamiltonian systems
with holonomic constraints and stochastic differential equations (SDEs), such as
thermostated dynamics. The choice of the geometric integrators in this thesis is
directly related to the underlying structure of Hamiltonian dynamics, i.e. conserved
quantities, symplecticity, volume preservation and time reversibility. Our objective
is to preserve these properties under the numerical integration, in space and time.

We begin our introduction with a motivating example in Section 1.1.1. The
main unifying mathematical concept in this thesis is Hamiltonian dynamics, which
we present in Section 1.1.2. In Section 1.1.3 we consider canonical Hamiltonian
systems from the perspective of classical mechanics. A key property of canonical
Hamiltonian systems, i.e. symplecticity, is described in Section 1.1.4. Extension to
Poisson systems and definition of the Poisson bracket are presented in Section 1.1.5.
In Section 1.1.6 we describe Hamiltonian PDEs. Examples of structure preserving
numerical methods for Hamiltonian PDEs are given in Section 1.1.7. In Section
1.1.8 we describe geometric integrators for Hamiltonian systems and semi-discretized
Hamiltonian PDEs.

Most of the material presented in this section can be found in the following
references: Hairer et al. [37], Leimkuhler & Reich [63], Sanz-Serna & Calvo [105],
Arnold [3], Olver [91], Swaters [107], Golub & van Loan [35], Ortega [93], Durran
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[23], Trefethen [110], Iserles [47], Leveque [66, 67].

1.1.1 Motivation: discrete vs. continuous dynamics

In this subsection we discus and show the importance of structure preserving meth-
ods for conservative dynamical systems and semi-discretized wave equations. Let us
illustrate with a simple example how different numerical integrators effect the qual-
itative nature of the original dynamical system. We consider one of the classical
motivational examples for use of geometric numerical integrators, i.e. the harmonic
oscillator equations:

dx

dt
= y, (1.1)

dy

dt
= −ω2x, (1.2)

where x(t), y(t) : R → R and ω ∈ R+ is a frequency. The system of differential
equations (1.1)–(1.2) is a linear autonomous dynamical system subject to the ini-
tial conditions (x(0), y(0)) = (x0, y0). For any initial condition (x0, y0) ∈ R2 the
analytical solution of (1.1)–(1.2) reads:

(
x(t)
y(t)

)
=

[
cos(ωt) 1

ω sin(ωt)
−ω sin(ωt) cos(ωt)

](
x0
y0

)
. (1.3)

System (1.1)–(1.2) is derived from Newton’s 2nd law of motion and describes
the motion of a bob (point of mass) attached to the elastic spring in a frictionless
environment. Functions x(t) and y(t) := dx

dt stand for the bob’s displacement and
the velocity, respectively, from its equilibrium state (x, y) ≡ (0, 0). This equilibrium
state is also a stationary point of the dynamical system (1.1)–(1.2), i.e. if (x0, y0) ≡ 0
then (x(t), y(t)) ≡ 0 for all times t. In fact, the origin (0, 0) is a unique stationary
point of (1.1)–(1.2) and a center, since eigenvalues of the system matrix of (1.1)–
(1.2) are purely imaginary, i.e. λ = ±ωi. This implies that the solutions are periodic
which can be seen from (1.3) and dynamics is constrained to the periodic orbits in
the phase space R2 of (x, y). Indeed, the function H(x, y) (the total energy of the
system (1.1)–(1.2)) defined by

H(x, y) =
1

2
y2 +

1

2
ω2x2 (1.4)

is invariant under the motion of (1.1)–(1.2), i.e.

dH

dt
= y

dy

dt
+ ω2x

dx

dt
= −ω2yx+ ω2xy = 0,

and for each value of H(x0, y0) > 0 defines the equation for an ellipse in (x, y)
coordinates.

For simplicity we take ω = 1 such that the solution (1.3) is 2π-periodic, i.e. (x(t+
2π), y(t+2π)) = (x(t), y(t)) for all t, and the periodic orbit in phase space is a circle
with center at origin (0, 0) and radius R =

√
2H(x0, y0). We divide time segment
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[0, 2π] in 10 evenly time intervals [tn, tn+1] of length τ = 2π/10 (time step) such
that tn = nτ for n = 0, . . . , 10 and with (xn, yn) we identify the discrete function
values at time tn, i.e. (xn, yn) = (x(nτ), y(nτ)) for n = 0, . . . , 10. We solve system
(1.1)–(1.2) in time till t = 2π with three different iterative time stepping methods,
explicit Euler method (ExE):

xn+1 = xn + τyn, (1.5)

yn+1 = yn − τω2xn, (1.6)

implicit Euler method (ImE):

xn+1 = xn + τyn+1, (1.7)

yn+1 = yn − τω2xn+1, (1.8)

and Störmer-Verlet method (StV):

y∗ = yn − τ

2
ω2xn, (1.9)

xn+1 = xn + τy∗, (1.10)

yn+1 = y∗ − τ

2
ω2xn+1. (1.11)

We choose 5 different initial conditions (x0, y0) = (x0, y0), depicted in Figure 1.1,
which when connected with lines form a star. Different line widths of the stars indi-
cate solutions at different times, with increasing time the line width decreases. The
boldest star indicates the configuration of the initial conditions. Additionally with
dashed circles we indicate the associated periodic orbits for each initial condition.
We plot results every other time step. The analytical solution (1.3) in time is shown
in Figure 1.1(a). The motion of the star is clockwise. Note that the exact solution
at the computational final time, i.e. t = 2π, coincides with the initial condition due
to the periodicity and each vertex of the star stays on the associated periodic orbit,
a circle. In Figure 1.1(b) we plot the solutions of the ExE method (1.5)–(1.6) and
the results are disappointing. Solutions grow in time and the vertices of the star
do not stay on the associated constrained circles. The situation is no better for the
ImE method (1.7)–(1.8), see Figure 1.1(c). The solutions contract towards a single
point, (0, 0). On the contrary, solutions of the StV method (1.9)–(1.11) in Figure
1.1(d) stay close to the associated periodic orbits, except, at the final computational
time the numerical results do not match exactly with the initial conditions. There
is a good explanation for this and it will become clear from the following discussion.

All three numerical methods presented above are one step methods and can be
expressed in general form:

(
xn+1

yn+1

)
= A(ω, τ)

(
xn

yn

)
,

where matrix A(ω, τ) ∈ R2×2 depends on the frequency ω and time step τ . By
iteration it follows that the solution at any time tn is given by

(
xn

yn

)
= A(ω, τ)n

(
x0

y0

)
. (1.12)
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Figure 1.1: Solutions of the harmonic oscillator equations (1.1)–(1.2) with ω=1. (a)
exact solution, (b) numerical solution with the explicit Euler method (1.5)–(1.6),
(c) numerical solution with the implicit Euler method (1.7)–(1.8), (d) numerical
solution with the Störmer-Verlet method (1.9)–(1.11). The progression in time is
indicated with decreasing line widths of the star.

Hence the long time solution of the iterative system (1.12) can be interiorly char-
acterized by the eigenvalues of the matrix A(ω, τ). We find that the eigenvalues of
the matrix A(ω, τ) for the ExE method (1.5)–(1.6) are λ = 1 ± τωi. Since |λ| > 1
for τ, ω > 0, the ExE method is unconditionally unstable method for any time step
τ . This explains why solutions in Figure 1.1(b) grow in time and do not stay on
periodic orbits. The eigenvalues of the matrix A(ω, τ) for the ImE method (1.7)–
(1.8) are λ = (1 ± τωi)/(1 + τ2ω2). Since |λ| < 1 for τ, ω > 0, the origin (0, 0)
is an asymptotically stable point of the method. Hence the ImE method is uncon-
ditionally stable method for any value of τ but solutions will always tend towards
the origin (0, 0). That is what we see in Figure 1.1(c). The eigenvalues for the StV
method (1.9)–(1.11) are λ = a ± τω

√
−(1 + a)/2 where a = 1 − τ2ω2/2. As long

as |τω| ≤ 2 for τ, ω > 0, the eigenvalues are of modulus one, i.e. |λ| = 1. This
implies that the StV method is stable and the magnitude of the solutions do not
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grow nor decay, they stay bounded for all times. This explains results in Figure
1.1(d). Note that the condition |τω| ≤ 2 was satisfied in our computations with
ω = 1 and τ = 2π/10.

Inspection of the eigenvalues of the matrix A(ω, τ) has shown that both methods,
the explicit Euler method (1.5)–(1.6) and the implicit Euler method (1.7)–(1.8), have
changed the dynamical property of the stationary point of the original dynamical
system (1.1)–(1.2). The stationary center point has been changed to a source or
sink, respectively. On the contrary, the Störmer-Verlet method (1.9)–(1.11) has
preserved this property. This will become evident from the following analysis.

With the ansatz of a single frequency ω̂ ∈ R+ wave solution

(x(t), y(t)) = Re(ae−iω̂t, be−iω̂t),

where a, b ∈ C, we derive a so called dispersion relation for the harmonic oscillator
equations (1.1)–(1.2):

ω̂ = ω, b = −iω̂a. (1.13)

This is exactly what we would expect from the analytical solution (1.3). With the
condition |τω| ≤ 2 and the ansatz

(xn, yn) = Re(ae−iω̂nτ , be−iω̂nτ )

we derive a real discrete dispersion relation for the StV method (1.9)–(1.11):

ω̂ =
arccos

(
1− τ2ω2

2

)

τ
→
τ→0

ω, b = −ia sin(ω̂τ)
τ

→
τ→0

−iω̂a. (1.14)

In the limit when τ → 0 we recover the continuous dispersion relation (1.13). From
the discrete dispersion relation (1.14) follows that ω̂ ≥ ω for any τ > 0 satisfying
|τω| ≤ 2. Hence the solutions of the StV method (1.9)–(1.11) oscillate faster than
the original solution (1.3). This explains the mismatch between the exact and the
discrete solutions at the final computational time in Figure 1.1(d). In fact, we can
write down the exact solution of the StV method (1.9)–(1.11) for a fixed value of τ :

x(t) = x0 cos(ω̂t) + y0
τ

sin(ω̂τ)
sin(ω̂t), (1.15)

y(t) = −x0
sin(ω̂τ)

τ
sin(ω̂t) + y0 cos(ω̂t), (1.16)

which in the limit when τ → 0 converges to the analytical solution (1.3). The analyt-
ical solution (1.15)–(1.16) is understood in the sense that (xn, yn) ≡ (x(nτ), y(nτ))
for all n = 0, 1, 2, . . . and for a fixed value τ satisfies the modified harmonic oscillator
equations:

dx

dt
=

ω̂τ

sin(ω̂τ)
y, (1.17)

dy

dt
= −ω̂ sin(ω̂τ)

τ
x, (1.18)
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with a modified energy function

Ĥ(x, y, ω̂(τ), τ) =
1

2

ω̂τ

sin(ω̂τ)
y2 +

1

2
ω̂
sin(ω̂τ)

τ
x2 (1.19)

→
τ→0

H(x, y) =
1

2
y2 +

1

2
ω2x2.

Hence the numerical solution of the Störmer-Verlet method (1.9)–(1.11) preserves
the characteristic property of the original dynamical system (1.1)–(1.2), i.e. the
characteristic of the stationary point. Complimentary, the modified energy function
(1.19) is invariant under the motion of (1.17)–(1.18) and implies that periodic orbits
in phase space of the StV method (1.9)–(1.11) are ellipses.

For further reference we describe the Störmer-Verlet method for the general
partitioned differential equation system:

dx

dt
= f(y), (1.20)

dy

dt
= g(x), (1.21)

where x, y ∈ Rn and f, g : Rn → Rn. The Störmer-Verlet method with time step τ
applied to (1.20)–(1.21) reads:

y∗ = yn +
τ

2
g(xn), (1.22)

xn+1 = xn + τf(y∗), (1.23)

yn+1 = y∗ +
τ

2
g(xn+1). (1.24)

Note that if evaluation of the function f(y) is cheaper compared to the evaluation
of the function g(x), then equivalently one can exchange equation for y with the
equation for x, and vice versa, in method (1.22)–(1.24).

Preservation of the dynamical properties by the StV method applied to the har-
monic oscillator equations (1.1)–(1.2) gives a good motivation to study structure
preserving numerical methods. But do these results extend also to nonlinear dy-
namical systems and semi-discretized PDEs or is it just an artifact of solving linear
differential equations? The answer is positive: yes, and it will become evident from
the following two examples.

We give additional motivation by considering nonlinear autonomous dynamical
system in R2:

dx

dt
= 1− ey, (1.25)

dy

dt
= ex − 3, (1.26)

which are transformed equations of Lotka-Volterramodel in logarithmic coordinates.
Lotka-Volterra models are considered in mathematical biology to model the growth
of animal species. The dynamical system (1.25)–(1.26) has invariant of motion:

H(x, y) = y − ey + 3x− ex, (1.27)
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Figure 1.2: Periodic orbits and numerical solutions of (1.25)–(1.26) with the
Störmer-Verlet method (1.22)–(1.24), τ = 0.01. (a) solutions at times t = 0, 1, 2, 3.
(b) solutions at time t = 50. Progression in time is indicated by decrease in width
of a closed curve connecting the solutions.

i.e.

dH

dt
= (1− ey)

dy

dt
+ (3− ex)

dx

dt
= (1− ey) (ex − 3) + (3− ex) (1− ey) = 0.

The Jacobian matrix of the right hand side vector field of (1.25)–(1.26) and the
Hessian matrix of (1.27) are

J =

[
0 −ey
ex 0

]
, ∇∇H(x, y) =

[
−ex 0
0 −ey

]
, (1.28)

respectively. The system of equations (1.25)–(1.26) has a unique stationary point
(ln 3, 0) which locally is a center, since at this point the Jacobian matrix in (1.28)
has purely imaginary eigenvalues λ = ±

√
3. In fact, the Jacobian matrix has purely

imaginary eigenvalues at each point (x, y) ∈ R2. Since all eigenvalues of the Hessian
matrix in (1.28) are real and negative for each value of (x, y) ∈ R2, the invariant of
motion (1.27) is a concave function and defines periodic orbits in phase space R2

for each given value of H(x0, y0).
We solve the system of equations (1.25)–(1.26) in time with the StV method

(1.22)–(1.24) and set the time step to τ = 0.01. We choose a set of initial conditions
that lie on a circle with center (0,−0.5) and radius 1/

√
3. In Figure 1.2(a) we

plot the initial condition and three numerical solutions after each unit of time,
i.e. at times t = 1, 2, 3. The solution propagates anticlockwise. The progression in
time is indicated by decreasing width of the closed curve connecting the solutions.
Additionally we pick five random initial conditions, indicated with small circles,
and draw the associated periodic orbits to each of these initial conditions. Periodic
orbits were computed from (1.27). In Figure 1.2(b) we show solutions at time
t = 50. Notice that in both Figures 1.2(a) and 1.2(b) each solution indicated by a
small circle stays close to the associated periodic orbit. We saw similar results in
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Figure 1.1(d). In fact, the area enclosed by the curves is preserved in time. We give
rigorous mathematical proof for this in Section 1.1.8.

As for the final example of this motivational subsection we consider the semi-
linear 1D wave equations defined on an open interval (0, 1), the sine-Gordon equa-
tions:

∂u

∂t
= v, (1.29)

∂v

∂t
=
∂2u

∂x2
− sin(u), (1.30)

u(0, x) = f(x), v(0, x) = g(x), (1.31)

u(t, 0) = u(t, 1) = 0, v(t, 0) = v(t, 1) = 0. (1.32)

The initial boundary value problem (1.29)–(1.32) has a conserved quantity along
solutions of the system: the total energy

H =

∫ 1

0

(
1

2
v2 +

1

2

(
∂u

∂x

)2

− cos(u)

)
dx. (1.33)

Straightforward calculations show that

dH
dt

=

∫ 1

0

(
∂v

∂t
v +

∂u

∂x

∂2u

∂xt
+ sin(u)

∂u

∂t

)
dx

=

∫ 1

0

(
∂v

∂t
v − ∂2u

∂x2
v + sin(u)v

)
dx = 0,

where the boundary terms from integration by parts drop out due to the homoge-
neous boundary conditions (1.32).

Our objective is to consider the semi-discretized equations of (1.29)–(1.32) that
preserve the discrete approximation of functional (1.33) and then integrate these in
time with the StV method (1.22)–(1.24) to see if we can preserve this invariant of
motion during a long time simulation. Consider N +1 equally spaced grid points xi
on a segment [0, 1] and the grid size ∆x = 1/N such that xi = i∆x for i = 0, . . . , N .
The time dependent discrete values of functions u and v at each grid point are
defined by ui = u(t, i∆x) and vi = v(t, i∆x), respectively, and their initial values are
defined by u0i = u(0, i∆x) = f(i∆x), v0i = v(0, i∆x) = g(i∆x) for each i = 0, . . . , N .
Dirichlet boundary conditions (1.32) imply that u0 = uN = 0 and v0 = vN = 0 for all
times. Note that the functions f(x) and g(x) should be consistent with the boundary
conditions (1.32), i.e. f(0) = f(1) = 0 and g(0) = g(1) = 0. With x,u,v ∈ RN−1

we define a vector of the grid values xi and vectors of the discrete function values ui,
vi, respectively, for i = 1, . . . , N − 1. The semi-discretized sine-Gordon equations
in a vector form read:

du

dt
= v, (1.34)

dv

dt
= −DT

xDxu− sin(u), (1.35)

u0 = f(x), v0 = g(x), (1.36)
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where f(x), g(x) and sin(u) are understood in pointwise manner. The matrix
Dx ∈ RN×N−1 is a backward finite difference approximation matrix of the first
order spatial derivative ∂

∂x , defined by

(Dxu)1 =
u1
∆x

, (Dxu)i =
ui − ui−1

∆x
, i = 2, . . . , N − 1,

where minus its transpose, −DT
x ∈ R(N−1)×N , defines a forward finite difference

approximation matrix such that

(
−DT

xu
)
i
=
ui+1 − ui

∆x
, i = 1, . . . , N − 2,

(
−DT

xu
)
N−1

=
−uN−1

∆x
.

Notice that we have included the zero boundary conditions u0 = uN = 0 into
the definition of the matrix Dx. The product of two matrices Dxx := −DT

xDx ∈
R(N−1)×(N−1) leads to the classical three point finite difference approximation ma-

trix of the second order spatial derivative ∂2

∂x2 , i.e.

(Dxxu)i =
ui−1 − 2ui + ui+1

∆x2
, i = 2, . . . , N − 2,

(Dxxu)1 =
−2u1 + u2

∆x2
, (Dxxu)N−1 =

uN−2 − 2uN−1

∆x2
.

The matrix Dxx is symmetric and negative definite, and hence possesses an orthog-
onal basis of eigenvectors, i.e. Dxx = QDQT , where QTQ = QQT = IN−1, Q ∈
R(N−1)×(N−1), IN−1 ∈ R(N−1)×(N−1) is an identity matrix and D ∈ R(N−1)×(N−1)

is a diagonal matrix with negative entries. If we would drop the nonlinear term
sin(u) from the equation (1.35) and consider the semi-discretized linear wave equa-
tions

du

dt
= v, (1.37)

dv

dt
= Dxxu, (1.38)

then in new variables û := QTu and v̂ := QTv system (1.37)–(1.38) would reduce
to the decoupled system of harmonic oscillators (1.1)–(1.2), i.e.

dû

dt
= v̂, (1.39)

dv̂

dt
= Dû. (1.40)

This is exactly what we would expect in the continuous case if we were solving a
linear wave equation with the method of separation of variables.

In Section 1.1.7 we explain why the discrete approximation function of the energy
functional (1.33) by the quadrature rule:

H(u,v) =

(
1

2
vTv +

1

2
(Dxu)

T (Dxu)− cos(u)T1

)
∆x (1.41)

=

(
1

2
vTv − 1

2
uT (Dxxu)− cos(u)T1

)
∆x,
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where 1 ∈ RN−1 is a vector of ones, appears to be the conserved quantity along
the solution of the semi-discretized sine-Gordon equations (1.34)–(1.36). From the
symmetry property of the matrix Dxx it follows that

dH

dt
=

(
vT

dv

dt
− (Dxxu)

T du

dt
+ sin(u)T

du

dt

)
∆x

= vT
(
dv

dt
−Dxxu+ sin(u)

)
∆x = 0.

Note that in the linear case the discrete energy (1.41) can be decoupled into the
sum of the associated energies of the harmonic oscillators (1.39)–(1.40), i.e.

H(û, v̂) =
1

2

(
v̂
T
v̂ − ûTDû

)
∆x,

which defines a multidimensional ellipsoid in the phase space R2(N−1).
We study the conservation of energy (1.41) under long time integration with the

Störmer-Verlet method (1.22)–(1.24). We choose N = 100 such that ∆x = 0.01
and take τ = 0.01. We consider smooth initial conditions: f(x) = sin(4πx)e−x,
g(x) = x(x − 1), and perform 106 time steps. In Figure 1.3(a) we plot in time
the absolute value of the relative error of the discrete energy function (1.41). With
H0 := H(u0,v0) we indicate the initial value of the energy. Evidently, the energy
is not exactly conserved in time by the StV method but the errors are small and,
remarkably, stay bounded during the whole computation. In Figure 1.3(b) we plot
the maximum value of the absolute value of the relative error of the energy (1.41)
from the simulations with different time steps τ . For each simulation we keep the
same computational time window, i.e. t ∈ [0, 104]. Figure 1.3(b) shows that the
relative error of the energy decreases by factor 2 with respect to the time step τ .
Hence the energy (1.41) is conserved in time to second order accuracy, i.e.

H(t)−H0 = O(τ2)

for long times t. We will address this property in Section 1.1.8.
To explain the long time approximate energy conservation by the StV method

applied to the semi-discretized sine-Gordon equations (1.34)–(1.36), we require the
mathematical theory that we discus in Section 1.1.8. On the contrary, the analysis of
the StV method (1.9)–(1.11) extends straightforwardly to the linear semi-discretized
wave equations (1.37)–(1.38). The StV method (1.22)–(1.24) applied to (1.37)–
(1.38) in the vector form reads:

(
un+1

vn+1

)
= A(Dxx, τ)

(
un

vn

)
,

A(Dxx, τ) =

[
IN−1 +

τ2

2 Dxx τIN−1

τ
2Dxx

(
2IN−1 +

τ2

2 Dxx

)
IN−1 +

τ2

2 Dxx

]
,

where A(Dxx, τ) ∈ R2(N−1)×2(N−1) and IN−1 ∈ R(N−1)×(N−1) is an identity ma-
trix. From Dxx = QDQT and QQT = QTQ = IN−1 follows

A(Dxx, τ) =

[
Q 0
0 Q

]
A(D, τ)

[
QT 0
0 QT

]
,
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Figure 1.3: Long time integration of the semi-discretized sine-Gordon equations
(1.34)–(1.36) with the Störmer-Verlet method (1.22)–(1.24), ∆x = 0.01. (a) absolute
value of the relative error of the energy (1.41) over the time window [0, 104] with
time step τ = 0.01. (b) maximum value of the relative error of the energy (1.41)
over the computational time window [0, 104] for the different values of the time step
τ .

A(D, τ) =

[
IN−1 +

τ2

2 D τIN−1

τ
2D
(
2IN−1 +

τ2

2 D
)

IN−1 +
τ2

2 D

]
,

where A(D, τ) ∈ R2(N−1)×2(N−1) is a block matrix of diagonal matrices. Since

A(Dxx, τ)
n =

[
Q 0
0 Q

]
A(D, τ)n

[
QT 0
0 QT

]
,

in new variables ûn := QTun and v̂n := QTvn the StV method (1.22)–(1.24)
applied to (1.37)–(1.38) reduces to the StV method applied to the decoupled system
of harmonic oscillators (1.39)–(1.40), i.e.

(
û
n

v̂
n

)
= A(D, τ)n

(
û
0

v̂
0

)
.

The analysis of the StV method (1.9)–(1.11) follows for each pair (ûi, v̂i) with
stability condition

∣∣∣τ max
i

{√
|di|
}∣∣∣ ≤ 2, di =

2

∆x2
(cos(πi∆x)− 1), i = 1, . . . , N − 1,

where di is the i
th diagonal element of the matrix D.

This completes the motivational subsection where we considered three conserva-
tive model equations: the harmonic oscillator equations (1.1)–(1.2), the transformed
Lotka-Volterra model (1.25)–(1.26) and the semi-discretized sine-Gordon equations
(1.34)–(1.36). For the harmonic oscillator equations we showed that numerical meth-
ods can destroy or preserve the characteristic properties of the dynamical system
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and this motivates us to study and use structure preserving numerical methods for
general class(es) of equations, e.g. Hamiltonian systems and Hamiltonian PDEs.
With the transformed Lotka-Volterra model we extended our discussion to nonlin-
ear dynamical systems and showed that the method of choice, the Störmer-Verlet
method (1.22)–(1.24), captured very well the characteristic properties of the non-
linear dynamical system. The motivation for using the Störmer-Verlet method will
become evident in Section 1.1.8. With the final example, the semi-discretized sine-
Gordon equations, we extended the discussion to structure preserving methods for
conservative PDEs and illustrated its importance in numerical simulation.

We remark that the explicit and implicit Euler methods applied to the trans-
formed Lotka-Volterra model (1.25)–(1.26) and the semi-discretized sine-Gordon
equations (1.34)–(1.36) would lead to the disappointing results of the same charac-
ter as for the harmonic oscillator equations.

1.1.2 Hamiltonian dynamics

In this thesis we are concerned with Hamiltonian dynamics of the general form:

dX

dt
= J ∇H(X), X(0) = X0, (1.42)

where X : R → Rn, t is time, J ∈ Rn×n is a constant skew-symmetric matrix
and H(X) : Rn → R is the Hamiltonian function. Differential equation (1.42) is
an autonomous dynamical system with initial condition X0 ∈ Rn. We assume that
the Hamiltonian function H(X) is at least twice continuously differentiable on a
connected nonempty open set Ω ⊂ Rn, phase space of X , such that the standard
existence and uniqueness theorems apply to the corresponding initial value problem
(1.42) in the open neighborhood of (X0, 0) ∈ Ω ×R. With the product Ω ×R we
identify the extended phase space of equation (1.42).

Since matrix J is skew-symmetric, from equation (1.42) follows two very impor-
tant properties of the Hamiltonian dynamics. The first is the conservation of the
Hamiltonian function H(X) along the solution of the system (1.42), i.e.

dH(X)

dt
= ∇H(X)T

dX

dt
= ∇H(X)T J ∇H(X) ≡ 0.

This implies that the Hamiltonian function H(X) is a first integral of the system
(1.42). Hamiltonian function H(X) may not be the only conserved quantity of
(1.42). Thus for the function I(X) : Rn → R to be a first integral of the system
(1.42), the following relation must hold:

∇I(X)T J ∇H(X) = 0. (1.43)

It is easy to check that if I1(X), I2(X) : Rn → R are two first integrals of the
system then also a function I3(X) : Rn → R defined by

I3(X) = ∇I1(X)T J ∇I2(X)
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is also a first integral of the system (1.42). We address related questions to the
construction of the first integral preserving numerical schemes for the Hamiltonian
systems in Sections 1.1.7–1.1.8 and in Chapters 2 and 4.

The second property shows that the right hand side vector field of (1.42) is
divergence free, i.e.

∇ · (J ∇H(X)) = trace(J ∇XXH(X)) ≡ 0, (1.44)

where ∇XXH(X) is a symmetric Hessian matrix of Hamiltonian H(X). This result
follows from the property that the trace of the product of a symmetric and a skew-
symmetric matrix is equal to zero.

The divergence free property (1.44) implies volume preservation in the phase
space Ω by the flow map ΦtH of the Hamiltonian system (1.42), and vice versa. As
long as the solution of (1.42) exists at time t, it is defined by

X = ΦtH(X0), X0 = Φ0
H(X0).

By definition ΦtH defines a transformation from X0 to X and maps the phase space
Ω into itself. Additionally, flow maps ΦtH of time t as a one-parameter operator
family define a commutative group. Under volume preservation by the flow map
ΦtH we understand that for any bounded subset U ⊂ Ω for which ΦtH(U) exists,
volumes and orientation of U and ΦtH(U) are the same, i.e.

∫

U

dX0 =

∫

Φt
H(U)

dX.

As a standard rule for the change of variables under the integral sign, for the transfor-
mation to be volume preserving, the determinant of the Jacobian matrix of ΦtH(X0)
must be equal to 1: ∣∣∣∣

∂ΦtH(X0)

∂X0

∣∣∣∣ = 1, ∀ t, X0. (1.45)

The associated matrix-valued variational equation of (1.42) is

dY

dt
= A(t)Y, Y (0) = In, (1.46)

where Y (t) =
∂Φt

H (X0)
∂X0

, A(t) = J ∇XXH(X) at X = ΦtH(X0) and In ∈ Rn×n is an
identity matrix. From the Abel-Liouville-Jacobi-Ostrogradskii identity and equation
(1.44) follow that

d

dt
|Y | = trace(A(t))|Y | = ∇ · (J ∇H(X))|Y | ≡ 0, ∀ t, X0. (1.47)

This implies the statement (1.45) and proves the following lemma:

Lemma 1.1.2.1. The flow map ΦtH(X0) of the Hamiltonian system (1.42) is volume
preserving, statement (1.45), if and only if ∇ · (J ∇H(X)) = 0 for all X.
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The divergence free property of the right hand side vector field of the Hamiltonian
system (1.42), or of any autonomous dynamical system, plays an important role for
the statistical mechanics. We address these questions in Section 1.2.1 and Chapters
3 and 4.

Both properties described above directly follow from the specific form of the
equation (1.42) and that matrix J is skew-symmetric. Here we mention another
property of (1.42) under the following conditions. We call Hamiltonian system
(1.42) time reversible under the linear coordinate transformation:

t̂ = −t, (1.48)

X̂ = SX, (1.49)

where S ∈ Rn×n is a nonsingular matrix, if the following conditions hold:

H(X) = H(X̂), J = −SJST . (1.50)

These conditions imply that the linear transformation (1.48)–(1.49) does not alter
the dynamical system (1.42), i.e.

dX̂

dt̂
= −SJ ∇H(X) = −SJST ∇H(X̂) = J ∇H(X̂).

As an example we show time reversibility property with respect to the involution
S, i.e. SS = In, for the block skew-symmetric matrix J and quadratic Hamiltonian
function:

S =

[
Im 0
0 −Ik

]
, J =

[
0 K

−KT 0

]
, H(X) =

1

2
XTX,

where Im ∈ Rm×m, Ik ∈ Rk×k are identity matrices, m+ k = n and K ∈ Rm×k is
some arbitrary matrix. Simple calculations yield:

H(X̂) =
1

2
(SX)TSX =

1

2
XTSTSX =

1

2
XTX = H(X)

and

SJST =

[
0 −ImKIk

InK
T Im 0

]
=

[
0 −K
KT 0

]
= −J.

Hence the conditions (1.50) are satisfied and the associated Hamiltonian system is
time reversible with respect to the involution S.

Recall that any skew-symmetric matrix of even dimension 2m with full rank is
invertible and has m-pairs of nonzero purely complex conjugate eigenvalues. On the
contrary, any odd dimensional skew-symmetric matrix is singular. Let us assume
that the system matrix J of (1.42) has rank 2m and n = 2m + k where k is odd.
Hence J is a singular matrix with m-pairs of purely complex conjugate eigenvalues
and k zero eigenvalues. This leads to the existence of k linear distinguished functions,
Casimirs:

C(X) = CX, CJ ≡ 0, (1.51)
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where C ∈ Rk×n. From the relation (1.43) follows that Casimir functions (1.51) are
first integrals of the system (1.42).

The following derivation is a special result of the Darboux-Lie theorem. Consider
two skew-symmetric matrices defined by

Ĵ =MJMT

and

JId =

[
0 Im

−Im 0

]
, (1.52)

where Im ∈ Rm×m is an identity matrix andM ∈ R2m×n is an arbitrary matrix with
rank 2m such that the matrix Ĵ ∈ R2m×2m is skew-symmetric of even dimension
with rank 2m. We can always construct such a matrix M by setting columns of M
associated to the linearly independent columns of matrix J to the unit vectors of
R2m and by setting the rest of the columns of matrix M to zero. For example, if
matrix J ∈ R2m×2m is of full rank then M = I2m.

Real orthogonal decompositions of skew-symmetric matrices Ĵ and JId are given
by

Ĵ = UΛUT , JId = V ΣV T ,

where U,Λ, V,Σ ∈ R2m×2m, UUT = UTU = I2m, V V T = V TV = I2m. Matrices
Λ = −ΛT and Σ = −ΣT are block diagonal skew-symmetric matrices containing
the imaginary parts of the eigenvalues of the matrices Ĵ and JId, respectively. Note
that the following relation holds:

Σ =
(
ΛTΛ

)− 1
4 Λ
(
ΛTΛ

)− 1
4T ,

where matrix ΛTΛ is diagonal with positive entries.
With the linear transformation

(
Z
z

)
= SX, S =

[
M̂M
C

]
, M̂ = V

(
ΛTΛ

)− 1
4 UT , (1.53)

where Z ∈ R2m, z ∈ Rk, M̂ ∈ R2m×2m and matrix C defines linear Casimir
functions (1.51), system (1.42) transforms into

d

dt

(
Z
z

)
= SJST

(
∇ZH(Z, z)
∇zH(Z, z)

)
=

[
M̂M
C

]
J
[
MT M̂T CT

](∇ZH(Z, z)
∇zH(Z, z)

)

=

[
M̂ĴM̂T 0

0 0

](
∇ZH(Z, z)
∇zH(Z, z)

)
=

[
JId 0
0 0

](
∇ZH(Z, z)
∇zH(Z, z)

)
,

since

M̂ĴM̂T = V
(
ΛTΛ

)− 1
4 UT

(
UΛUT

)
U
(
ΛTΛ

)− 1
4T V T = V ΣV T = JId.

Hence any odd, n = 2m + k, dimensional Hamiltonian system (1.42) of rank 2m
can be transformed into the even dimensional 2m Hamiltonian system, plus k triv-
ial dynamics. Since z ≡ const, we can formally neglect z and write transformed
Hamiltonian system with respect to Z only, i.e.

dZ

dt
= JId∇H(Z). (1.54)
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We call system (1.42) with structure matrix (1.52), i.e. equation (1.54), a canon-
ical Hamiltonian dynamical system and noncanonical otherwise. Evidently, the
derivation above applies to any Hamiltonian system (1.42) with nonzero skew-
symmetric system matrix J .

This completes the proof of the following proposition:

Proposition 1.1.2.1. Any Hamiltonian system (1.42) with a nonzero constant
skew-symmetric system matrix J can be transformed in the canonical form (1.54),
possibly on a reduced phase space.

We illustrate the analysis above for the simple example in R3. Consider the
Hamiltonian system (1.42) with matrix J , the associated Casimir function’s row
matrix C and transformations matrix S:

J =




0 1 0
−1 0 1
0 −1 0


 , C =

[
1 0 1

]
, S =



1 0 0
0 1 0
1 0 1


 ,

respectively. Then the system transforms into a canonical Hamiltonian system, plus
one trivial dynamics

SJST =



1 0 0
0 1 0
1 0 1






0 1 0
−1 0 1
0 −1 0


ST =




0 1 0
−1 0 1
0 0 0





1 0 1
0 1 0
0 0 1


 =




0 1 0
−1 0 0
0 0 0


 .

1.1.3 Canonical Hamiltonian systems

In this subsection we discuss canonical Hamiltonian systems, i.e. equation (1.42)
with canonical matrix (1.52), from the perspective of classical mechanics. In classical
mechanics we are concerned with 2n-dimensional canonical Hamiltonian systems
where X = (q, p)T :

dq

dt
= ∇pH(q, p), (1.55)

dp

dt
= −∇qH(q, p), (1.56)

subject to the initial conditions X0 = (q0, p0)
T . Variables q, p : R → Rn are gen-

eralized coordinates and momenta, respectively, and H(q, p) : Rn ×Rn → R is the
Hamiltonian function. Note that two examples considered in Section 1.1.1, i.e. har-
monic oscillator equations (1.1)–(1.2) and transformed Lotka-Volterra model (1.25)–
(1.26) can be written in canonical Hamiltonian form (1.55)–(1.56) with Hamiltonian
functions (1.4) and (1.27), respectively. Additionally, this implies that the flow maps
of the both equations are volume preserving.

In passing we mention that equations (1.55)–(1.56) can be derived from the
Euler-Lagrange equations:

d

dt
∇q̇L(q, q̇)−∇qL(q, q̇) = 0, (1.57)
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where q̇ = dq
dt and L(q, q̇) : R

n×Rn → R is the Lagrange function. Here we assume
that Lagrange function L(q, q̇) does not explicitly depend on time t. Equation (1.57)
is derived from the action integral:

S[q] =

∫ t1

t0

L(q, q̇) dt,

applying Hamilton’s principle, i.e. δS
δq = 0, where δS

δq is a variational derivative of

S[q]. By using p as an independent variable instead of q̇ and applying a Legendre
transformation, Hamilton’s principle applied to the action integral:

SH [q, p] =

∫ t1

t0

(
H(q, p)− p · dq

dt

)
dt,

yields system (1.55)–(1.56). With the dot we indicate the Euclidean inner product
of two vectors. Straightforward calculations show that

δSH [q, p] =

∫ t1

t0

(
∇qH(q, p) · δq +∇pH(q, p) · δp− p · dδq

dt
− dq

dt
· δp
)

dt

=

∫ t1

t0

(
∇qH(q, p) · δq +∇pH(q, p) · δp+ dp

dt
· δq − dq

dt
· δp
)

dt,

where we used integration by parts and boundary terms drop out, since δq = δp = 0
on the boundary. Hence

δ

δp
SH [q, p] = ∇pH(q, p)− dq

dt
= 0,

δ

δq
SH [q, p] = ∇qH(q, p) +

dp

dt
= 0,

and we recover the system of equations (1.55)–(1.56).
When the Hamiltonian function is directly related to the total energy of the

system, e.g. Hamiltonian function (1.4) of the harmonic oscillator equations (1.1)–
(1.2), we often deal with separable Hamiltonian functions, i.e.

H(q, p) = K(p) + V (q),

where

K(p) =
1

2
pTM−1p

is a kinetic energy with symmetric and positive definite mass matrix M ∈ Rn×n,
and V (q) : Rn → R is a potential energy function. In this case (1.55)–(1.56) reduces
to

dq

dt
=M−1p, (1.58)

dp

dt
= −∇V (q). (1.59)
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The system of equations (1.58)–(1.59) naturally arises from the equations of New-
ton’s 2nd law, i.e. mass times acceleration equals to force:

M
d2q

dt2
= F (q), (1.60)

with conservative force F (q) = −∇V (q). With p =M dq
dt and nonsingular matrixM

equation (1.60) can be cast in form (1.58)–(1.59). Since the kinetic energy K(p) is
quadratic with respect to p, system (1.58)–(1.59) is time reversible with respect to
the involution matrix S, considered in the previous subsection, by takingm = k = n.
For the general system (1.55)–(1.56) to be time reversible the sufficient condition
is: H(q, p) = H(q,−p). From this condition follows that the harmonic oscillator
equations (1.1)–(1.2) are time reversible but the equations of the transformed Lotka-
Volterra model (1.25)–(1.26) are not.

As an example we consider mathematical pendulum equation:

d2q

dt2
= − sin(q), (1.61)

where mass of the bob (point of mass), the length of the rod and the acceleration
of gravity are set to unity. Then with p = dq

dt , K(p) = p2/2 and V (q) = − cos(q)
equation (1.61) can be written in the Hamiltonian form (1.58)–(1.59), i.e.

dq

dt
= p, (1.62)

dp

dt
= − sin q. (1.63)

Note that in the mathematical pendulum equations (1.62)–(1.63) variable q describes
the rotation angle of the pendulum. By introducing transformation (parametriza-
tion):

x = sin(q), (1.64)

y = − cos(q), (1.65)

the system of equations (1.62)–(1.63) can be derived from the mathematical pendu-
lum equations in Cartesian coordinates (x, y) ∈ R2:

d2x

dt2
= −2xλ, (1.66)

d2y

dt2
= −1− 2yλ, (1.67)

0 = x2 + y2 − 1, (1.68)

where λ ∈ R is Lagrange multiplier. System (1.66)–(1.68) belongs to the class
of Hamiltonian (Newtonian) dynamical systems with holonomic constraints. The
augmented Hamiltonian function is given by

H̃(q, p, λ) =
1

2
pTM−1p+ V (q) + g(q)Tλ.
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Then the system of equations read:

dq

dt
=M−1p, (1.69)

dp

dt
= −∇V (q)−∇g(q)Tλ, (1.70)

0 = g(q), (1.71)

where the function g : Rn → Rm (at least twice continuously differentiable) defines
the configurational manifold M of co-dimension m:

M = {q ∈ Rn | g(q) = 0} ,
and Lagrange multiplier λ ∈ Rm is introduced to enforce the constraint (1.71). The
time derivative of (1.71), i.e. ∇g(q)M−1p = 0, implies that momentum p belongs to
the tangent plane of the constraint manifold at position q. The tangent space for
given q ∈ M is defined by

TqM =
{
p ∈ Rn

∣∣∇g(q)M−1p = 0
}
.

Hence the associated phase space of system (1.69)–(1.71) is the tangent bundle
denoted by

T M =
{
q, p ∈ Rn

∣∣ q ∈ M,∇g(q)M−1p = 0
}
.

Additionally, since H̃(q, p) = H̃(q,−p), system (1.69)–(1.71) is time reversible.
Example equations (1.66)–(1.68) can be written in the form (1.69)–(1.71) with

augmented Hamiltonian

H̃

(
x, y,

dx

dt
,
dy

dt
, λ

)
=

1

2

(
dx

dt

2

+
dy

dt

2)
+ y + (x2 + y2 − 1)λ

such that q = (x, y)T , p = (dxdt ,
dy
dt )

T and λ ∈ R.
Similarly to system (1.55)–(1.56), the system of equations (1.69)–(1.71) can be

derived from the Euler-Lagrange equations with holonomic constraints. In Chapter
3 we discuss Hamiltonian dynamics with holonomic constraints in depth. There we
also introduce a canonical parametrization of the associated phase space of (1.69)–
(1.71). Note that the parametrization (1.64)–(1.65) is a canonical mapping for
the mathematical pendulum equations (1.66)–(1.68), i.e. with (1.64)–(1.65) we can
transform system (1.66)–(1.68) with constraints into the canonical Hamiltonian sys-
tem (1.62)–(1.63) without constraints.

1.1.4 Symplecticity

In this subsection we describe symplecticity property of the canonical Hamiltonian
system (1.55)–(1.56), i.e. system (1.42) with canonical matrix J = JId and X =
(q, p)T . Symplecticity is a characteristic property of solutions to the Hamiltonian
system rather than a property of the specific form of the Hamiltonian equations. We
say that the flow map ΦtH(X0) of a differential equation is canonically symplectic if

∂ΦtH(X0)

∂X0

T

J−1 ∂Φ
t
H(X0)

∂X0
= J−1 (1.72)
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holds for any value of t and X0 for which the map is defined. From Y (t) =
∂Φt

H(X0)
∂X0

,
which satisfies the variational equation (1.46), we see that the condition (1.72) is
true at t = 0. Hence we are left to show that

d

dt

(
Y TJ−1Y

)
= 0.

We find that

d

dt

(
Y TJ−1Y

)
= Y TJ−1 dY

dt
+

dY

dt

T

J−1Y

= Y TJ−1 (J ∇XXH(X)Y ) +
(
Y T ∇XXH(X)JT

)
J−1Y

= Y T ∇XXH(X)Y − Y T ∇XXH(X)Y = 0,

where X = ΦtH(X0). This completes the proof of the following theorem:

Theorem 1.1.4.1. The flow map ΦtH(X0) of canonical Hamiltonian system (1.55)–
(1.56) with X0 = (q0, p0)

T is symplectic for any value of t and X0 ∈ Ω for which
the map is defined.

As a remark we state that with consistent initial values X0 = (q0, p0) ∈ T M,
the symplecticity property of the flow map of the constrained Hamiltonian system
(1.69)–(1.71) can be shown.

Note that the symplecticity property (1.72) implies volume preservation (1.45).
Since matrix J is nonsingular, taking determinants of both sides of (1.72) yields:

∣∣∣∣∣
∂ΦtH(X0)

∂X0

T

J−1 ∂Φ
t
H(X0)

∂X0

∣∣∣∣∣ =
∣∣J−1

∣∣ ,
∣∣∣∣
∂ΦtH(X0)

∂X0

∣∣∣∣ = ±1.

Since at time t = 0 the determinant is equal to one and satisfies the equation (1.47)
for all t and X0, the value −1 can be excluded. This proves the statement.

Consider the flow map of (1.55)–(1.56) expressed in the following form:

q = QtH(q0, p0),

p = P tH(q0, p0).

Then it can be shown that symplecticity property (1.72) equivalently can be stated
in the following form:

dq ∧ dp = dq0 ∧ dp0, (1.73)

where dq and dp are differential 1-forms in vector representation, i.e.

dq =
∂QtH(q0, p0)

∂q0
dq0 +

∂QtH(q0, p0)

∂p0
dp0, (1.74)

dp =
∂P tH(q0, p0)

∂q0
dq0 +

∂P tH(q0, p0)

∂p0
dp0. (1.75)
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The bilinear skew-symmetric wedge product ∧ of two differential 1-forms gives a
new entity called a differential 2-form. Equation (1.73) is a conservation law of
differential 2-form under the flow of the Hamiltonian system (1.55)–(1.56).

Equation (1.73) expresses the following. Consider the oriented two-dimensional
surfaces D in 2n-dimensional phase space Ω. Here, Di, i = 1, . . . , n indicate the
projections onto the n two-dimensional planes of the variables (qi, pi). Then the
sum of these two-dimensional oriented areas of these projections is expressed with
differential 2-form dq ∧ dp and conserved in time. A direct consequence of (1.73) is
that when n = 1 the symplecticity property (1.72) coincides with area preservation
(1.45), since dq ∧ dp represents oriented area in two-dimensional phase space.

Differential forms provide an elegant way to check symplecticity of Hamiltonian
systems and their numerical approximations, see Section 1.1.8. As an example we
show that the canonical Hamiltonian system (1.55)–(1.56) considered in the general
form (1.42) conserves differential 2-form dq ∧ dp. By differentiating equation (1.42)
we get

d

dt
dX = J ∇XXH(X)dX.

Note the resemblance to the matrix-valued variational equation (1.46). Inverting
matrix J and taking the wedge product with dX we find that

dX ∧ J−1 d

dt
dX = dX ∧ (∇XXH(X)dX) = 0,

where we used the wedge product property that for any symmetric matrix A the
wedge product dX ∧AdX = 0. Hence

1

2

d

dt

(
dX ∧ J−1dX

)
= 0.

With dX = (dq, dp)T

dX ∧ J−1dX = −dq ∧ dp+ dp ∧ dq = −2dq ∧ dp,

which proves the statement.
Symplecticity is a characteristic property of flow maps of canonical Hamiltonian

systems. In Section 1.1.2 we saw that any general Hamiltonian system (1.42) can
be transformed into the canonical Hamiltonian system (1.54) on a reduced phase
space. So far we have neglected the possibility for the matrix J to be explicitly
dependent on X . Hence in the following subsection we address related questions to
the noncanonical Hamiltonian systems with X dependent matrices J , i.e. Poisson
systems.

1.1.5 Poisson bracket

The Poisson bracket of any two smooth functions F (X), G(X) : Rn → R is defined
by

{F,G} = ∇F (X)T J ∇G(X), (1.76)
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where J is a system matrix of Hamiltonian system (1.42). Due to the skew-symmetry
of matrix J and the standard rules of calculus the Poisson bracket (1.76) is bilinear,
skew-symmetric, i.e. {F,G} = −{G,F}, it satisfies Leibniz’ rule

{FG,H} = F {G,H}+G {F,H} (1.77)

and the Jacobi identity

{{F,G} , H}+ {{G,H} , F}+ {{H,F} , G} = 0, (1.78)

where F (X), G(X), H(X) : Rn → R are three arbitrary smooth functions of X .
The definition of the Poisson bracket is motivated by the fact that time derivative
of any smooth function F (X) : Rn → R along the solution of the Hamiltonian
system (1.42) is

dF (X)

dt
= ∇F (X)TJ ∇H(X) = {F,H} .

Hence in a vector notation with function F (X) = X we recover Hamiltonian system
(1.42), i.e.

dX

dt
= {X,H} = J ∇H(X).

The conservation property of the Hamiltonian function follows from the skew-
symmetry of the Poisson bracket, i.e. {H,H} = 0, and the condition (1.43) for
the function I(X) : Rn → R to be the first integral of the system reduces to
{I,H} = 0. The Jacobi identity (1.78) implies that if I1(X), I2(X) : Rn → R are
two first integrals, then their Poisson bracket {I1, I2} is again a first integral. The
divergence free property ∇ · {X,H} = 0 follows from the skew-symmetry property
of the constant matrix J . Here we see that the basic properties of the Hamiltonian
system (1.42) considered in Section 1.1.2 are shared with properties of the Pois-
son bracket (1.76). Additionally, with the canonical transformation (1.53) we can
transform the Poisson bracket (1.76) to its canonical form:

{F,G} = ∇F (Z)TJId∇G(Z). (1.79)

The system
dX

dt
= J(X)∇H(X), X(0) = X0, (1.80)

where X ∈ Rn, is called a Poisson system if the associated Poisson bracket:

{F,G} = ∇F (X)T J(X)∇G(X), (1.81)

is bilinear, skew-symmetric and satisfies Leibniz’ rule and the Jacobi identity. It
can be shown that these properties are satisfied as long as the following condition
for the skew-symmetric matrix J(X) holds for all i, j, k = 1, . . . , n:

n∑

l=1

(
∂Jij(X)

∂Xl
Jlk(X) +

∂Jjk(X)

∂Xl
Jli(X) +

∂Jki(X)

∂Xl
Jlj(X)

)
= 0.
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Note that these conditions are not sufficient to guarantee the divergence free prop-
erty ∇·{X,H} = 0. We illustrate this with an example at the end of this subsection.

The fact that the Poisson bracket (1.81) and the canonical Poisson bracket (1.79)
satisfy the same properties leads to the celebrated Darboux-Lie theorem, which
states that every Poisson system (1.80) can be at least locally written in canonical
Hamiltonian form (1.54) after the suitable change of coordinates, hence it is at
least locally symplectic and volume preserving in the new coordinates. Proposition
1.1.2.1 is a special case of the Darboux-Lie theorem for the constant system matrix
J . Importantly, Darboux-Lie theorem implies existence of the Casimir functions
C(X), not necessary linear, such that {C,F} = 0 for all differentiable functions
F (X).

Flow map ΨtH(X0) of the Poisson system (1.80) when it is defined satisfies

∂ΨtH(X0)

∂X0
J(ΨtH(X0))

∂ΨtH(X0)

∂X0

T

= J(ΨtH(X0)). (1.82)

The proof follows from the Darboux-Lie theorem. When the matrix J is a canonical
matrix (1.52), the condition (1.82) is equivalent to the symplecticity condition (1.72).
By taking the inverse of (1.82) and multiplying with the Jacobian matrix of ΨtH(X0)
from the right and with its transpose from the left we recover (1.72). It is evident
that the volume preservation does not follow from the condition (1.82), since matrix
J(X) may be singular and computation of determinants then would be meaningless.
Hence in general volume preservation is at least a local property of the transformed
Poisson system due to the Darboux-Lie theorem.

We illustrate the result of the Darboux-Lie theorem with an example of a Poisson
system on the phase space R3

+: Lotka-Volterra model

dẑ

dt
=




z1(z2 + z3)
z2(z1 − z3 + 1)
z3(z1 + z2 + 1)


 =




0 z1z2 z1z3
−z1z2 0 −z2z3
−z1z3 z2z3 0


∇H(ẑ), (1.83)

H(ẑ) = −z1 + z2 + z3 + ln z2 − ln z3, C(ẑ) = − ln z1 − ln z2 + ln z3,

where ẑ = (z1, z2, z3)
T and C(ẑ) is the Casimir function of system (1.83). The

system of equations (1.83) is not volume preserving, since the right hand side vector
field is not divergence free, and demonstrates that volume preservation is not a
general property of the Poisson system (1.80). Nevertheless, the Lotka-Volterra
model (1.83) with transformation:

z1 = ex,

z2 = ey,

z3 = ex+y+z,

which constitutes a global change of coordinates, can be transformed into canonical
Hamiltonian form (1.54) on a reduced phase space R2:

dx

dt
= ey + ex+y+z = ∇yH(x, y, z),

dy

dt
= ex − ex+y+z + 1 = −∇xH(x, y, z),
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with Hamiltonian function H(x, y, z) = −ex + ey + ex+y+z − x − z and z ≡ const.
The dynamics on R2 is area preserving.

1.1.6 Hamiltonian PDEs

We begin introducing Hamiltonian PDEs by defining the Poisson bracket. Consider
the inner product space Ud of smooth functions defined on a simply connected
bounded open set D ∈ Rd with boundary ∂D. Then for any two functionals F ,G :
Ud → R and a matrix differential operator J (u), that is skew-symmetric with
respect to the inner product on Ud, the Poisson bracket (1.81) generalizes to the
integral

{F ,G} =

∫

D

δF
δu

J (u)
δG
δu

dx, (1.84)

where u(x) ∈ Ud, x ∈ D and δ
δu denotes variational derivative defined by

(
δF
δu
, v

)
= lim

ǫ→0

1

ǫ
[F(u+ ǫv)−F(u)] , ∀ v ∈ Ud

with an inner product (·, ·) : Ud×Ud → R on Ud. Bracket (1.84) is a skew-symmetric,
bilinear form acting on functionals on Ud and is said to be a Poisson bracket if it
satisfies the Jacobi identity (1.78). If the matrix differential operator J does not
explicitly depend on function u then Jacobi identity is automatically satisfied. This
follows from the skew-symmetry property of J and the standard rules of calculus.
Since there is no well-defined multiplication between functionals, we have neglected
the requirement for the Poisson bracket (1.84) to satisfy Leibniz’s rule (1.77).

We call a partial differential equation a Hamiltonian PDE if it can be written in
the following form:

∂u

∂t
= J (u)

δH
δu

, (1.85)

where H : Ud → R is a Hamiltonian functional, and the associated Poisson bracket
(1.84) satisfies all above mentioned properties of the bracket. Then any functional
F : Ud → R under the dynamics of the Hamiltonian PDE (1.85) obeys the integral
equation

∂F
∂t

= {F ,H} .
From the properties of the Poisson bracket (1.84) follow conservation of the

Hamiltonian functional H, i.e. {H,H} = 0, that any functional I : Ud → R who
satisfies {I,H} = 0 is a first integral of (1.85) and that the Poisson bracket of any
two first integrals is a first integral itself. Functional C : Ud → R is called a Casimir
if the Poisson bracket {C,F} = 0 for any functional F . Note the resemblance in
geometric structure of the Hamiltonian PDE (1.85) to the geometric structure of
the Poisson system (1.80).

Recall the semi-linear sine-Gordon equations (1.29)–(1.32) from Section 1.1.1.
These equations belong to the class of Hamiltonians PDEs and can be written in
the form (1.85) with a canonical skew-symmetric system matrix

J =

[
0 1
−1 0

]
(1.86)



1.1. Geometric numerical integration 25

and Hamiltonian functional (1.33). With system matrix (1.86) the associated Pois-

son bracket for any two functionals F ,G : C∞([0, 1])
2 → R of pair (u, v) becomes

{F ,G} = −
∫ 1

0

(
δF
δv

δG
δu

− δF
δu

δG
δv

)
dx.

The first variation of the Hamiltonian functional (1.33) with respect to u and v are

δH =

∫ 1

0

(
vδv +

∂u

∂x

∂δu

∂x
+ sin(u)δu

)
dx =

∫ 1

0

(
vδv − ∂2u

∂x2
δu+ sin(u)δu

)
dx,

where the boundary conditions (1.32) have been used to carry out the integration
by parts. Writing down the equations in Hamiltonian PDE form (1.85) we recover
the sine-Gordon equations (1.29)–(1.30), i.e.

∂u

∂t
=
δH
δv

= v, (1.87)

∂v

∂t
= −δH

δu
=
∂2u

∂x2
− sin(u). (1.88)

In Chapter 2 we are concerned with linearized, 2D, inviscid, incompressible
Euler-Boussinesq partial differential equations in the stream function formulation:

∂q

∂t
= − ∂b

∂x
, (1.89)

∂b

∂t
= −N2

f

∂ψ

∂x
, (1.90)

q = −∆ψ, (1.91)

ψ = 0 on ∂D, (1.92)

where ψ is the stream function, q is the vorticity, b is the buoyancy and Nf is the
stratification frequency. Equations (1.89)–(1.92) are defined in space on a simply
connected bounded open set D ⊂ R2 with boundary ∂D, in vertical plane coordi-
nates (x, z) ∈ D. The Hamiltonian structure of the Euler equations for an ideal
fluid is well-known [87]. As shown in [45], the nonlinear Euler-Boussinesq equations
inherit the noncanonical Hamiltonian structure from the ideal fluid Poisson bracket.
In Chapter 2 we verify and show that the linearized equations (1.89)–(1.92) preserve
a linear Hamiltonian structure with system matrix J and Hamiltonian H:

J = −N2
f

[
0 ∂

∂x
∂
∂x 0

]
, H =

1

2

∫

D

(
∇ψ · ∇ψ +

1

N2
f

b2

)
dxdz,

respectively. Since the matrix J is not invertible, system (1.89)–(1.92) possesses
the Casimir invariant:

C =

∫

D

1

N2
f

b dxdz.

Its time derivative is equal to zero due to the zero Dirichlet boundary conditions
(1.92) of the stream function.
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In Chapter 4 we consider one-dimensional Korteweg-de Vries (KdV) model on
the 2π-periodic domain:

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0. (1.93)

The classical KdV equation is obtained with proper rescaling of time and space. Note

that KdV equation (1.93) without dispersion term ∂3u
∂x3 reduces to the Burgers-Hopf

equation. The structure differential operator J = − ∂
∂x implies the corresponding

Poisson bracket:

{F ,G} := −
∫ 2π

0

δF
δu

∂

∂x

δG
δu

dx.

Together with the Hamiltonian functional

H =

∫ 2π

0

(
1

6
u3 − 1

2

(
∂u

∂x

)2
)

dx, (1.94)

the KdV equation (1.93) can be written in the Hamiltonian PDE form (1.85). The
first variation of the Hamiltonian (1.93) with respect to function u is

δH =

∫ 2π

0

(
1

2
u2δu− ∂u

∂x

∂δu

∂x

)
dx =

∫ 2π

0

(
1

2
u2δu+

∂2u

∂x2
δu

)
dx,

where result follows from the integration by parts and periodic boundary conditions.
Then

∂u

∂t
= − ∂

∂x

δH
δu

= − ∂

∂x

(
1

2
u2 +

∂2u

∂x2

)
= −u∂u

∂x
− ∂3u

∂x3
(1.95)

and we recover KdV equation (1.93). The differential operator J = − ∂
∂x is not

invertible and this gives rise to the Casimir functional

C =

∫ 2π

0

u dx. (1.96)

It is easy to check that {C,F} = 0 is true for any functional F . Hamiltonian H
and Casimir C are not the only conserved quantities of the KdV equation, in fact,
there are infinitely many conserved quantities. We refer readers to Chapter 4 for
discussion on conserved quantities of the KdV and Burgers-Hopf equations. For
further reference we mention that the functional

E =

∫ 2π

0

1

2
u2 dx (1.97)

is also a conserved quantity of the KdV equation (1.93).

1.1.7 Semi-discretized Hamiltonian PDEs

In this subsection we address questions related to the structure preserving numer-
ical methods for Hamiltonian PDEs. Our objective when discretizing Hamiltonian
PDEs in space is to derive semi-discretized Hamiltonian systems, i.e. Hamiltonian
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ODEs (1.42), such that the approximated Hamiltonian functional and as many
Casimirs and other conserved quantities of the original system as possible are con-
served quantities of the semi-discretized Hamiltonian system, and the associated
discrete bracket again satisfies all properties of a Poisson bracket. Thus preserving
geometric properties as much as possible.

To ensure that the semi-discretized equations are at least a Hamiltonian (or
Poisson) system, we separately approximate the Poisson bracket, i.e. structure op-
erator J (u) such that all properties of the Poisson bracket are satisfied, and the
Hamiltonian functional H, (see McLachlan [81]). Unfortunately, this method does
not automatically ensure that discrete approximations of other first integrals will
be preserved in discrete sense.

We illustrate the approach described above for the KdV equation (1.93) on a
2π-periodic domain. For comparison we consider two methods: a finite difference
method and a Fourier-Galerkin method, the motivation will become evident in the
following.

Consider N equally spaced grid points xi on the 1-dimensional torus

T2π = {xmod 2π |x ∈ R}
and define the grid size ∆x = 2π/N such that xi = i∆x for i = 0, . . . , N − 1. The
discrete values of function u at each grid point are defined by ui = u(i∆x) for each
i = 0, . . . , N − 1. With u ∈ RN we define a vector of discrete function u values
ui where i = 0, . . . , N − 1 and with U = RN we denote the space of all periodic
(with respect to subscript i) grid functions u, i.e. periodicity condition implies that
uk = ukmodN for any k ∈ Z.

We also define the discrete inner product on U:

〈u,v〉U =

N−1∑

i=0

uivi∆x = uTv∆x, ∀u,v ∈ U,

where the last equality follows from the fact that we consider a uniform grid. With
matrices Dx, D2x : U → U of dimension N ×N we define finite difference approxi-
mation matrices for the spatial derivatives:

(Dxu)i =
ui − ui−1

∆x
, (D2xu)i =

ui+1 − ui−1

2∆x
, i = 0, . . . , N − 1,

where u ∈ U, matrix D2x is skew-symmetric and matrixDxx = −DT
xDx ∈ RN×N is

symmetric with respect to the inner product 〈·, ·〉U. Matrix Dxx : U → U defines a
finite difference approximation matrix for the second order spatial derivative. Then,
in terms of the inner product on U, the discrete approximation of the Hamiltonian
functional (1.94) is defined by

H(u) =
1

6
〈u,u ∗ u〉U − 1

2
〈Dxu, Dxu〉U, (1.98)

where ∗ denotes pointwise vector multiplication. The variational derivative of H(u)
is defined in the discrete inner product by

〈
δH

δu
,v

〉

U

= lim
ǫ→0

1

ǫ
(H(u+ ǫv)−H(u)) , ∀v ∈ U.
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We find that
δH

δu
=

1

2
(u ∗ u) +Dxxu.

By approximating the structure operator J = − ∂
∂x with matrix −D2x, the Hamil-

tonian semi-discretization of the KdV equation in the form of a Hamiltonian PDE
(1.95) can be defined by

du

dt
= −D2x

δH

δu
= −D2x

(
1

2
(u ∗ u) +Dxxu

)
, (1.99)

which is a symmetric finite difference approximation on the uniform grid of the KdV
equation (1.93) with 2π-periodic boundary conditions.

Interestingly, when N is odd, the matrix D2x is singular with rank N − 1 and
the finite difference approximation (1.99) preserves the discrete approximation to
the Casimir functional (1.96):

C(u) = 〈1,u〉U, (1.100)

where 1 ∈ RN is a vector of ones. When the dimension of matrix D2x is even, its
rank is N − 2 and the finite difference approximation (1.99) preserves two Casimir
invariants:

C1(u) =

N/2−1∑

i=0

u2i∆x, C2(u) =

N/2−1∑

i=0

u2i+1 ∆x, (1.101)

which is an artefact of the numerical discretization. Clearly, their sum implies
(1.100), i.e. C(u) = C1(u) + C2(u).

The finite difference approximation (1.99) is a noncanonical Hamiltonian system
(1.42) with constant system matrix J = −D2x and Hamiltonian (1.98). The Hamil-
tonian and the Casimir function (1.100) or Casimirs (1.101) are the only known
conserved quantities of the system (1.99). Conservation of other first integrals of
the KdV equation (1.93) was lost during the process of going from continuous to
discrete equations.

In Chapter 2 we consider a similar approach for constructing structure preserving
semi-discetized equations for the Euler-Boussinesq equations (1.89)–(1.92).

Now we can explain why the discrete approximation (1.41) of the energy func-
tional (1.33) by the quadrature rule is a conserved quantity along the solution of
the semi-discretized sine-Gordon equations (1.34)–(1.36). Recall that sine-Gordon
equations are a Hamiltonian PDE (1.87)–(1.88) with canonical system matrix (1.86).
With notation from Section 1.1.1 we define a space V ∈ RN−1 of discrete grid func-
tions u, where ui = ui for i = 1, . . .N − 1, with zero Dirichlet boundary conditions
(with respect to subscript i), i.e. u0 = uN = 0. Then by defining the discrete inner
product on V, i.e.

〈u,v〉V =
N−1∑

i=1

uivi∆x = uTv∆x, ∀u,v ∈ V,

the Hamiltonian functional (1.33) is approximated by

H(u,v) =
1

2
〈v,v〉V +

1

2
〈Dxu, Dxu〉V − 〈1, cos(u)〉V.
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This is exactly the same approximation as (1.41). Since matrix (1.86) is constant, we
do not need to approximate it. Hence with the proper definition of the variational
derivative of H(u,v) in the discrete inner product on V we find that

du

dt
=
δH

δv
= v,

dv

dt
= −δH

δu
= −DT

xDxu− sin(u)

and recover equations (1.34)–(1.35). This shows that in Section 1.1.1 considered
semi-discretized sine-Gordon equations (1.34)–(1.36) are in fact a canonical Hamil-
tonian system and time reversible, since H(u,v) = H(u,−v). Conservation of the
discrete energy function (1.41) follows from the construction of the Hamiltonian
structure preserving finite difference method.

For comparison to the finite difference approximation (1.99) we consider the
Fourier-Galerkin method, finite spectral truncation of the KdV equation (1.93). We
follow the approach from Chapter 4.

Let PN denotes the standard N -mode Fourier projection operator, i.e.

uN = PNu(x) =
∑

|k|≤N

ûke
ikx, ûk =

1

2π

∫ 2π

0

u(x)e−ikxdx,

where ûk is the kth Fourier coefficient of the smooth real 2π-periodic function u(x).
Since u(x) is real, we have

û−k = û∗k.

By U we denote the function space of the N -mode Fourier projection functions uN ,
equipped with the L2 inner product. The projection operator PN is symmetric with
respect to the inner product (·, ·) and commutes with the derivative operator ∂

∂x .

Consequently, the composite operator ∂
∂xPN is skew-symmetric with respect to the

L2 inner product. Hence the Poisson bracket (1.84) may be defined by

{FN ,GN} = −
∫ 2π

0

δFN
δuN

∂

∂x
PN

δGN
δuN

dx,

where FN and GN are any two functionals restricted to the truncated function uN
and its derivatives, i.e.

FN =

∫ 2π

0

F

(
uN ,

∂uN
∂x

,
∂2uN
∂x2

, . . .

)
dx.

The Hamiltonian (1.94) and Casimir (1.96) restricted to the truncated function uN
become:

HN =

∫ 2π

0

(
1

6
u3N − 1

2

(
∂uN
∂x

)2
)

dx, CN =

∫ 2π

0

uN dx,

respectively. It is easy to see that {CN ,FN} = 0 for any functional FN .
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Hence the finite truncation of the KdV Hamiltonian PDE (1.95) reads:

∂uN
∂t

= − ∂

∂x
PN

δH

δuN
, (1.102)

where from the definition of the variational derivative with respect to the L2 inner
product (·, ·) follows that

δH

δuN
=

1

2
u2N +

∂2uN
∂x2

.

Note that the finite truncation (1.102) is still space dependent, i.e. x dependent.
By multiplying equation (1.102) from both sides with test functions e−imx where
m = 1, . . . , N and then integrating from 0 to 2π, the Galerkin approach, equations
can be written in terms of the Fourier coefficients ûk, see Chapter 4.

Opposite to the finite difference discretization (1.99), spectral truncation (1.102)
of the KdV equation gives rise to the additional conserved quantity:

EN =

∫ 2π

0

1

2
u2N dx, (1.103)

which is the functional (1.97) restricted to the truncated function uN . Since

{EN ,HN} = −1

2

∫ 2π

0

uN
∂

∂x
PN

(
u2N
)
dx−

∫ 2π

0

uN
∂3uN
∂x3

dx

=
1

2

∫ 2π

0

u2N
∂uN
∂x

dx+

∫ 2π

0

∂uN
∂x

∂2uN
∂x2

dx

=
1

6

∫ 2π

0

∂u3N
∂x

dx+
1

2

∫ 2π

0

∂

∂x

(
∂uN
∂x

)2

dx = 0,

where the result follows from the periodic boundary conditions, function EN is a
first integral of the truncated KdV equation (1.102). We take advantage of this in
Chapter 4.

In passing we mention that equation system (1.102) can be efficiently solved
using a standard pseudospectral approach where derivatives are computed in real
space with discrete fast Fourier transform. This implies discrete representation
of the truncated function uN at grid values xi. Hence with the same number of
grid points, solutions of the both numerical methods for the KdV equation can
be compared in real space at these grid values. Alternatively, we can apply the
discrete Fourier transform to the solution u of the finite difference method (1.99)
and compare both methods in spectral representation.

While both numerical approximations of the KdV equation preserve the main
structure of the Hamiltonian PDE, they have different number of conserved quan-
tities which strongly constrain the dynamics and may affect statistical properties
[20, 21]. The best way to illustrate this is by expressing functional (1.103) in spectral
representation, i.e.

EN = 2π
∑

|n|≤N

1

2
ûnû

∗
n = πû20 + 2π

N∑

n=1

|ûn|2 = 2π
N∑

n=1

|ûn|2,
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where we can assume û0 = 0 up to a Galilean change of coordinates. This im-
plies that the dynamics of the Fourier coefficients are constrained to the (2N − 1)-
dimensional hypersphere, i.e. the phase space is compact. The finite difference
method does not share this property of the spectral representation and the asso-
ciated phase space is not compact, but R2N with the initial conditions satisfying
C(u) ≡ 0.

1.1.8 Geometric integrators

In this subsection we discuss time integration of Hamiltonian dynamics (1.42). We
refer readers to [37] for time integration methods of Poisson systems (1.80). When
constructing time integrators for Hamiltonian systems we are concerned with preser-
vation of symplecticity, first integrals and time reversibility. Volume preservation
follows from symplecticity.

Consider the canonical Hamiltonian system (1.55)–(1.56) with initial conditions
(q0, p0) and its approximation:

(qn+1, pn+1) = ΨτH(q
n, pn), (1.104)

where the discrete flow map ΨτH maps the discrete solution (qn, pn) ≈ (q(tn), p(tn))
at time tn to the discrete solution at time tn+1 with time step τ = tn+1 − tn for
n = 0, 1, . . . At time t = 0 we have that (q0, p0) ≡ (q0, p0) and we take τ = const
such that tn = nτ . Equation (1.104) defines a one-step numerical method and we
say that it is of order m if the local error at each time tn between the exact and
approximate solutions is O(τm+1), i.e.

ΦτH(qn, pn)−ΨτH(qn, pn) = O(τm+1).

We call the one-step method (1.104) symplectic if

dqn+1 ∧ dpn+1 = dqn ∧ dpn. (1.105)

Recall the second order Störmer-Verlet method (StV) (1.22)–(1.24) from Section
1.1.1. We show that StV method applied to the canonical Hamiltonian system with
separable Hamiltonian, i.e. H(q, p) = H1(p)+H2(q), is symplectic. Equations read:

p∗ = pn − τ

2
∇H2(q

n), (1.106)

qn+1 = qn + τ ∇H1(p
∗), (1.107)

pn+1 = p∗ − τ

2
∇H2(q

n+1). (1.108)

By differentiating equations (1.106)–(1.108) we arrive at the following system:

dp∗ = dpn +Adqn, (1.109)

dqn+1 = dqn + Bdp∗, (1.110)

dpn+1 = dp∗ + Cdqn+1, (1.111)
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where A, B and C are symmetric Hessian matrices, i.e.

A = −τ
2
∇qqH2(q

n), B = τ ∇ppH1(p
∗), C = −τ

2
∇qqH2(q

n+1).

Taking the wedge product of equation (1.111) with dqn+1 from the left and using
the property of the wedge product that dX ∧ AdX = 0 for any symmetric matrix
A we find:

dqn+1 ∧ dpn+1 = dqn+1 ∧ dp∗ = (⋄). (1.112)

Substituting dp∗ from (1.109) in (1.112) and using dqn+1 from (1.110) we get:

(⋄) = dqn+1 ∧ dpn + dqn+1 ∧ Adqn
= dqn ∧ dpn +Bdp∗ ∧ dpn + dqn ∧ Adqn +Bdp∗ ∧ Adqn
= dqn ∧ dpn +Bdp∗ ∧ (dpn +Adqn)

= dqn ∧ dpn +Bdp∗ ∧ p∗ = dqn ∧ dpn.

This completes the proof of the statement that the Störmer-Verlet method (1.22)–
(1.24) applied to canonical separable Hamiltonian systems is symplectic. For exam-
ple, in Chapter 2 we apply StV method (1.106)–(1.108) to Hamiltonian system of
semi-discretized Euler-Boussinesq equations (1.89)–(1.92).

In fact, StV method can be extended to general Hamiltonian systems (1.55)–
(1.56) and symplecticity of the method can be shown. The method reads:

qn+1/2 = qn +
τ

2
∇pH(qn, pn+1/2), (1.113)

pn+1/2 = pn − τ

2
∇qH(qn, pn+1/2), (1.114)

qn+1 = qn+1/2 +
τ

2
∇pH(qn+1, pn+1/2), (1.115)

pn+1 = pn − τ

2
∇qH(qn+1, pn+1/2). (1.116)

Note that the method (1.113)–(1.116) for separable Hamiltonian functions reduces
to (1.106)–(1.108) with p∗ = pn+1/2.

Symplecticity conservation (1.105) implies volume preservation in phase space
by the numerical method. In Section 1.1.1 all considered example equations were
canonical Hamiltonian systems. Hence all the numerical solutions of the StV method
were symplectic and volume preserving. This confirms the statement in Section
1.1.1 that the area in phase space enclosed by the numerical solutions of the trans-
formed Lotka-Volterra model (1.25)–(1.26) is preserved in time, see Figures 1.2(a)
and 1.2(b).

The Störmer-Verlet method is not the only existing symplectic method for Hamil-
tonian systems. The method belongs to the general class of symplectic partitioned
Runge-Kutta methods. On the another hand, the StV method (1.113)–(1.116) is also
a composition method of two symplectic partitioned Runge-Kutta methods. The
fact that the composition of symplectic methods is symplectic proves the statement
that method (1.113)–(1.116) is symplectic. The conditions for general Runge-Kutta
methods to be symplectic can be found in [37]. Additionally, we mention here the
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implicit midpoint method (second order symplectic Runge-Kutta method), which
preserves quadratic first integrals. We demonstrate this for the general Hamiltonian
system (1.42). The method reads:

Xn+1 = Xn + τJ ∇H
(
Xn+1/2

)
, Xn+1/2 =

Xn+1 +Xn

2
. (1.117)

The quadratic first integral of the system is defined by

I(X) =
1

2
XTAX,

where A ∈ Rn×n is a symmetric matrix. From (1.43) follows that

(AX)T J ∇H(X) = 0.

We multiply the first equation in (1.117) by
(
AXn+1/2

)T
from the left. We get that

(
AXn+1/2

)T
Xn+1 =

(
AXn+1/2

)T
Xn + τ

(
AXn+1/2

)T
J ∇H

(
Xn+1/2

)

=
(
AXn+1/2

)T
Xn.

Expanding both sides yields:

1

2
Xn+1TAXn+1 +

1

2
XnTAXn+1 =

1

2
XnTAXn +

1

2
Xn+1TAXn,

1

2
Xn+1TAXn+1 =

1

2
XnTAXn,

and proves the statement. In Chapter 4 we apply the implicit midpoint method to
the semi-discretized KdV and Burgers-Hopf equations (1.102) to exactly preserve
the quadratic invariant (1.103) in time. Conservation of linear invariants are shared
by all Runge-Kutta methods and a large class of partitioned Runge-Kutta methods,
including the StV method. Hence all these methods preserve linear Casimirs (1.51)
of Hamiltonian dynamics (1.42).

Consider the discrete flow map ΨτH of the Hamiltonian system (1.42). The exact

flow map ΦtH satisfies [ΦtH ]
−1

= Φ−t
H and is time reversible with respect to the linear

transformation (1.48)–(1.49) if

SΦtH(X) =
[
ΦtH
]−1

(SX).

If the discrete flow map ΨτH is invertible and satisfies

SΨτH(X
n) = [ΨτH ]

−1
(SXn),

then we call a flow map ΨτH and the method Xn+1 = ΨτH(Xn) time reversible with
respect to the transformation:

τ → −τ,
Xn → SXn.
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Additionally, we call a flow map ΨτH symmetric if [ΨτH ]
−1 = Ψ−τ

H . Hence the method
Xn+1 = ΨτH(Xn) is symmetric if exchanging Xn ↔ Xn+1 and τ ↔ −τ leaves the
method unaltered. For symmetric methods the time reversibility condition reduces
to

SΨτH(X
n) = Ψ−τ

H (SXn).

It is easy to see that the Störmer-Verlet method (1.113)–(1.116) and the implicit
midpoint method (1.117) are both symmetric methods and time reversible if the
continuous system is time reversible.

In Section 1.1.1 we saw that the StV method applied to the semi-discretized sine-
Gordon equations (1.34)–(1.36) does not conserve the Hamiltonian function (1.41)
exactly in time but up to the second order for long computational times. This
is a result of a theorem for symplectic methods applied to canonical Hamiltonian
systems. The theorem rests on regularity assumptions for the Hamiltonian function
and flow maps, as well as on assumptions about the phase space, solutions of the
numerical method and backward error analysis. In backward error analysis we are
concerned with the derivation of the modified differential equations for which a
numerical method with fixed time step τ is “exact”, i.e.

dX

dt
= JId∇H(X) + τf1(X) + τ2f2(X) + . . . , X(0) = X0, (1.118)

where X ∈ R2n. The correction terms to the Hamiltonian system in (1.118) form
an asymptotic expansion with respect to time step τ . Note that in general the
expansion does not converge. We saw an exceptional case in Section 1.1.1 where we
derived the modified Hamiltonian system (1.17)–(1.18) for the StV method applied
to the linear Harmonic oscillator equations (1.1)–(1.2). There the result followed
directly from the dispersion relation.

For a symplectic method Xn+1 = ΨτH(X
n) applied to the Hamiltonian system

with smooth Hamiltonian on a simply connected phase space Ω, it can be shown
that there exist smooth functions Hi : Ω → R for i = 1, 2, . . . , such that fi(X) =
JId∇Hi(X). This implies that after truncation the modified equation (1.118) is a
Hamiltonian system itself with modified Hamiltonian

H[i](X) = H(x) + τH1(X) + τ2H2(X) + · · ·+ τ iHi(X)

and flow map ΦtH[i]
. In fact, if the method is of order m > 1 then fi(X) = 0 for

1 ≤ i ≤ m− 1.
With an analytic Hamiltonian H(X) and if the flow maps ΨτH and ΦtH[i]

are

analytic and bounded on an open (complex) neighborhood of a compact subset
K ⊂ Ω of phase space, i.e. flow maps have convergent Taylor expansions in open set
and their derivatives can be estimated, then estimates can be derived for all X0 ∈ K:

∥∥∥ΨτH(X0)− ΦτH[i]
(X0)

∥∥∥ ≤ c1τ(c2(i+ 1)τ)i+1,

where c1, c2 > 0 are independent of i and τ . The expression on the right hand side
as a function of i > 0 for fixed value of τ shows that asymptotic expansion in (1.118)
converges before it starts to diverge. By taking i = i∗ where i∗ is equal to the integer
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part of 1/(τc2e)− 1 and γ = 1/(c2e), we can make the estimate exponentially small
with respect to the time step τ , i.e.

∥∥∥ΨτH(X0)− ΦτH[i∗]
(X0)

∥∥∥ ≤ 3c1τe
−γτ−1

. (1.119)

From the same regularity assumptions follow the existence of a global τ -independent
Lipschitz constant λ > 0 for the modified Hamiltonian H[i∗], and if Xn∗ ∈ K for all
n∗ = 1, . . . , n where Xn∗ = ΨτH(X

n∗−1) then together with estimate (1.119) we can

estimate its error over exponentially long time intervals tn = nτ ≤ e
1
2γτ

−1

:
∥∥H[i∗](X

n)−H[i∗](X0)
∥∥ ≤ 3λnτc1e

−γτ−1 ≤ 3λc1e
− 1

2γτ
−1

.

For a method of order m the modified Hamiltonian with i = i∗ is

H[i∗](X) = H(X) + τmHm(X) + τm+1Hm+1(X) + · · ·+ τ i∗Hi∗(X).

Since Hm(X) + τHm+1(X) + · · ·+ τ i∗−mHi∗(X) is uniformly bounded on K inde-
pendently of τ and i∗, we find that

H(Xn)−H(X0) +O (τm) = H[i∗](X
n)−H[i∗](X0),

H(Xn)−H(X0) +O (τm) = O
(
e−

1
2γτ

−1
)
,

H(Xn)−H(X0) = O (τm)

over exponentially long time intervals tn ≤ e
1
2γτ

−1

. This completes the discussion
of the necessary ingredients for the proof of the following theorem. The numerical
results supporting the theorem can be seen in Figures 1.3(a) and 1.3(b).

Theorem 1.1.8.1. Consider a symplectic method Xn+1 = ΨτH(Xn) with time step
τ applied to the Hamiltonian system with analytic Hamiltonian function H(X) :
Ω → R where Ω ⊂ R2n is simply connected open set. If the numerical solution
stays in the compact set K ⊂ Ω for X0 ∈ K, then there exists γ > 0 and i∗ such that

H[i∗](X
n)−H[i∗](X0) = O

(
e−

1
2γτ

−1
)
,

H(Xn)−H(X0) = O (τm)

over exponentially long time intervals nτ ≤ e
1
2 γτ

−1

.

In passing we describe the second order symplectic, symmetric and time re-
versible method used in Chapter 3 for Hamiltonian systems with holonomic con-
straints (1.69)–(1.71), the RATTLE algorithm:

qn+1 = qn + τM−1pn+1/2,

pn+1/2 = pn − τ

2
∇V (qn)− τ

2
∇g(qn)Tλ1,

0 = g(qn+1),

pn+1 = pn+1/2 − τ

2
∇V (qn+1)− τ

2
∇g(qn+1)Tλ2,

0 = g(qn+1)M−1pn+1.
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The RATTLE algorithm ensures that if (qn, pn) ∈ T M then also (qn+1, pn+1) ∈
T M, where the tangent bundle T M is an associated phase space of (1.69)–(1.71).
The Lagrange multiplier λ1 enforces the constraint 0 = g(qn+1) such that qn+1 ∈ M
and the Lagrange multiplier λ2 enforces that pn+1 belongs to the tangent plane of
the constraint manifold M at position qn+1.

This concludes the introductory section to geometric numerical integration.

1.2 Thermostated dynamics

Thermostats, applied to Hamiltonian systems, are in principle artificial modelling
devices. Motivation for their use depends on the problem at hand: for example
in constant temperature molecular dynamics enforcing the system to be in thermal
equilibrium with their surroundings or modelling small scales in geophysical fluid
dynamics [22]. Due to the limitations of computer power we are motivated to think
about model reduction techniques with applications to molecular simulations, cli-
mate modelling and turbulence. We find that thermostat methods may serve this
purpose well, especially, when we are concerned with statistical properties of the
underlying model, such as an invariant probability density function and autocorre-
lation functions.

There are situations when statistical results on a dynamical system are the only
meaningful statements we can make about the behaviour of solutions of the system,
e.g. when dealing with chaotic (unpredictable, sensitive to initial conditions) dynam-
ical systems or when considering microscopic scale modelling subject to stochastic
(Brownian) motion. In these situations the single trajectory of the solution is mean-
ingless and we have to rely on the statistical properties of the dynamical system.

In our terminology thermostat methods refer to stochastic-dynamical thermo-
stats, since we stochastically perturb model equations (Hamiltonian dynamical sys-
tems), such that the resulting SDEs sample particular probability distribution, mea-
sure of the phase space. We have two objectives: sampling of the probability density
function and computation of the autocorrelation functions as a measure of dynam-
ical properties. To achieve these objectives we are concerned with the construction
and use of gentle and efficient thermostat methods. Gentleness stands for the small
errors in the autocorrelation functions and efficiency stands for optimal compromise
between sampling rates and gentleness, which are in principle contradictory. Ulti-
mately, we can only judge the efficiency of the thermostat method by comparing
it to other thermostat methods. The concept of an efficient thermostat method is
explored in Chapters 3 and 4.

In the following subsections we give a brief introduction to the concept of ergod-
icity and discuss its importance to statistical mechanics, thermostated dynamics and
computational methods. In Sections 1.2.1–1.2.3 we describe the microcanonical and
canonical ensembles considered in Chapters 3 and 4. Introduction to thermostats is
presented in Section 1.2.4 with discussion of theoretical aspects of the methods. In
Section 1.2.5 we describe the time integration algorithms for thermostated dynamics.

Most of the material presented in this section can be found in the following
references: Bühler [5], Leimkuhler [59], Leimkuhler & Reich [63], Pavliotis & Stuart
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[94], Khinchin [51], Penrose [95], Kloeden & Platen [53].

1.2.1 The ergodic hypothesis

In statistical mechanics the ergodic hypothesis refers to the attempt for providing
a dynamical basis for statistical mechanics. It states that the time average value
of an observable function of the dynamics is equivalent to an ensemble average,
i.e. an average over the large number of different dynamical states (microstates)
with identical thermodynamic properties. Indeed, this appears to be the case when
the dynamical system is ergodic. Throughout the thesis we address ergodicity as a
question of the existence and uniqueness of a unique invariant measure under the
dynamics, for both ODEs and SDEs. While the presentations are different, the
goal remains the same. In this subsection we discuss the mathematical theory of
ergodicity for autonomous dynamical systems.

In statistical mechanics thermodynamic properties such as energy or temperature
refer to the thermodynamic state (macrostate) of the system. In general, for a
given phase space Ω and a probability measure µ, one has defined an ensemble.
The ensemble represents the configurations (microstates) of the system and the
probability of realizing each configuration. In this thesis we are concerned with
three ensembles: the microcanonical and canonical ensembles, as well as the mixed
canonical ensemble.

The microcanonical ensemble describes a completely isolated system with a fixed
number of particles, with a fixed volume and a fixed energy, and respects all the
other conservation laws of the system, if such exist. In an isolated system, when at
equilibrium, each of its accessible microstates is equally probable, the fundamental
postulate in statistical mechanics.

The canonical ensemble describes a system with a fixed number of particles and
a fixed volume in thermal equilibrium with its surrounding (energy reservoir, heat
bath). The system may exchange energy with the energy reservoir only in the
form of heat. The mixed canonical ensemble is the canonical ensemble extended to
systems with additional conservation laws and constraints.

Correcting the measure, sampling the canonical ensemble and recreating scenario
of the energy exchange with a reservoir is one of the main reasons for introducing
thermostat methods. We discuss in detail the microcanonical and canonical statis-
tical mechanics in Sections 1.2.2 and 1.2.3, respectively. The latter also contains a
motivation for using thermostat methods.

Recall the objective of this subsection is to discuss the mathematics of the ergodic
hypothesis and lay down the background for microcanonical statistical mechanics,
which is the subject of the next subsection. To make this discussion more precise
we recall some basic concepts and results from ergodic theory. Let a triple (Ω,A, µ)
denote a probability space where A is a σ-algebra of Ω and µ : A → [0, 1] is a
probability measure. The collection of subsets of a set Ω is called σ-algebra if it
contains Ω and is closed under the operations of taking complements and countable
unions of its elements. A function µ is a probability measure if µ(Ω) = 1, µ(∅) = 0
and if for a countable collection of pairwise disjoint sets An ∈ A, i.e. An ∩ Am = ∅
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for n 6= m, it holds that

µ

(
∞⋃

n=1

An

)
=

∞∑

n=1

µ(An).

We write L1(Ω,A, µ) for the space of all functions F : Ω → R that are integrable
with respect to the measure µ, i.e. F is µ-measurable and

∫
Ω
|F | dµ < ∞. We say

that function F is µ-measurable if F−1(D) ∈ A for every Borel subset D ∈ B(R).
The Borel σ-algebra B(R) is a smallest σ-algebra containing all the open subsets of
R. The space average (ensemble average) of function F is defined by

〈F 〉 =
∫

Ω

F dµ. (1.120)

Let Φ : Ω → Ω be a µ-measurable transformation, i.e. Φ(A)−1 ∈ A for all A ∈ A.
With a set {Φn(X0)}∞n=0 we denote the orbit of X0 ∈ Ω. Then we can define the
discrete time average of F ∈ L1(Ω,A, µ) along the orbit of X0 by

F̄D(X0) = lim
n→∞

1

n

n−1∑

k=0

F (Φk(X0)).

We say that Φ is measure preserving (µ is an invariant measure for Φ) if

µ(Φ(A)) = µ(A), ∀A ∈ A.

For measure preserving transformations Φ the following theorem is a basic result
about the distribution of orbits, the Poincaré recurrence theorem:

Theorem 1.2.1.1. Let Φ : Ω → Ω be a measure preserving transformation of
(Ω,A, µ) and let A ∈ A have µ(A) > 0. Then for µ-a.e. X0 ∈ A, the orbit
{Φn(X0)}∞n=0 returns to A infinitely often.

A set A ∈ A is an invariant of transformation Φ if

Φ(A) = A.

A transformation Φ is called ergodic if every invariant set A ∈ A of Φ is such that
either µ(A) = 0 or µ(A) = 1. If there is a unique Φ-invariant probability measure
then we say that Φ is uniquely ergodic. The basic result in ergodic theory is the
pointwise Birkhoff’s ergodic theorem:

Theorem 1.2.1.2. Let Φ : Ω → Ω be a measure preserving transformation of
(Ω,A, µ). Then for any F ∈ L1(Ω,A, µ) the limit F̄D := F̄D(X0) exists for µ-a.e.
X0 ∈ Ω. The limit F̄D ∈ L1(Ω,A, µ) is Φ invariant, i.e. F̄D(Φ(X0)) = F̄D(X0),
and the space integrals are equal, 〈F 〉 =

〈
F̄D
〉
. If the transformation Φ is ergodic,

then F̄D is constant and F̄D = 〈F 〉 for µ-a.e. X0 ∈ Ω.

As a direct consequence of the ergodic Theorem 1.2.1.2 we can define the relative
measure of any subset A ∈ A :

µr(A) = lim
n→∞

1

n

n−1∑

k=0

1A(Φ
k(X0)),



1.2. Thermostated dynamics 39

where 1A is an indicator function of A, i.e.

1A(X) =

{
1, X ∈ A,
0, X /∈ A.

The relative measure µr measures the proportion of time that orbits of transforma-
tion Φ spend in a given subset of A.

Let us illustrate how the theoretical considerations above translate to an au-
tonomous dynamical system with phase space Ω ⊂ Rn:

dX

dt
= f(X), X(0) = X0, (1.121)

where X ∈ Rn and function f(X) : Rn → Rn is divergence-free, i.e. ∇ · f(X) = 0.
With A we will denote the σ-algebra of all open subsets of phase space Ω. We
will restrict our discussion to finite phase spaces Ω, i.e.

∫
Ω
dX < ∞, such that all

open subsets of Ω are finite. The flow map of system (1.121) is indicated by Φt

where t ∈ R. In Section 1.1.2 we noted that divergence free property of the right
hand side vector field of the autonomous dynamical system plays an important role
in statistical mechanics. Why it is important will become clear in the following
discussions.

From the divergence free property of f(X) follows that Φt is volume preserving,
see Section 1.1.2. Hence it guaranties the conservation of the phase space volume
element dX and induces measure on A, i.e.

vol{A} =

∫

A

dX, ∀A ∈ A.

Since flow map Φt is volume preserving, it is measure preserving, i.e.

vol{Φt(A)} = vol{A}, ∀A ∈ A, t ∈ R.

With the restriction to finite phase spaces Ω, the measure is normalizable and we
can apply the Poincaré recurrence Theorem 1.2.1.1. This implies that for almost
every initial conditions X0 ∈ A, where A ∈ A and vol{A} > 0, the trajectory (orbit)
defined by infinitely iterated map Φn where n ∈ Z will return to subset A infinitely
often. Note that the recurrence theorem holds only if the phase space Ω is finite,
since the proof of Theorem 1.2.1.1 strictly relies on the fact that the measure is
finite.

With L1(Ω) we identify the space of integrable functions F (X) : Ω → R on
(Ω,A) with respect to the Lebesgue measure dX , that is, F (X) is Lebesgue mea-
surable and

∫
Ω
|F (X)| dX <∞. The continuous time average of integrable function

F (X) is defined by

F̄ = lim
T→∞

1

T

∫ T

0

F (X(t)) dt, X(t) = Φt(X0). (1.122)

Indeed, generalization of Birkhoff’s ergodic theorem implies that the time average
F̄ exists for almost all initial conditions X0 ∈ Ω, but time averages may still be
dependent on the initial condition.



40 Chapter 1. Geometric Integration & Thermostats

To achieve the desirable result we consider invariant subsets of phase space Ω.
We call a subset A ∈ A invariant if all trajectories which start in A never leave
it, i.e. if X0 ∈ A then Φt(X0) ∈ A for all times t. If subset A is not metrically
decomposable, i.e. set A cannot be split into two disjoint invariant subsets A1 and
A2 with nonzero volume, and if X0 ∈ A, then system (1.121) is ergodic on invariant
subset A and generalization of Birkhoff’s ergodic theorem implies that for almost all
initial conditions X0 ∈ A time average (1.122) of function F (X) ∈ L1(Ω) is equal
to the space average (1.120) with respect to Lebesgue measure, i.e.

F̄ =
1

vol{A}

∫

A

F (X) dX.

If the invariant subset A is metrically decomposable, i.e. A can be split into two
invariant subsets A1 and A2 with nonzero volume, then the trajectory emanating
from any point X0 in A1 will always stay in A1 and will never reach subset A2, and
vice versa. Hence system (1.121) would be not ergodic on the whole subset A.

The general observation of the discussion above is that for the system (1.121) to
be ergodic on the whole phase space Ω, this phase space must be finite and metrically
indecomposable. If the phase space Ω has metrically indecomposable invariant sub-
sets of the flow map Φt then the system (1.121) can be ergodic only on these subsets,
provided that the initial condition X0 is in one of those sets. Unfortunately, there
is no general method for finding such metrically indecomposable invariant subsets
in practical problems.

The main essence of ergodic systems is that trajectories visit the whole of the
invariant and metrically indecomposable phase space while spend the same propor-
tion of time in any of its subsets. Then time averages (1.122) converge to a value
that is independent of the initial conditions and equal to space averages (1.120).
From the point of view of practical applications, approximation of space average
integral by numerical quadrature is in general prohibitively expensive due to the
large dimension of X . If the system is ergodic, then instead of space averages we
can compute time averages in a much less expensive manner.

For example, recall the harmonic oscillator equations (1.1)–(1.2). We assume
that the frequency ω = 1 such that the total energy is H(x, y) = 1

2 (y
2 + x2) and

defines circles as closed orbits in the phase space R2. We restrict our discussion to
the finite phase space, in particular a finite open ball centered at the origin (0, 0).
The right hand side vector field of (1.1)–(1.2) is divergence free, hence the flow
map is volume (measure) preserving. From the analytical solution (1.3) we identify
invariant sets by considering any enclosed area between two energy values E1 and E2

where E1 < E2. Clearly, these invariant sets are metrically decomposable and the
system is not ergodic on these invariant sets. This is because the harmonic oscillator
has a conserved quantity, the energy, and dynamics is constrained on periodic orbits
in the phase space.

This leads us to the general observation that for general Hamiltonian systems
on phase space Ω ⊂ Rn (we restate equation (1.42)):

dX

dt
= J ∇H(X), X(0) = X0, (1.123)



1.2. Thermostated dynamics 41

where X ∈ Rn and the Hamiltonian is a conserved quantity of dynamics, the surface
of constant H(X) = E separates the phase space into slices of invariant subspaces,
which breaks the assumptions of Birkhoff’s theorem. This suggests considering
an infinitesimal phase space volume in the neighbourhood of H(X) = E, i.e. the
subspace

D(E, dE) = {X ∈ Rn | H(X) ∈ [E;E + dE]} ,
for which Birkhoff’s theorem may apply. Then the density corresponding to the
phase-space volume D(E, dE) is

ρ(X) =

{
0, H(X) /∈ [E;E + dE],
1/vol{D}, H(X) ∈ [E;E + dE],

where we assumed that the surface H(X) = E is finite and connected. In the
limit dE → 0 the density ρ(X) becomes concentrated on the surface H(X) = E.
By using Dirac delta function, the limiting density becomes a singular measure
(microcanonical ensemble):

ρmc(X) =
1

Σ(E)
δ(H(X)− E), Σ(E) =

∫

Ω

δ(H(X)− E) dX. (1.124)

The microcanonical measure ρmc(X) depends on X only through the Hamiltonian
H(X) which is a constant of the motion; therefore, ρmc(X) is a stationary measure.
Recall that the Hamiltonian system (1.123) may have other conserved quantities,
the first integrals of the system, including the Casimirs. In particular, if (1.123)
admits preciselym+1 independent first integralsH(X), I1(X), . . . , Im(X), then the
subspace D must be restricted to the infinitesimal shell around a surface determined
by all first integrals of the system. Hence

ρmc(X) ∝ δ(H(X)− E)δ(I1(X)− I01 ) · · · δ(Im(X)− I0m).

For the harmonic oscillator considered above, the equations satisfy a form of
ergodicity on the subspace

D(E, dE) =

{
x, y ∈ R

∣∣∣∣
1

2

(
y2 + x2

)
∈ [E;E + dE]

}
, dE → 0,

which is an invariant set of the dynamics and metrically indecomposable. Consider
the analytical solution (1.3) of the harmonic oscillator equations (1.1)–(1.2) with ω =
1 and observable F (x(t), y(t)) = 1

2y(t)
2, the kinetic energy. Since the Hamiltonian

function H(x, y) = 1
2 (y

2 + x2) = E, where E is a positive constant, defines an
equation for a circle in R2, we introduce a polar coordinate transformation:

x =
√
2E cos(φ),

y =
√
2E sin(φ),

where φ ∈ [0; 2π]. Then

Σ(E) =
√
2E

∫ 2π

0

dφ = 2π
√
2E
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and straightforward computations show that the time average of F is F̄ = 1
2E and

the space average is

〈F 〉 = 1

2π
√
2E

∫

Ω

1

2
y2δ(H(x, y)− E) dxdy =

E

2π

∫ 2π

0

sin(φ)2 dφ =
1

2
E.

Hence F̄ = 〈F 〉. The fact that the time average of kinetic energy is half of the total
energy is a consequence of the Virial theorem, which states that, on average, the
kinetic and potential energy share the total energy equally.

1.2.2 Microcanonical statistical mechanics

In this subsection we discuss the concepts of the microcanonical entropy and the mi-
crocanonical statistical temperature. Consider Hamiltonian system (1.123) with its
microcanonical ensemble (1.124). For our discussion we assume that the Hamilto-
nian H(X) is the only conserved quantity of (1.123). We refer to the normalization
constant Σ(E) in (1.124) as the limiting measure of the surface H(X) = E. For
example, in the previous subsection we saw that for the harmonic oscillator the
limiting measure of the surface 1

2 (y
2 + x2) = E is the circumference of the circle,

i.e. Σ(E) = 2π
√
2E.

The microcanonical entropy as a function of E is defined by

S(E) = lnΣ(E),

which is a monotonically increasing function with respect to Σ(E). The importance
of the logarithm follows from the consideration of two independent systems A and
B with state variables XA ∈ ΩA and XB ∈ ΩB, respectively. For each system
we define the energy functions: HA(XA) = EA and HB(XB) = EB, which are
conserved quantities of each individual system. Hence both systems are equipped
with the microcanonical ensemble and the associated limiting measures of surfaces
are

ΣA(EA) =

∫

ΩA

δ(HA(XA)− EA) dXA, ΣB(EB) =

∫

ΩB

δ(HB(XB)− EB) dXB.

Then the total measure for independent systems is given by

Σ(EA, EB) = ΣA(EA)ΣB(EB)

=

∫

ΩA

∫

ΩB

δ(HA(XA)− EA)δ(HB(XB)− EB) dXA dXB

and the corresponding entropy of Σ(EA, EB) is

S(EA, EB) = lnΣ(EA, EB) = lnΣA(EA) + lnΣB(EB) = SA(EA) + SB(EB).

This shows that the entropy is additive for the independent systems. In general, this
is not true for coupled systems. In the following we consider the simplest form of
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coupling which allows energy to be exchanged between two systems A and B. The
total energy of the coupled system AB is defined by

H = H(XA, XB) = HA(XA) +HB(XB) = E.

The phase space ΩAB of the coupled system AB is the product space ΩA×ΩB and
the associated microcanonical ensemble of the system AB is

ρmc(XA, XB) =
1

Σ(E)
δ(H(XA, XB)− E), (1.125)

Σ(E) =

∫

ΩA

∫

ΩB

δ(H(XA, XB)− E) dXA dXB.

Note that
Σ(E) 6= ΣA(EA)ΣB(EB).

Hence for the coupled systems A and B:

S(E) 6= SA(EA) + SB(EB).

Now we ask what is the probability of a particular state XA under the condition
that the joint system AB satisfies the microcanonical dynamics with the total energy
H = E. The probability density function (1.125) in XB for fixed XA = X̄A is simply

ρmc(X̄A, XB) =
1

Σ(E)
δ(H(X̄A, XB)− E) =

1

Σ(E)
δ(HA(X̄A) +HB(XB)− E).

To find the probability of a particular state XA, we integrate the density function
ρmc(XA, XB) over all states of XB ∈ ΩB, i.e.

P {XA | H = E} =

∫

ΩB

ρmc(XA, XB) dXB (1.126)

=
1

Σ(E)

∫

ΩB

δ(HA(XA) +HB(XB)− E) dXB =
ΣB(E −HA(XA))

Σ(E)
.

This probability will be of use in the next subsection.
Now we ask what is the probability that HA = EA under the condition that H =

E. The probability density function (1.125) reduces to the conditional probability
density function

ρmc(XA, XB|HA = EA) =
1

Σ(E)
δ(EA +HB(XB)− E)δ(HA(XA)− EA).

To find the probability we integrate ρmc(XA, XB|HA = EA) over all states of XA ∈
ΩA and XB ∈ ΩB:

P {HA = EA | H = E} =

∫

ΩA

∫

ΩB

ρmc(XA, XB|HA = EA) dXA dXB

=
1

Σ(E)

∫

ΩA

δ(HA(XA)− EA) dXA

∫

ΩB

δ(EA +HB(XB)− E) dXB

=
ΣA(EA)ΣB(E − EA)

Σ(E)
.
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To find the most probable occurring macrostate EA, which characterises the
most likely energy split of H = E into HA = EA and HB = E − EA, we consider
maximization problem:

max
EA

[ΣA(EA)ΣB(E − EA)] .

In terms of entropies the maximization problem reduces to

max
EA

[SA(EA) + SB(E − EA)] .

Thus the most probable macrostate EA occurs at the maximum of the total en-
tropy. With the formal assumption that the function in the maximization problem
is differentiable, the maximum then occurs at E∗

A and we obtain:

∂SA
∂EA

∣∣∣∣
EA=E∗

A

=
∂SB
∂EB

∣∣∣∣
EB=E−E∗

A

.

This condition has motivated the definition of the microcanonical statistical temper-
ature T by

∂S(E)

∂E
=

1

T
,

such that TA = TB at the most probable macrostate E∗
A. In practice we adopt the

inverse statistical temperature β = 1/T.
So far we have not specified anything about the relative sizes of the systems

A and B in the coupled system AB. We address this question in the following
subsection.

1.2.3 Canonical statistical mechanics

We proceed as in the previous subsection and consider a coupled system AB. In this
subsection we will consider the special case when system B in the coupled system
AB is very large relative to system A. The very large system B is called an energy
reservoir for system A. Then, if the entropy SB(E −EA) is slowly varying over the
relevant range of EA, we can greatly simplify the computation of the probabilities
for system A. We rewrite the probability (1.126) of XA in terms of the entropy of
the system B, i.e.

P {XA | H = E} =
exp (SB(E − EA))

Σ(E)
,

where EA = HA(XA). By Taylor expansion of the entropy function SB(E − EA)
around the value of the total energy E and by truncating it after one term, we
obtain:

P {XA | H = E} ∝ exp (SB(E)− βBEA) ∝ exp (−βBEA) ,
where the inverse statistical temperature βB is evaluated at E and the constant term
SB(E) has been absorbed into the normalization constant. In practical applications
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it is common to consider, as a good starting point, a perfect reservoir, which is
characterized by constant inverse temperature β.

Consider the Hamiltonian system (1.123) in place of system A and system B
being an energy reservoir to system A. Then EA = H(X), and the derivation
above motivates the introduction of the canonical probability distribution (canonical
ensemble) of a system (1.123) with an energy reservoir:

ρc(X) =
1

Σ(β)
exp(−βH(X)), Σ(β) =

∫

Ω

exp(−βH(X)) dX. (1.127)

Clearly, a typical trajectory of (1.123) does not ergodically sample a distribu-
tion like (1.127). Due to preservation of the Hamiltonian H(X) there is no energy
exchange between systems A and B, since HA = const for all times. In molecular
dynamics it is desirable to sample distributions like (1.127) and a number of mech-
anisms have been introduced to model the thermal exchange with the reservoir.
These thermostats perturb the Hamiltonian vector field so typical trajectories do er-
godically sample the correct distribution. We describe various thermostat methods
in the following subsection.

In passing we mention that if the initial condition X0 of the general system
(1.121) is a random variable with the probability density function ρ0(X) : Ω → R,
so that X(t) solving (1.121) is a random variable, then a probability density function
ρ(X, t) : Ω×R → R, satisfying

∫

Ω

ρ(X, t) dX = 1, ρ(X, t) ≥ 0 ∀ t ∈ R, (1.128)

is transported under the flow of (1.121) according to the Liouville equation:

∂

∂t
ρ(X, t) = L∗ρ(X, t) = −∇ · (f(X)ρ(X, t)), ρ(X, 0) = ρ0(X). (1.129)

The Liouville operator L∗ is the formal L2-adjoint operator of the generator L,
where

LF (X) = f(X) · ∇F (X),

for F (X) some observable. If function f(X) is divergence-free, then L = −L∗. Re-
call that if X(t) solves (1.121) and V (X) : Ω → R is any continuously differentiable
function, then

d

dt
V (X(t)) = LV (X(t)). (1.130)

We say that the probability density function ρ(X) is a stationary density function
of the Liouville equation (1.129) if

L∗ρ(X) = 0.

For the Hamiltonian system (1.123) the canonical probability distribution function
(1.127) is a stationary density function, since

L∗ρc(X) = −ρc(X)∇ · (J ∇H(X)) + βρc(X)∇H(X)TJ ∇H(X) = 0. (1.131)

In fact, any density function dependent only on the Hamiltonian H(X) and/or any
other first integral of the system (1.123) is a stationary density function of the
Liouville equation (1.129).
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1.2.4 Stochastic-dynamical thermostats

In this subsection we introduce stochastic-dynamical thermostat methods applied
to the Hamiltonian system (1.123) for sampling the canonical distribution function
(1.127). We begin our introduction with the definition of Wiener process.

A one-dimensional Wiener process (also called Brownian motion) is a stochastic
process {w(t)}t≥0 with the following properties: w(0) = 0, the function w(t) is con-
tinuous in t with probability 1, the process has stationary, independent increments
and the increment wt − ws ∼ N (0, t− s) for all 0 ≤ s < t, i.e. normally mean zero
distributed with variance t − s. The term stationary increments means that the
distribution of wt − ws is independent of s, and so identical to the distribution of
wt. The term independent increments means that for nonoverlapping time intervals
the respective increments are jointly independent.

Consider a stochastic differential equation system defined on Ω ⊂ Rn:

dX = f(X) dt+Σ(X) dW, X(0) = X0, (1.132)

where X ∈ Rn, f(X) : Ω → Rn and Σ(X) : Ω → Rn×m are smooth functions of X ,
and W (t) is a vector of m ≤ n independent Wiener processes. We assume that the
distribution of X has a probability density function ρ(X, t) : Ω×R → R satisfying
conditions (1.128) and X0 is a random variable with density ρ0(X) : Ω → R. Then
ρ(X, t) satisfies the Fokker-Planck equation, also known as forward Kolmogorov
equation:

∂

∂t
ρ(X, t) = L∗ρ(X, t) = −∇ · (f(X)ρ(X, t)) (1.133)

+
1

2
∇ · ∇ · (Σ(X)Σ(X)T ρ(X, t)), ρ(X, 0) = ρ0(X),

where ∇ · A(X) denotes the divergence over the columns of matrix A(X) for each
row.

The Fokker-Planck operator L∗ is the formal L2-adjoint operator of the generator
L defined by

LF (X) = f(X) · ∇F (X) +
1

2
Σ(X)Σ(X)T : ∇∇F (X),

where ∇∇F denotes the Hessian matrix of F and A : B = trace(ABT ), that is, the
sum over all components of the element-wise product of matrices A and B. For any
twice continuously differentiable function V (X) : Ω → R, evaluated at the solution
of (1.132), the generator L yields Itô’s formula:

dV (X) = LV (X) dt+ 〈∇V (X),Σ(X) dW 〉,
where 〈·, ·〉 denotes Euclidean inner product in Rn. Note that if Σ ≡ 0 we recover
equation (1.130) and the Fokker-Planck equation (1.133) reduces to the Liouville
equation (1.129).

The density function ρ(X) is an equilibrium (stationary) density function of the
system (1.132) if it is a stationary solution of the Fokker-Planck equation (1.133),
i.e.

L∗ρ(X) = 0.
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For example, consider the scalar Ornstein-Uhlenbeck (OU) process on R:

dξ = −γξ dt+ σ dw, ξ(0) = ξ0, (1.134)

where ξ ∈ R, γ, σ > 0 and w(t) is a scalar Wiener process. With α = 2γ/σ2, the
normal distribution density function with mean zero and variance α−1, i.e.

ϑ(ξ) =

√
α

2π
exp

(−α
2
ξ2
)
, (1.135)

satisfies the stationary Fokker-Planck equation

γ
∂

∂ξ
(ξϑ(ξ)) +

1

2
σ2 ∂

2

∂ξ2
ϑ(ξ) = 0. (1.136)

It is well known that the density (1.135) is the unique steady state solution of
the Fokker-Planck equation associated to the Ornstein-Uhlenbeck process (1.134).
Hence, solutions of (1.134) ergodically sample (1.135). Recall that the OU process
has an analytical solution:

ξ(t) = e−γtξ0 + σ

√
1− e−2γt

2γ
∆w, (1.137)

where ∆w ∼ N (0, 1), that is, normally mean zero distributed random number with
unit variance. Hence the time dependent expectation values of ξ and its variance
are

E{ξ(t)} = e−γtξ0, E{(ξ(t) −E{ξ(t)})2} =
1

α

(
1− e−2γt

)
,

i.e. E denotes at given time t the mean value over all realizations of ∆w. In time,
when t→ ∞, expectation values converge to the ensemble averages in the measure
(1.135):

〈ξ〉 =
√

α

2π

∫

R

ξ exp

(−α
2
ξ2
)

dξ = 0, 〈ξ2〉 =
√

α

2π

∫

R

ξ2 exp

(−α
2
ξ2
)

dξ =
1

α
,

respectively.
The Fokker-Planck equation (1.133) is a second order partial differential equation

and the associated operator L∗ is a second order differential operator. Any second
order differential operator P with C∞ coefficients is called hypoelliptic on an open
set U if all distributional solutions ρ of the differential equation Pρ = 0 are C∞. A
sufficient criterion for hypoellipticity is provided byHörmander’s condition. Let U ⊂
Rn be an open set, let V0(X) : U → Rn be a vector filed and let I(V0, V1, . . . , Vm)
denote the ideal of the vector fields Vk(X) : U → Rn with k = 1, . . . ,m within the
Lie algebra generated by all of the {V0(X), . . . , Vm(X)}:

I(V0, V1, . . . , Vm) = {Vk0 , [Vk0 , Vk1 ], [[Vk0 , Vk1 ], Vk2 ], . . . },
where [·, ·] denotes the commutator of vector fields, k0 takes values in the set
{1, . . . ,m}, and k1, k2, etc. take values in {0, . . . ,m}. Then the vector fields
V0(X), . . . , Vm(X) satisfy Hörmander’s condition at X ∈ U if

Rn ⊂ span I(V0, V1, . . . , Vm).



48 Chapter 1. Geometric Integration & Thermostats

The main application of Hörmander’s condition is the following theorem, Hörman-
der’s theorem:

Theorem 1.2.4.1. Let U ⊂ Rn be open and let V(X) = [V1(X)V2(X) . . . Vm(X)]
be a matrix of vector fields V1(X), . . . , Vm(X). If Hörmander’s condition Rn ⊂
span I(V0, V1, . . . , Vm) is satisfied at every X ∈ U , then the operator P which is
defined by

Pρ(X) = −∇(V0(X)ρ(X)) +
1

2
∇ · ∇ · (V(X)V(X)T ρ(X)),

where ρ(X) : U → R, is hypoelliptic.

Clearly, hypoellipticity provides smoothness for stationary solutions of Fokker-
Planck equation (1.133), if the associated ideal of vector fields V0(X) = f(X) and
Vk(X) = Σ(X)k, where Σ(X)k is the kth column of matrix Σ(X), span Rn at every
X ∈ Ω. For example, the trivial case is when Σ(X) ≡ In where In ∈ Rn×n is an
identity matrix. Hörmander’s condition is automatically satisfied, since the column
vectors of In form a basis of Rn.

In the following we assume that the solutions of (1.132) exist for all times. If
there exists everywhere a positive stationary density function ρ(X) of the Fokker-
Planck equation (1.133) on an open, connected set Ω ⊂ Rn, that is invariant under
the flow (1.132), and Hörmander’s condition is satisfied at every X ∈ Ω, then ρ(X)
is the unique invariant measure on Ω, and hence ergodic. Thermostated dynamic
equations, presented in the following, are ‘special’, in the sense that the invariant
measure is known by construction. Hence our main concern is to verify Hörmander’s
condition. Often, in practical applications, we can only rely only on the numerical
verification of ergodicity.

As the first thermostat method, applied to the Hamiltonian system (1.123), we
mention the generalized Langevin dynamics on phase space Ω ⊂ Rn:

dX = J ∇H(X) dt− β

2
ΣΣT ∇H(X) dt+ΣdW, (1.138)

where X ∈ Rn, W (t) is a vector of m independent Wiener processes and 0 <
m ≤ n. A constant matrix Σ ∈ Rn×m has rank m and the matrix product ΣΣT is
positive definite. The Langevin dynamics (1.138) is constructed by adding stochastic
noise with balanced dissipation to the Hamiltonian equations (1.123), such that the
canonical probability distribution function (1.127) is an equilibrium density function
of the associated Fokker-Planck equation (1.133). Here and in the following we
assume that the Hamiltonian function H(X) is such that the measure (1.127) can
be normalized, i.e. Σ(β) <∞.

One limitation of the Langevin approach is that it destroys all invariants of
the original system. To retain some of these it would be necessary to introduce
constraint projections which may create significant difficulties in discretization. It
is recognized that additive noise is much easier to treat accurately in discretization
than multiplicative noise.

Note that if Hamiltonian H(X) is a quadratic function and the constant matrix
Σ is a rectangular diagonal matrix with positive entries, then the balanced noise
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and dissipation in the Langevin dynamics (1.138) consists of independent scalar OU
processes (1.134).

We show that the probability density function (1.127) is a stationary density
function of the Fokker-Planck equation (1.133). Note the result (1.131) and that

∇ · (ΣΣT ρc(X)) = ΣΣT ∇ρc(X) = −βΣΣT ∇H(X)ρc(X).

Then

L∗ρc(X) =
β

2
∇ · (ρc(X)ΣΣT ∇H(X)) +

1

2
∇ · ∇ · (ΣΣT ρc(X))

=
β

2
∇ · (ρc(X)ΣΣT ∇H(X)− ΣΣT ∇H(X)ρc(X)) = 0.

This proves the statement.
In the molecular dynamics, Langevin dynamics applied to the canonical Hamil-

tonian (Newtonian) dynamics (1.58)–(1.59) for q, p ∈ Rn reads:

dq =M−1p dt, (1.139)

dp = −∇V (q) dt− γM−1p dt+ σdW, (1.140)

where we consider constant σ > 0, γ = βσ2/2 andW (t) is a vector of n independent
Wiener processes. The canonical density function

ρc(q, p) ∝ exp

(
−β
(
1

2
pTM−1p+ V (q)

))

is a stationary density function of the associated Fokker-Planck equation (1.133).
In Chapter 3 we will discuss the extension of Langevin dynamics (1.139)–(1.140) to
Hamiltonian systems with holonomic constraints (1.69)–(1.71).

Another approach, originally proposed by Nosé [88, 89] and modified by Hoover
[46], involves the introduction of an auxiliary variable ξ, embedding the Hamiltonian
flow in a higher dimensional phase space. This thermostat method is determinis-
tic and the equations are constructed such that the extended probability density
function

π(X, ξ) = ρ(X)ϑ(ξ) (1.141)

is an invariant of the Liouville equations (1.129). The deterministic approach is often
non-ergodic, however, motivating the addition of Langevin forcing to the auxiliary
variable, which leads to the so called Nosé-Hoover-Langevin thermostat (NHL) in
molecular dynamics [61]. Deterministic methods can be extended by including mul-
tiple auxiliary variables and by introducing more general coupling than originally
considered. A broadened framework was proposed in [58] and termed General-
ized Bulgac-Kusnezov (GBK) thermostatting. Here we follow the formulation and
derivations from Chapter 5. In the simplest form of a GBK thermostat, we aug-
ment the Hamiltonian system (1.123) with a small number of additional variables
ξk, k = 1, . . . , dT , and perturbation vector fields, which for our purposes may be
assumed to be linear in the ξk. Let gk(X) : Ω → Rn, k = 1, . . . , dT , be smooth
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vector fields. The complete system is then a set of coupled ordinary and stochastic
differential equations of the form:

dX = J ∇H(X) dt+

dT∑

k=1

ξkgk(X) dt, (1.142)

dξk = hk(X) dt− γξk dt+ σ dwk, k = 1, . . . , dT , (1.143)

where γ = ασ2/2 and the wk(t) are independent scalar Wiener processes. In general
we consider the number of thermostat variables dT to be small, say dT = 1 or dT = 2,
so that the computational cost of simulating the thermostat variables is negligible
to that of simulating the physical model.

For a given distribution ρ(X), we seek functions hk(X) : Ω → R, k = 1, . . . , dT ,
such that the extended probability density function (1.141) is a stationary solution
of the Fokker-Planck equation (1.133) associated with (1.142)–(1.143), i.e.

∇ · π(X, ξ)
(
J ∇H(X) +

∑

k

ξkgk(X)

)
(1.144)

+
∑

k

[
∂

∂ξk
(π(X, ξ)(hk(X)− γξk))−

σ2

2

∂2

∂ξ2k
π(X, ξ)

]
= 0.

For simplicity we consider the canonical distribution (1.127) in place of ρ(X) in
(1.141). The expression (1.144) simplifies under the conditions ∇ · (J ∇H(X)) = 0,
∇H(X)T J ∇H(X) = 0. Using the fact that the terms of the OU process (1.134)
satisfy the stationary Fokker-Planck equation (1.136), the relation (1.144) reduces
to

0 =
∑

k

ξk∇ · π(X, ξ)gk(X) + hk(X)
∂

∂ξk
π(X, ξ)

=
∑

k

ξkπ(X, ξ)∇ · gk(X)− βξkπ(X, ξ) (∇H(X) · gk(X))− αξkπ(X, ξ)hk(X)

=
∑

k

ξk (∇ · gk(X)− β∇H(X) · gk(X)− αhk(X)) .

Hence it is sufficient to take

hk(X) =
1

α
(∇ · gk(X)− β∇H(X) · gk(X))

for given vector fields gk(X). We have yet to specify these vector fields. In doing so,
choices may be motivated from the application point of view, since the vector fields
gk determine the direction of perturbation, or through analytical considerations.
For more discussion, see Chapter 4.

When the Hamiltonian system (1.123) is (1.58)–(1.59), (q, p)T ∈ R2n, dT = 1
and g1 = (0, p)T , we recover the NHL thermostat method considered in molecular
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dynamics, i.e.

dq =M−1p dt, (1.145)

dp = −∇V (q) dt+ ξp dt, (1.146)

dξ =
1

α

(
n− βpTM−1p

)
dt− γξ dt+ σ dw, (1.147)

with extended stationary canonical ensemble:

π(q, p, ξ) ∝ exp

(
−β
(
1

2
pTM−1p+ V (q)

))
exp

(−α
2
ξ2
)
.

As an example we consider Langevin dynamics (1.139)–(1.140) and the NHL
method (1.145)–(1.147) applied to a Hamiltonian system with a triple well potential

V (q) =
1

2
q2 − 0.6

4
q4 +

0.07

6
q6, (1.148)

where q ∈ R, and the mass matrix M = 1. In both methods we fix β = 1. All
numerical methods of this subsection are described in the next subsection in the
context of time integration for thermostated dynamics. In Figures 1.4(a) and 1.4(b)
we plot a single stochastic trajectory of both methods for relative comparison. Ad-
ditionally in these two figures we plot a few closed orbits associated to the original
Hamiltonian system. The trajectory of the NHL method (1.145)–(1.147) looks rel-
atively more regular than the trajectory of the Langevin dynamics (1.139)–(1.140).
This can be explained from the fact that noise is once integrated before perturbing
the Hamiltonian system through the auxiliary variable ξ and the perturbations are
always in the direction of p. In contrast, in Langevin dynamics noise enters directly
into the equation of p and acts in all directions, and this is true for any positive
value of σ. The parameter values, i.e. γ and α, were chosen for presentation pur-
poses only. The noted differences between Langevin and NHL methods have direct
effects on autocorrelation functions, see [60] and Chapter 3.

We show that the Langevin dynamics (1.139)–(1.140) with potential (1.148)
satisfy Hörmander’s condition. In this case we have only two vector fields:

V0(q, p) = (p,−q + 0.6q3 − 0.07q5 − γp)T , V1(q, p) = (0, σ)T .

The commutator of these vector fields reads:

[V0, V1] = (∇V0)V1 − (∇V1)V0

=

[
0 1

−1 + 1.8q2 − 0.35q4 −γ

](
0
σ

)
=

(
σ

−γσ

)
.

Hence Hörmander’s condition is satisfied at each point (q, p)T ∈ R2, since the
vectors (0, σ)T and (σ,−γσ)T span the whole R2. In the same way Hörmander’s
condition can be verified for the NHL method (1.145)–(1.147) with potential (1.148)
everywhere except on the line p = 0. Note that the function f(q) = −∇V (q) =
−q + 0.6q3 − 0.07q5 has five real roots. Hence NHL dynamics has five stationary
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Figure 1.4: Langevin dynamics (1.139)–(1.140) and NHL method (1.145)–(1.147)
with triple well potential (1.148). Top: one trajectory of stochastic dynamics. Bot-
tom: probability density function of q. (a) Langevin dynamics γ = 0.1. (b) NHL
method with α = 5 and γ = 0.1. (c) Langevin dynamics compared to reference. (d)
NHL method compared to reference.

points with p = 0. This implies that if an initial condition is one of those stationary
points then the solution with respect to variables q and p will stay there for all
times.

We perform a numerical test of ergodicity. In Figures 1.4(c) and 1.4(d) we
compare the numerically computed probability density function (pdf) of q to Monte
Carlo simulations using the Metropolis-Hastings algorithm. The histograms were
computed from 109 data points collected during the long time simulation of Langevin
and NHL equations. Results show that a single numerically computed trajectory
produces what is essentially a perfect pdf of the variable q.

Hörmander’s condition can be tailored neatly to the GBK thermostat (1.142)–
(1.143), as demonstrated next. Denoting by ∂ξk the unit vector in Rn+dT corre-
sponding to the variable ξk, Hörmander’s condition for this system is

Rn+dT ⊂ spanI(F, ∂ξ1 , . . . , ∂ξdT ),
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where

F =




J ∇H(X) +
∑

k ξkgk(X)
h1(X)− γξ1

...
hdT (X)− γξdT




denotes the deterministic vector field of (1.142)–(1.143). Defining

Gk(X) = [F, ∂ξk ] =

(
gk(X)
−γ∂ξk

)
, k = 1, . . . , dT ,

we find that

[F,Gk] =

(
[J ∇H, gk]

0

)
+ c1Gk(X) + c2(X)∂ξk . (1.149)

Since the unit vectors ∂ξk form a globally defined basis for the auxiliary space of the
thermostat variables ξk, it remains to construct a basis for the original space Rn.
Eliminating the ξk and the Gk(X) from (1.149), shows that the following reduced
Hörmander condition holds (this Lemma appears in Chapter 4):

Lemma 1.2.4.1. The GBK method (1.142)–(1.143) satisfies Hörmander’s condi-
tion at a point (X, ξ1, . . . , ξdT ) ∈ Rn+dT if the related Hörmander condition on Rn

holds at X:
Rn ⊂ span I(J ∇H, g1, g2, . . . , gdT ).

When choosing appropriate vector fields gk(X), it is important to ensure that
the vector fields J ∇H(X) and the gk(X) do not all share an invariant manifold of
co-dimension one, since sets of co-dimension one can divide the phase space into
left-right or inner-outer regions that cannot be reached and Hörmander’s condition
will fail there.

To illustrate the above considerations, as a counterexample we consider the ther-
mostated harmonic oscillator equations (1.1)–(1.2) with GBK method:

dq = p dp, (1.150)

dp = −q dt+ ξp(1− q2 − p2) dt, (1.151)

dξ =
1

α

(
1− q2 − 3p2 − βp2(1− q2 − p2)

)
dt− γξ dt+ σ dw, (1.152)

where w(t) is a scalar Wiener process and α = 2γ/σ2. Equations (1.150)–(1.152)
were constructed such that the extended canonical ensemble

π(q, p, ξ) ∝ exp

(
−β 1

2

(
p2 + q2

))
exp

(−α
2
ξ2
)

is a stationary density of the associated Fokker-Planck equation (1.133). Method
(1.150)–(1.152) is the GBK method (1.142)–(1.143) with dT = 1 and g1(q, p) =
(0, p(1 − q2 − p2))T . Note that equations (1.150)–(1.151) have a stationary point
(0, 0), and the unit circle q2 + p2 = 1 is an invariant manifold of co-dimension one,
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which divides the phase space into inner-outer open invariant sets, such that, if the
initial condition of q and p is inside the circle, the solutions will stay inside the circle
for all times and vice versa.

We consider a numerical test with two different initial conditions: (q0, p0, ξ0) =
(0.25, 0.25, 0) and (q0, p0, ξ0) = (1.25, 1.25, 0), see Figures 1.5(a) and 1.5(b), respec-
tively. From these figures it is evident that a single stochastic trajectory stays in one
of the regions determined by the initial condition. Additionally, in Figures 1.5(c)
and 1.5(d) we compare the numerically computed histogram of R = q2 + p2 to
Monte Carlo simulations using the Metropolis-Hastings algorithm. The histograms
were computed from 109 data points collected during the long time simulation of
the GBK method (1.150)–(1.152). The computations were performed for two dif-
ferent initial conditions. In Figure 1.5(c) the system was initialized with the initial
condition for q and p inside the circle and in Figure 1.5(d) the initial condition for
q and p was chosen outside the circle. Both Figures 1.5(c) and 1.5(d) suggest that
the method is ergodic in each of the regions of phase space separated by the unit
circle. Hence the numerical test confirms the statement that the circle q2 + p2 = 1
divides the phase space of (q, p) into two invariant regions.

Compare this to the previous example, where Hörmander’s condition was not
satisfied for p = 0. Since the line p = 0 is not invariant (besides at the stationary
points, which have co-dimension two), it does not separate the phase space into
invariant sets, and therefore does not impede ergodicity.

In conclusion we state that while there exist general analytical tools, such as
Hörmander’s condition, to verify certain aspects necessary for proving ergodicity; in
practical applications it may be hard or even impossible to apply them. Hence we
are often left with numerical verification of ergodicity and therefore we need good
time integration methods, which are the subject of the following subsection.

1.2.5 Time integration and sampling

In this subsection we discuss time integration methods for thermostated dynamics.
For thermostated dynamics, all methods in this thesis are based on the splitting
methods. Consider dynamical system:

dy

dt
= f(y), y(0) = y0, (1.153)

where y ∈ Rn and vector field f(y) : Rn → Rn can be split into the sum of multiple
vector fields. For our presentation we consider the splitting into two vector fields,
i.e.

f(y) = f1(y) + f2(y).

Then we split the dynamical system (1.153) into two dynamical systems:

dy

dt
= f1(y),

dy

dt
= f2(y), (1.154)

with associated flow maps Φt1 and Φt2, respectively. Note that in general flow maps
do not commute, that is Φt1 ◦Φt2 6= Φt2 ◦Φt1, and Φt 6= Φt1 ◦Φt2, where Φt is the exact
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Figure 1.5: Stochastic dynamics of GBK method (1.150)–(1.152), β = 1, α = 1
and γ = 1. Top: one trajectory of stochastic dynamics. Bottom: GBK method
compared to reference for the probability density function of R = q2 + p2. (a)
numerical solution with initial condition (q0, p0, ξ0) = (0.25, 0.25, 0). (b) numerical
solution with initial condition (q0, p0, ξ0) = (1.25, 1.25, 0). (c) pdf of R inside the
circle, i.e. 0 ≤ R < 1. (d) pdf of R outside the circle, i.e. R > 1.

flow map associated with (1.153). Now we apply numerical approximation methods
to each of the systems in (1.154):

yn+1
1 = Ψτ1(y

n
1 ), yn+1

2 = Ψτ2(y
n
2 ), (1.155)

where τ is a time step, yn1 and yn2 are the numerical solutions of two dynamical
systems (1.154) at time tn = nτ where n = 0, 1, . . . Ψt1 and Ψt2 are the associated
discrete flow maps of the numerical methods, respectively. Note that if any of the
dynamical systems in (1.154) are exactly integrable, then we can consider Ψτ1 = Φτ1
or Ψτ2 = Φτ2 . This already indicates the advantage of splitting methods.

The idea behind the splitting methods is that the numerical solution of (1.153)
can be constructed as the composition method Ψτ of the numerical methods in
(1.155). The simplest first order method, Trotter splitting method, consists of direct
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composition of Ψτ1 and Ψτ2 , i.e.

Ψτ = Ψτ1 ◦Ψτ2 .

As a method it reads:

y∗ = Ψτ1(y
n), yn+1 = Ψτ2(y

∗).

Another idea would be to use a symmetric version, a so called Strang splitting:

Ψτ = Ψ
τ
2
1 ◦Ψτ2 ◦Ψ

τ
2
1 . (1.156)

As a method it takes the following form:

y∗ = Ψ
τ
2
1 (y

n), y∗∗ = Ψτ2(y
∗), yn+1 = Ψ

τ
2
1 (y

∗∗).

If both numerical methods Ψτ1 and Ψτ2 are symmetric methods, see Section 1.1.8,
or exact analytical flow maps, then the Strang splitting (1.156) yields symmetric
method Ψτ of order two. Indeed,

[Ψτ ]
−1

=
[
Ψ

τ
2
1

]−1

◦ [Ψτ2 ]−1 ◦
[
Ψ

τ
2
1

]−1

= Ψ
− τ

2
1 ◦Ψ−τ

2 ◦Ψ− τ
2

1 = Ψ−τ .

For example we consider canonical Hamiltonian system (1.55)–(1.56) with sepa-
rable Hamiltonian, i.e. H(q, p) = H1(p) +H2(q). Equations read:

dq

dt
= ∇H1(p), (1.157)

dp

dt
= −∇H2(q). (1.158)

We can split Hamiltonian system (1.157)–(1.158) into two exactly integrable sys-
tems:

q = const,
dp

dt
= −∇H2(q),

dq

dt
= ∇H1(p),

p = const.

Application of Strang splitting method (1.156) yields the numerical method:

p∗ = pn − τ

2
∇H2(q

n),

qn+1 = qn + τ ∇H1(p
∗),

pn+1 = p∗ − τ

2
∇H2(q

n+1),

that is exactly the symmetric and symplectic Störmer-Verlet method (1.106)–(1.108)
from Section 1.1.8, derived as the Strang splitting for the Hamiltonian system
(1.157)–(1.158).

For the thermostat methods presented in the previous subsection we adopt the
Strang splitting approach by splitting thermostated equations in deterministic and
stochastic parts. Let us illustrate this for the Langevin dynamics (1.139)–(1.140)
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and NHL method (1.145)–(1.147). Without loss of generality we take a mass matrix
M to be an identity matrix.

We split the Langevin dynamics (1.139)–(1.140) into a deterministic Hamiltonian
part:

dq = p dt, (1.159)

dp = −∇V (q) dt, (1.160)

and stochastic part:

dp = −βσ
2

2
p dt+ σ dW. (1.161)

For solving Hamiltonian part (1.159)–(1.160) we choose any desirable symmetric and
symplectic method, e.g. the Störmer-Verlet method, and denote its discrete flow map
by ΨτH . Note that the stochastic part (1.161) decouples into scalar OU processes
(1.134) which have analytical solutions given by (1.137). Denote the exact flow
map of (1.161) by ΦtOU . Then the Strang splitting method (1.156) for the Langevin
dynamics (1.139)–(1.140) reads:

ΨτLD = Φ
τ
2

OU ◦ΨτH ◦ Φ
τ
2

OU . (1.162)

We split the NHL dynamics (1.145)–(1.147) into three systems, the Hamiltonian
dynamics (1.159)–(1.160), a linear equation for p:

dp = ξp dt, (1.163)

and an equation for ξ, that is equation (1.147). We solve the Hamiltonian system
(1.159)–(1.160) with a symmetric and symplectic numerical method ΨτH . For a fixed
value of ξ the equation (1.163) for p can be solved exactly and we denote its flow
map by ΦtP . Equation (1.147) is a scalar OU process with nonzero mean. For fixed
value of p, equation has analytical solution:

ξ(t) = e−γtξ0 +
1

αγ

(
n− βpT p

) (
1− e−γt

)
+ σ

√
1− e−2γt

2γ
∆w,

where ∆w ∼ N (0, 1). We denote its exact flow map by Φtξ. Then the numerical
method reads:

ΨτNHL = Φ
τ
2

ξ ◦ Φ
τ
2

P ◦ΨτH ◦ Φ
τ
2

P ◦ Φ
τ
2

ξ . (1.164)

Note that the method is symmetric, since [ΨτNHL]
−1

= Ψ−τ
NHL.

These two examples above demonstrate the convenience of using splitting meth-
ods for time integration of thermostated dynamics, as well as, for Hamiltonian dy-
namics in general. There is a freedom for choosing different splitting tactics based
on the problem at hand and there is a freedom for choosing the time integration
method ΨτH . In Chapter 3, for example, we consider symmetric splitting methods
for thermostated Hamiltonian systems with holonomic constraints. For general the-
ory and introduction to numerical simulations of stochastic differential equations we
refer readers to [44, 53].
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Numerical results in Figure 1.4 were obtained by numerical methods (1.162)
and (1.164) with time step τ = 0.01. We used the Störmer-Verlet method (1.106)–
(1.108) for the time integration of Hamiltonian part, ΨτH . For numerical integration
of system (1.150)–(1.152) we adopted a different splitting tactic by splitting the
system in two parts, that is, in equations (1.150)–(1.151) and (1.152). For given
value of ξ we solved system of equations (1.150)–(1.151) with the implicit midpoint
method (1.117) from Section 1.1.8. We denote its flow map by ΨτIM . The nonlinear
relations were solved using fixed point iteration to a tolerance of 10−14. Equation
(1.152) for given value of p was solved analytically with flow map Φtξ. Overall the
splitting method reads:

Ψτ = Φ
τ
2

ξ ◦ΨτIM ◦ Φ
τ
2

ξ .

All computations were performed with time step τ = 0.005.
In Chapters 3 and 4 we are concerned with sampling the probability density

functions, computation of autocorrelation functions and showing convergence rates
for observables. To numerically compute reference pdfs, i.e. histograms, of observ-
ables in a particular ensemble, we use a Monte-Carlo method. The Monte-Carlo
method is an iteration strategy that combines a randomly generated step with a
Metropolis-Hastings accept/reject condition in order to guarantee that the points
generated have the desired distribution. To compute a histogram for an observable
we restrict a segment of the size relative to the expected values of the observable.
Then we divide a segment into N subsegments of the same lengths. The Monte-
Carlo algorithm generates points and we count how many points have appeared in
the particular subsegment. After that we normalize the data set and plot the numer-
ically computed pdf. We use a Monte-Carlo method for computing reference pdfs
and sets of initial conditions sampling a particular distribution, i.e. an ensemble of
initial conditions. On the contrary, pdfs of the thermostated methods are computed
from the long time simulation using the same counting mechanism. The data points
are collected after each nth time step τ for constant τ . Unless specified otherwise,
n = 1.

The autocorrelation function c(s) of observable F (X) is defined in the ensemble
average by

c(s) =
1

c0
〈F (Φs(X))F (X)〉, c0 = 〈F (X)2〉, (1.165)

where Φs is an associated flow map of the Hamiltonian system or thermostated
dynamics. If the flow is ergodic, the autocorrelation can be computed from the time
average according to

c(s) =
1

c0
lim
T→∞

1

T

∫ T

0

F (X(t))F (X(t+ s)) dt, (1.166)

c0 = lim
T→∞

1

T

∫ T

0

F (X(t))2 dt,

where X(t) = Φt(X0), X(t+ s) = Φt+s(X0) and X0 is an initial condition.
In the numerical computations, integrals are approximated by the quadrature

rules and the function values are computed at the discrete values obtained from the
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numerical time integration. The autocorrelation function (1.165) is approximated
by

c̃(kτ) =
1

c̃0

M∑

m=1

F (Ψkτ (Xm
0 ))F (Xm

0 ), c̃0 =
M∑

m=1

F (Xm
0 )2, k = 0, 1, . . . ,K,

where Ψτ is the discrete flow map of Φs and Xm
0 belongs to the ensemble of M

initial conditions, and the autocorrelation function (1.166) is approximated by

c̃(kτ) =
1

c̃0

N∑

n=0

F (Ψnτ+kτ (X0))F (Ψ
nτ (X0)),

c̃0 =
N∑

n=0

F (Ψnτ (X0))
2, k = 0, 1, . . . ,K,

where X0 is the initial condition and N denotes the number of time steps. The value
Kτ defines the time window for the computed autocorrelation function, i.e. kτ takes
values in segment [0,Kτ ].

All reference autocorrelation functions are computed by averaging over constant
Hamiltonian simulations, that is, Φs = ΦsH and Ψτ = ΨτH . The ensembles of
initial conditions are provided by a Monte-Carlo method. On the contrary, the
autocorrelation functions of thermostated dynamics are computed from the long
time simulations which serves as a good test for ergodicity.

In numerical study of the convergence of an observable F (X) in time to its
ensemble average 〈F 〉 we compute a time dependent discrete expected value:

E{F (X(nτ))} =
1

M

M∑

m=1

F (Ψnτ (Xm
0 )), n = 0, 1, . . . , N,

for an ensemble of M initial conditions. To estimate the rate of convergence we
compute the log error function given by

log error(nτ) = log |E{F (X(nτ))} − 〈F 〉| , n = 0, 1, . . . , N.

This concludes the introductory section to thermostated dynamics.
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Chapter 2

Emergence of Internal Wave
Attractors

2.1 Introduction

Internal gravity waves in uniformly stratified fluids retain their frequency and con-
sequently also their angle with respect to gravity upon reflection from an inclined
boundary. Waves do change their wavelength and become focused or defocused
when reflecting from plane, inclined surfaces. Laboratory experiments confirm that
when a container filled with a uniformly stratified fluid is excited vertically or hor-
izontally, internal gravity waves appear that become focused when reflecting from
a sloping wall and converge towards a limit cycle, a so called wave attractor (Maas
& Lam [73]; Maas et al. [72]; Hazewinkel et al. [43]). Energy propagates along the
straight lines of the attractor, which are normal to the direction of phase propa-
gation. Understanding the behavior of internal waves in bounded domains may be
important for explaining the mixing processes in ocean basins and lakes and has
relevance to astrophysics and fluid dynamics in general (Bühler & Holmes-Cerfon
[6]).

The ideal setting, considered above and used in typical laboratory and theoret-
ical settings (including ours), assumes the fluid’s stratification to be uniform, the
domain’s boundaries to be smooth and the setting to be 2D. Non-uniform stratifica-
tion, rough topography and three-dimensionality may, however, all lead to scattering
of the internal wave field. Moreover dissipation and nonlinear wave interaction limit
the amplification of internal waves and might thus prohibit the ultimate localization
of internal waves onto wave attractors.

Nevertheless, laboratory and numerical experiments have shown that wave at-
tractors may be resilient to some of these perturbations. In the laboratory, attractors
were shown to persist despite basins having non-uniform stratification, small-scale
boundary corrugations (Hazewinkel et al. [42]) or being forced non-centrally in a
3D (paraboloidal) domain (Hazewinkel et al. [41]). Numerically, attractors were
obtained using multi-purpose numerical codes in idealized 2D trapezoidal domains
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(Grisouard et al. [36]), in 3D parabolic channel domains (Drijfhout & Maas [19]) or
in geometries mimicking realistically the Luzon Strait in the South China Sea (Tang
& Peacock [108]; Echeverri et al. [26]). Because of the interest in the dynamics of the
Earth’s liquid outer core and of stellar interiors, special attention has been devoted
to wave attractors in spherical shells, where they are relevant to tidal dissipation
and where they are resolved using spectral codes (e.g. Dintrans et al. [18]; Tilgner
[109]; Rieutord et al. [98]).

But the actual relevance of internal wave attractors to real lakes, seas, oceans,
atmospheres, the Earth’s outer core, or planets and stars is unclear at present.
Many factors may after all ‘dilute’ the ideal setting, and the evidence from direct
observations is inconclusive or contradictory. Field observations in the small, 1 km
wide stratified lake Mystic, show that the horizontal velocity reaches its maxima at
the sloping sides of the lake. This suggests that internal waves are steered towards
a wave attractor instead of taking the shape of a seiche, a sloshing mode which
would have its velocity maximum near the center (Fricker & Nepf [31]). Earlier lake
observations revealed the dominance of high-wavenumber vertical modes, indicative
of the presence of the small-scales associated with an attractor (LaZerte [57]). The
nonuniform stratification and presence of sheared background currents, all affect-
ing internal wave ray paths, have been held responsible for the apparent absence
of an attractor in the much larger Faroe-Shetland Channel (Gerkema & van Haren
[32]). The absence of an attractor may, however, also be due to a mismatch between
aspect ratio and the ratio of wave and stratification frequencies. Recent satellite
observations of internal solitary waves suggest that wave attractors might actually
have served as the amplification mechanism required to explain the enigmatic ap-
pearance of internal solitary waves from weak surface tides over a particular 80 km
stretch of the Red Sea (da Silva et al. [14]). This seems to emphasize that higher
spatial resolution of periodic internal wave fields is needed in in situ measurements.

Here we concentrate on an unsolved ‘academic aspect’, addressing the response
of a uniformly stratified 2D fluid to an initial perturbation in a basin whose shape
breaks the reflection symmetry of internal gravity waves. The ansatz of a time-
periodic, single frequency (monochromatic) solution to the linearized internal gravity
wave equations yields a wave equation in space with Dirichlet boundary conditions.
This makes the problem quite unusual, as it is ill-posed due to nonuniqueness.
The problem allows for weak solutions that can be solved using the method of
characteristics or through a regularization technique (Swart et al. [106]). Via the
method of characteristics one can study the limit behavior of reflecting rays in
bounded domains. The most generic asymptotic solution is an attractor, which is
a finite closed orbit of rays within the domain. The particular structure of internal
gravity wave attractors in a tilted square domain depends on: the rotation angle of
the square θ, the wave frequency ω and the stratification frequency Nf . A family of
wave attractors is characterized by the number of reflections of a member-attractor
from the boundary. By symmetry considerations, an attractor must reflect an equal
number n times with the top and bottom domain boundaries, and an equal number
m times with the left and right boundaries. Such an attractor is called an (n,m)-
attractor. Figure 2.1 shows a discrete sample of the attractor geometries from the
infinite classes of (1,1)- and (1,3)-attractors in a tilted square domain (see Section
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2.2).

Due to the ill-posedness of the monochromatic wave problem, we are motivated
to study the initial value problem for internal gravity waves in a confined region. Al-
ternatively, one could introduce viscosity, which regularizes the monochromatic wave
problem, allowing for its approximate analytical solution (Ogilvie [90]). Lighthill
[68] considered the initial value problem for the evolution of a localized disturbance
in an unbounded domain, deriving the dispersion relation and noting that vorti-
cal structures remain stationary after internal gravity waves have propagated away
horizontally. In this chapter we study internal waves in a stratified fluid filling a
domain with solid walls, so that wave motion is trapped inside. We consider the
simplest case that admits wave attractors: perturbations to a linearly stratified
inviscid fluid, either freely evolving or parametrically excited. To guarantee that
viscous effects play no role—not even implicitly via “numerical diffusion”—we con-
struct a numerical discretization that conserves total energy and symmetry in the
absence of forcing and study two idealized theoretical configurations: freely evolv-
ing (i.e. unforced) flow, and parametrically excited flow. We proceed with a normal
mode analysis of the discrete model. For the freely evolving case, we analyze the
unforced initial boundary value problem, to show how linear dynamics is partitioned
into normal modes for different classes of initial conditions. Figure 2.2 illustrates the
free evolution from Fourier modes with wave numbers (1, 1) and (1, 3), respectively.
Evident in the plots at later times, we observe structures reminiscent of the full class
of (1, 1)- and (1, 3)-attractors, suggesting a relationship between the Fourier modes
and attractor geometries, for which we give some motivation. For the parametrically
excited case, the normal mode analysis reveals that the flow may be decomposed
into independent Mathieu equations, and that those modes whose associated fre-
quencies lie within the resonance zones (Arnold tongues) will be amplified, forming
a wave attractor.

It is important to note that the existence of a complete normal mode decomposi-
tion for the discretized model contrasts sharply with the continuum model, for which
the eigenspectrum is continuous and no such decomposition exists (Maas [70]). The
continuous spectrum for the continuum model actually implies the existence of an
uncountable infinity of time-periodic solutions, corresponding to the arbitrary def-
inition of the boundary condition on the fundamental intervals, which we discuss.
For the discretized system, the finite basis of normal modes are precisely the time-
periodic solutions. The complete normal mode decomposition for the discrete model
is also non-robust with respect to viscous perturbation of the system. For the forced
system with viscosity, the normal mode basis becomes time dependent, meaning the
solution cannot be decomposed into scalar problems.

The chapter is organized as follows: In Section 2.2 we recall the 2D linear hy-
drostatic inviscid Euler-Boussinesq equations which govern internal gravity waves
in stratified fluids, discuss monochromatic solutions in a tilted square domain, and
review the Hamiltonian structure. In Section 2.3 we describe a structure-preserving
finite difference discretization on the tilted square and present the normal mode
analysis of the discretized model in the unforced and forced cases. Using the sym-
metries of the discrete differential operators we show that in both cases the dynamics
may be projected onto an invariant basis of normal modes, such that they entirely
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Figure 2.1: Limit cycle wave attractors corresponding to a discrete set of frequen-
cies from the respective continuum ranges. Different line thicknesses correspond
to distinct wave attractors. Left: class of (1, 1) attractors. Right: class of (1, 3)
attractors.

Figure 2.2: Evolution of the stream function in time from two distinct Fourier mode
initial conditions.

decompose into independent scalar problems: harmonic oscillators in the unforced
case or Mathieu equations in the forced case. In Section 2.4 we present numer-
ical experiments of the unforced and forced models. We observe that an (n,m)
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Fourier mode initial condition projects mostly onto the range of the associated
(n,m)-attractor, explaining the similarities of Figures 2.1 and 2.2. For the forced
model we observe that if the initial condition has a nontrivial projection onto normal
modes with amplified Mathieu dynamics, a wave attractor will emerge. Conclusions
are summarized in Section 2.5.

2.2 Euler-Boussinesq equations

2.2.1 Internal gravity wave equations

We consider a vertical slice domain D ⊂ R2 with boundary ∂D and Cartesian
coordinates x = (x, z), where z is directed antiparallel to the direction of gravity, g.
We decompose the fluid density field and the pressure field as follows:

ρ(x, z, t) = ρ0 + ρ̄(z) + ρ′(x, z, t), p(x, z, t) = p̄(z) + p′(x, z, t),

where ρ0 is an average constant mean density and ρ̄(z) is a mean static density
stratification, i.e. a monotonically decreasing function of z. The sum ρ0 + ρ̄(z)
defines a stable background density field in hydrostatic balance with the pressure
field p̄(z):

∂p̄

∂z
= −g(ρ0 + ρ̄(z)),

where g is the gravitational acceleration. The quantities ρ′(x, z, t) and p′(x, z, t)
are small amplitude perturbations about the (steady state) background density and
pressure fields.

In geophysical and astrophysical fluid dynamics it is common to treat the den-
sity field distinctly, defining both an ‘inertial mass’ and a ‘gravitational mass’. The
Boussinesq approximation consists of assuming a constant density value ρ0 for the in-
ertial mass in the momentum equation (from which the density may be consequently
removed), while maintaining the full density ρ for the gravitational mass. We en-
force the inequality |ρ′| ≪ |ρ̄(z)| ≪ ρ0 to justify the Boussinesq approximation.
Such flows are termed ‘buoyancy-driven’. The background stratification defines a
stratification frequency, Nf , (Brunt-Väisälä frequency), where N2

f = −gρ−1
0 dρ̄/dz.

In the following we assume that Nf is a constant, i.e. the fluid is linearly stratified
in the background density.

Wave focusing occurs when a boundary of the domain is inclined with respect to
gravity. For this reason we assume that the coordinate system is rotated through an
angle 0 ≤ θ ≤ π/4. With the above considerations in mind, the inviscid linear Euler-
Boussinesq equations describing the propagation of perturbations in this rotated
frame read:

∂u

∂t
= −∇p̂+ bk̂(θ), (2.1)

∂b

∂t
= −N2

fu · k̂(θ), (2.2)

∇ · u = 0, (2.3)

u · n̂ = 0 on ∂D, (2.4)
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where u = (u,w) is a velocity field in the x and z direction respectively (now tilted
relative to the original direction), p̂ = ρ−1

0 p′ is scaled pressure with respect to the

mean constant density, b = −gρ′ρ−1
0 is the buoyancy, k̂(θ) = (sin θ, cos θ) is the unit

vector in the direction opposite to gravity and n̂ is the unit outward normal to the
boundary ∂D.

In two-dimensions it is convenient to consider the stream function formulation
of the Euler-Boussinesq equations (2.1)–(2.4). The divergence-free condition (2.3)
allows us to define a stream function ψ on D such that

u = −∂ψ
∂z

, w =
∂ψ

∂x
.

By taking the curl of the momentum equations (2.1) we eliminate the pressure from
(2.1), obtaining the 2D linear inviscid Euler-Boussinesq equations in stream function
formulation:

∂q

∂t
= − ∂b

∂x
cos θ +

∂b

∂z
sin θ, (2.5)

∂b

∂t
= −N2

f

(
∂ψ

∂x
cos θ − ∂ψ

∂z
sin θ

)
, (2.6)

q = −∆ψ, (2.7)

ψ = 0 on ∂D, (2.8)

where q = ∂u
∂z − ∂w

∂x is vorticity.
The model (2.5)–(2.8) is a system of partial differential equations that conserves

total energy:

H =
1

2

∫

D

(
∇ψ · ∇ψ +

1

N2
f

b2

)
dx, (2.9)

equal to the sum of kinetic and potential energies.

2.2.2 Forcing

Wave attractors are generated by periodically forcing a stratified fluid in a domain
with inclined boundaries. In the ocean, the forcing is primarily tidal forcing. In
laboratory experiments (Maas et al. [72]; Lam & Maas [56]), wave attractors were
generated by vertically oscillating a container with a sloping wall. To incorporate
such parametric excitation (McEwan & Robinson [80]) equation (2.5) is modified by
multiplication with a time dependent function α(t) to obtain:

∂q

∂t
= α(t)

(
− ∂b

∂x
cos θ +

∂b

∂z
sin θ

)
.

An alternative approach is external excitation, e.g. a horizontal oscillation of the
container, for which time dependent terms may be added to (2.5) and (2.6) (Ogilvie
[90]), or by means of boundary forcing (Grisouard et al. [36]).

Vertical oscillation of the container can be viewed as time-dependent modulation
of the gravitational parameter g, which originally enters the momentum equation,
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and should thus be present only in the vorticity equation (2.5). Hence, we can
realize this kind of forcing as parametric excitation with

α(t) = 1− ǫ cos(2ωt),

where ǫ is a positive constant smaller than one and 2ω is the forcing frequency.

2.2.3 Dispersion properties of internal gravity waves

Consider a time periodic solution

ψ(x, z, t) = Ψ(x, z)e−iωt, b(x, z, t) = B(x, z)e−iωt.

Substituting the above ansatz into (2.5)–(2.7), eliminating B and taking θ = 0
without loss of generality yields

∂2Ψ

∂z2
−

(N2
f − ω2)

ω2

∂2Ψ

∂x2
= 0, (2.10)

which is recognized as a wave equation when ω2 < N2
f for the scalar state variable Ψ.

In other words, internal gravity waves are spatially governed by the wave equation.
Substituting the plane wave

Ψ(x, z) = a exp(i(κxx+ κzz))

into (2.10), where a is the amplitude and κx and κz are wave numbers, yields the
dispersion relation

ω2 = N2
f

κ2x
κ2x + κ2z

= N2
f cos

2 φ, (2.11)

the last equality of which follows from the polar coordinate description of the wave
number vector κ = |κ|(cosφ, sin φ) where |κ| is the wave number magnitude and
φ its direction. Hence, ω2 ≤ Nf

2 and the frequencies of internal gravity waves
are bounded by the stratification frequency Nf . It is also apparent that the wave
frequency is independent of the wave number magnitude and depends only on its
angle φ. Consequently an incident wave retains its propagation direction upon
reflection from a plane surface independent of the slope of the surface, leading to
monoclinic (single-angled) waves. A wave does, in general, change its wavelength
and can become focused or defocused upon reflection from an inclined boundary. It is
well known that the wave phase travels in the phase velocity direction cp = ωκ/|κ|2
and wave packet energy is transported by the group velocity cg = ∇κω, Whitham
[113]. The internal wave group velocity vector cg and phase velocity vector cp are
mutually perpendicular, i.e. cg · cp = 0. Hence internal waves propagate energy
parallel to the wave crests and troughs (i.e. along these).

2.2.4 Monochromatic wave solutions in a tilted square

The wave equation (2.10) with Dirichlet boundary conditions (2.8) is formally an
ill-posed problem (Swart et al. [106]). One not only finds a trivial solution ψ ≡ 0,
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but there exist infinitely many solutions. For example, the hyperbolic wave equation
(2.10) can be solved on a non-inclined (θ = 0) rectangular domain (x, z) ∈ [0, 1]×
[0, ℓ] by separation of variables. The function

Ψ = An,m sin(nπx) sin(mπz/ℓ)

satisfies the hyperbolic equation (2.10) and boundary condition (2.8) provided that

ℓ =

√
ω2

N2
f − ω2

m

n
. (2.12)

Replacing integer (n,m) in (2.12) by (jn, jm) leaves ℓ unchanged, and for integer j,
Ψ still vanishes at the boundaries. In this noninclined case there is a denumerable
infinite set of solutions to the wave equation (2.10); in the inclined case this set is
not denumerable, resulting in the ill-posedness.

The general solution of the wave equation (2.10) is given by

Ψ(x, z) = f(x− γz)− g(x+ γz), γ =

√
N2
f − ω2

ω2
,

for arbitrary functions f and g. Hence the function g is constant along a charac-
teristic line x + γz = const ., and likewise f is constant along lines x− γz = const .
Furthermore, the Dirichlet boundary condition, Ψ = 0, implies that f ≡ g on the
boundary. Therefore, from any point p in the domain, one can define an orbit, con-
sisting of a characteristic passing through p and the infinite sequence of successive
reflections of that characteristic in both forward and backward orientation upon
which f and g are alternately constant. Such a sequence of characteristics will be
referred to as a characteristic orbit. Two characteristic orbits intersect at each point
p in the interior of D, and the difference f − g determines the stream function at p.
One can follow characteristic orbits that intersect at p until they reach a boundary
segment upon which the function f = g. The problem of determining a well-posed
monochromatic solution is reduced to that of identifying a minimal set of distinct
intervals, the so called fundamental intervals, on the boundary where the functions
f and g may be prescribed (see Maas & Lam [73]).

In this chapter we will study internal waves in a tilted square domain. In the
tilted unit square the topology of a complete characteristic orbit passing through a
point depends on the angle of tilt θ and the ratio of wave frequency to stratifica-
tion frequency ω/Nf . In the subcritical case all characteristic orbits asymptotically
approach diagonally opposite corners of the square. This occurs when the char-
acteristic slopes ±γ are both either larger or smaller than the inclination of both
horizontal and vertical boundaries. In the supercritical case one can distinguish an
additional three types of limit behavior: periodic, ergodic and limit cycle orbits
(John [49]; Kopecz [54]). In the periodic case all characteristic orbits reflect from
the boundary at a finite number of points, the fundamental intervals collapse onto
one another, and the characteristic orbit through every point is periodic. In the
ergodic case, the characteristic orbit through any point passes arbitrarily close to
every other point in the domain, the fundamental interval shrinks to a single point,
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and the stream function then necessarily vanishes, implying no flow. However, the
most generic case of limit behavior of the characteristic orbits is an attractor or
limit cycle, i.e. one or more distinct periodic orbits that attracts a neighborhood of
itself. Such attractors are characterized by the number of boundary reflections from
the horizontal and vertical boundaries. Considering the symmetry of the top and
bottom boundary and of the two side boundaries, we denote by (n,m) an attractor
having n reflections from the boundary on the upper side of the square and m re-
flections from the left side of the square. The overall number of reflections with the
boundary (2n+ 2m) is called the attractor’s period. In the unit square domain all
attractors are globally attracting.

The choice of the fundamental intervals on the boundary and the functions pre-
scribed on them is not unique. In the subcritical case it is sufficient to prescribe
only one interval between two successive characteristic reflections from the bound-
ary. In the ergodic case the solution may be prescribed at only one point on the
boundary yielding the trivial solution ψ ≡ 0 of the wave equation (2.10) due to the
zero Dirichlet boundary conditions (2.8). For the periodic and attractor cases one
must prescribe one or two intervals on one of the square’s boundaries, respectively.
For a complete discussion see Maas & Lam [73].

Let us take a closer look at periodic solutions and limit cycles. The experimental
variables are the wave frequency ω, stratification frequency Nf and rotation angle of
the square θ. In the periodic solution regime, all orbits correspond to odd-even pairs
(2n, 2m+ 1) or (2n+ 1, 2m). But the periodic regime is non-robust with respect to
perturbations in domain geometry. In the tilted square domain these solutions occur
only for a discrete set of frequencies. In contrast the limit cycle attractors persist
over a continuous range of frequencies, hence are robust with respect to frequency
perturbations. In the simplest periodic case the characteristic orbit emanating from,
say, the lower left corner of the square will precisely intersect the lower right corner
after making n successive reflections from the top of the square, or will intersect
the upper left corner after m successive reflections from the right side of the square.
In both such situations we have analytic expressions relating the wave frequency ω,
stratification frequency Nf and rotation angle of the square θ:

cot

(
θ + tan−1

√
ω2

N2
f − ω2

)
− cot

(
θ − tan−1

√
ω2

N2
f − ω2

)
=

1

n
,

tan

(
θ + tan−1

√
ω2

N2
f − ω2

)
− tan

(
θ − tan−1

√
ω2

N2
f − ω2

)
=

1

m
,

respectively. Hence these periodic solutions are indicated as (2n, 1) and (1, 2m)
with periods 2(2n+ 1) and 2(2m + 1), respectively. Similar periodic solutions can
be computed when the characteristic orbits have multiple reflections from both the
left and top boundaries, and geometries (2n, 2m+ 1) or (2n+ 1, 2m).

Figure 2.3 illustrates the parameter space ω/Nf versus θ. The bold line sepa-
rates subcritical and supercritical regimes. Within the supercritical region of Figure
2.3(a), we indicate the loci of parameter values corresponding to periodic solutions
of the classes (2n, 1) and (1, 2m). Note that for a given rotation angle θ, the pe-
riodic solutions correspond to discrete values of ω/Nf . Limit cycle solutions are
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Figure 2.3: Parameter space for monochromatic solutions. Left: loci in parameter
space corresponding to periodic solutions (2n, 1) and (1, 2m). Right: limit cycle
attractor period, indicated by color.

(a) (b) (c)

Figure 2.4: Monochromatic stream function solutions. Left: within the (1,1) attrac-
tor frequency range (ω/Nf = 0.74, θ = 7π/72). Middle: within the (1,3) attractor
frequency range (ω/Nf = 0.34, θ = π/18). Right: the unique (1, 2) periodic solution
(ω/Nf = 0.43, θ = π/15).

indicated in Figure 2.3(b), where the color denotes the period of the attractor. Pe-
riodic solutions (Figure 2.3(a)) are found where the attractor period (Figure 2.3(b))
approaches infinity.

Figure 2.4 shows solutions of the monochromatic wave equation (2.10) for the
(1, 1) and (1, 3) attractor cases and for the (1, 2) periodic case, for specific values of
θ and ω/Nf . In Figures 2.4(a) and 2.4(b) we show two typical members from the
respective continuum ranges of limit cycle solutions. In both cases one can observe
a self-similar structure approaching the attractor. The solutions were constructed
using the method of characteristics; on the fundamental intervals we prescribe two
cosines with an offset at the chosen intervals. For a square-shaped attractor in
a trapezoidal geometry, a free wave solution possessing a logarithmic self similar
Fourier spectrum was computed analytically (Maas [71]).
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2.3 Numerical discretization and linear analysis

In this section we describe our discrete model equations and show that in the special
case of linear inviscid flow, the dynamics decouples into scalar oscillators.

2.3.1 Fourier analysis of the continuum model, non-tilted

For a non-tilted square domain (θ = 0), the initial boundary value problem for
the linear Euler-Boussinesq equations (2.5)–(2.8) with initial conditions ψ0(x, z)
and b0(x, z) and zero Dirichlet boundary conditions (2.8) can be solved analytically
using separation of variables. The solution is

ψ(x, z, t) =

∞∑

n,m=1

ψn,m(x, z)
d

dt
Tn,m(t), (2.13)

b(x, z, t) = −N2
f

∞∑

n,m=1

∂

∂x
ψn,m(x, z)Tn,m(t), (2.14)

where ψn,m(x, z) = sin(nπx) sin(mπz) are Fourier modes on the unit square, i.e. the

eigenfunctions of the operators ∂2

∂x2 and ∂2

∂z2 under the given boundary conditions,
and Tn,m is a solution to the simple harmonic oscillator equation

d2

dt2
Tn,m = −ω2

n,mTn,m, ω2
n,m = N2

f

n2

n2 +m2
, (2.15)

with the frequencies given by the dispersion relation (2.11).
The total energy functional (2.9) of the general solution in the form (2.13)–(2.14)

is

H =
π

8

∞∑

n,m=1

[
(n2 +m2)

(
d

dt
Tn,m

)2

+N2
fn

2T 2
n,m

]
=

∞∑

n,m=1

Hn,m,

where for each (n,m), the term in square brackets, Hnm, is the independently
conserved Hamiltonian of (2.15). Note that there is no coupling between wave
numbers. The initial conditions may be projected onto the Fourier modes, but each
mode evolves independently, and there is no energy exchange between modes.

The situation for θ 6= 0 is very different. The initial boundary value problem
(2.5)–(2.8) cannot be solved analytically by the method of separation of variables as
it was done above. The eigenfunctions in the tilted case correspond to the ill-posed
solutions of (2.10), and have no simple representation. However, as we show in the
next section, the numerical discretization does admit a normal mode analysis.

2.3.2 Energy conserving numerical discretization and analy-
sis

Making use of the Hamiltonian structure of (2.5)–(2.8), we construct in Appendix
2.A an energy preserving numerical discretization. Discretizing in space while leav-
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ing time continuous yields the following system of linear ordinary differential equa-
tions (cf. (2.A.9)–(2.A.11)):

−Ldψ

dt
= α(t)

(
DT
xMzb cos θ −DT

zMxb sin θ
)
, (2.16)

db

dt
= −N2

f

(
MT
z Dxψ cos θ −MT

x Dzψ sin θ
)
, (2.17)

where ψ ∈ RM and b ∈ RN , M < N , are vectors containing the values of ψ
and b at (staggered) grid positions. The finite difference matrices Mx, Mz, Dx,
Dz and L, defined in Appendix 2.A.1, represent discretized mean (M∗), difference
(D∗) and Laplacian (L) operators and superscript T denotes the transpose. Here
we introduced the factor α(t), that allows us to add forcing by means of parametric
excitation. Introducing the matrix K = DT

xMz cos θ−DT
zMx sin θ, this system can

be written in matrix form
[
−L 0
0 I

]
d

dt

(
ψ

b

)
=

[
0 α(t)K

−N2
fK

T 0

](
ψ

b

)
. (2.18)

By construction, when forcing is absent (α ≡ 1) the discretization possesses a first
integral, the discrete Hamiltonian H (2.A.8), which approximates the total energy
(2.9), i.e.

H =
1

2

(
−ψTLψ +

1

N2
f

bTb

)
∆x∆z. (2.19)

In Appendix 2.B we derive the normal mode bases X = (X1, . . . , XM ) and
Y = (Y1, . . . , YN ), in which ψ and b are expressed as, cf. (2.B.22),

ψ = Xψ̃, b = Y b̃.

In the new basis, the system (2.18) decouples into M second order problems:

d2

dt2
ψ̃i = −α(t)ω2

i ψ̃i + α̇(t)ωib̃i, (2.20)

d2

dt2
b̃i = −α(t)ω2

i b̃i, (2.21)

for i = 1, . . . ,M , plus the trivial dynamics d2

dt2 b̃i = 0, i =M + 1, . . . , N .
When forcing is absent, α(t) ≡ 1, the dynamics further decouples into 2M

independent harmonic oscillators

d2

dt2
ψ̃i = −ω2

i ψ̃i,
d2

dt2
b̃i = −ω2

i b̃i, i = 1, . . . ,M.

In particular the total energy can be expressed as the sum of the harmonic oscillator
energies

H =

M∑

i=1

Hψ
i +Hb

i , Hψ
i =

1

2



(
dψ̃i
dt

)2

+ ω2
i ψ̃

2
i


 , Hb

i =
1

2



(
db̃i
dt

)2

+ ω2
i b̃

2
i


 ,
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each of which is a conserved quantity.
Remark. In Section 2.2 we saw that there are infinitely many monochromatic

wave solutions to the linearized Euler-Boussinesq equations, corresponding to an
arbitrary specification of the solution on a fundamental interval. For the discretized
equations, of course, there can be only a finite number of periodic solutions, each
corresponding to a normal mode of the discretization matrix. This situation is
analogous to the case of the advection equation ρt + uρx = 0 on a periodic domain,
for which any initial condition ρ(x, 0) = f(x) is periodic in time. Upon numerical
discretization of this equation, the dispersion relation is altered, an arbitrary initial
condition may be expanded in normal modes, and each of these evolves with a
different phase speed, causing artificial dispersion. Only the (finite denumerable)
normal modes themselves are periodic.

When parametric forcing is present in (2.21), i.e. α(t) = 1− ǫ cos 2ωt, the buoy-
ancy modes evolve independently according to the Mathieu equation

d2

dt2
b̃i = −(1− ǫ cos(2ωt))ω2

i b̃i. (2.22)

The Mathieu equation supports resonance zones in parameter space for which the
solution grows unbounded in magnitude, as well as stable (non-resonant) zones
for which the solution remains bounded for all time. The first and most important
instability region originates at the subharmonic frequency ω of the driving frequency
2ω, (see Arnold [3]).

2.3.3 Dynamics of the Mathieu equation

Rescaling time with respect to the stratification frequency Nf , i.e. t′ = Nf t, in
equation (2.22) yields, dropping primes,

d2

dt2
b̃i = −

(
1− ǫ cos

(
2
ω

Nf
t

))
ω2
i

N2
f

b̃i, (2.23)

where ω2
i /N

2
f ≤ 1 from the dispersion relation. For given value of the (normalized)

first subharmonic forcing frequency |ω/Nf | ≤ 1 we are interested in knowing for
which normal mode frequencies ωi/Nf and forcing amplitude ǫ equation (2.23) and
equation (2.22) support resonances.

Introducing a second time transformation, t′ = ωN−1
f t, we write the scalar

Mathieu equations (2.23) in the general form

d2

dt2
β + (a− 2q cos(2t))β = 0, (2.24)

where β = b̃i, a = ω2
i /ω

2 ≤ N2
f /ω

2 and q = ǫ
2ω

2
i /ω

2 ≤ ǫ
2N

2
f /ω

2 for a given normal
mode i. According to the Floquet multiplier theorem, the Mathieu equation for
fixed a and q admits a complex valued general solution of the form

β(t) = c1e
µtP (a, q, t) + c2e

−µtP (a, q,−t),
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where µ 6= 0 is a complex Floquet exponent and P (a, q, t) is a complex valued, π-
periodic, special function, i.e. P (a, q, t + π) = P (a, q, t). If Reµ = 0, the solution
β(t) is bounded for all time. If Reµ 6= 0, the amplitude of the oscillations grows
exponentially. For the degenerate case µ = 0, the solutions are linearly dependent
and the amplitude grows linearly in time.

To determine the Floquet exponent µ we note that taking initial conditions
β(0) = 1, dβ

dt

∣∣
t=0

= 0, one finds c1 = c2 = (2P (a, q, 0))−1, hence the solution at time
t = π is

β(π) = coshµπ.

Therefore µ can be estimated by solving (2.24) numerically on the interval [0, π]. For
a given forcing ω/Nf , we solve for µ numerically using the Störmer-Verlet method
(Hairer et al. [37]) over a discrete set of values ǫ ∈ [0, 1] and ωi/Nf ∈ [0, 1].

Our goal is to investigate the emergence of the two internal wave attractors
presented in Section 2.2 by use of the parametric excitation mechanism described
above. We expect that after an initial transient phase, the solution will be dominated
by those normal modes having positive Floquet exponents. We fix ǫ = 0.1 and choose
forcing frequencies 2ω/Nf whose subharmonics excite the patterns in Figure 2.4,
i.e. we choose ω/Nf = 0.74 or ω/Nf = 0.34, respectively. In Figure 2.5 we plot the
real part of the Floquet exponent µ as a function of normal mode frequency ωi/Nf ∈
[0, 1] (regarding ωi/Nf as a continuous variable). For these two cases we obtain the
instability tongues shown in Figures 2.5(a) and 2.5(b), respectively. Figure 2.5(a)
shows the real part of the Floquet exponent µ for subharmonic forcing frequency
ω/Nf = 0.74. The resonant instability tongue originates at ωi/Nf = 0.74, and
superharmonic resonances (nω/Nf , n = 2, 3, . . . ) are absent because they fall outside
the admissible range of normal mode frequencies. Figure 2.5(b) shows Reµ for
subharmonic forcing frequency ω/Nf = 0.34. The first resonant instability tongue
then originates at ωi/Nf = 0.34, and also the first superharmonic resonance at
ωi/Nf = 2ω/Nf = 0.68 falls within the admissible range of normal mode frequencies.
For a given value of subharmonic forcing frequency ω/Nf , the rotation angle θ ∈
[0, π/4] determines the type of limit behavior observed, e.g. an attractor or a periodic
solution, see Figure 2.3.

Since the forced internal wave equations (2.16)–(2.17) can be decomposed into
the Mathieu type equations (2.20)–(2.21), the theory of Mathieu equations suggests
that depending on the values of the Floquet exponent there will be resonant normal
modes which will grow exponentially in time and there will be other modes which
will stay bounded. The presence of resonant normal modes is dependent on the
initial conditions. If a particular initial condition is such that its projection onto
normal modes has no components within resonant zones of the Mathieu equation,
then the solution of the forced linear internal wave equations (2.16)–(2.17) will stay
bounded for all times. Hence the choice of initial conditions for computations is
not arbitrary. The analysis in Section 2.4.1 of the system’s response to different
initial conditions in the unforced, undamped linear case suggests that the natural
choice for finding (1, 1) and (1, 3) attractors would be initial conditions ψ1,1 and
ψ1,3, respectively. This implies that there will be resonant normal modes.
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(a) (b)

Figure 2.5: Instability tongues of the Mathieu equation, color denotes the magni-
tude of Floquet exponent Reµ, as a function of normal mode frequency ωi/Nf for
different forcing amplitudes ǫ. Left: subharmonic forcing frequency ω/Nf = 0.74,
one instability tongue in the computation of the (1, 1) attractor. Right: subhar-
monic forcing frequency ω/Nf = 0.34, two instability tongues in the computation
of the (1, 3) attractor. The vertical and horizontal dashed lines indicate forcing
frequencies and amplitudes respectively.

2.4 Numerical experiments

2.4.1 Freely evolving flow

Armed with the theory of internal gravity wave attractors in a tilted square from
Section 2.2 and the structure preserving discretization of the Euler-Boussinesq equa-
tions in the stream function formulation from Section 2.3 we study the initial bound-
ary value problem. Since we consider the inviscid equations, the system does not
depend on spatial scales and time can be rescaled with respect to stratification fre-
quency Nf to cast the system in dimensionless form. As we will see in the following,
the response of the system will depend on tilt angle θ and on the choice of the initial
conditions.

We study the response of the system with the Fourier mode initial conditions:

ψ0(x, z) = ψn,m(x, z), b0(x, z) ≡ 0, (n,m) = (1, 1), (1, 2), (1, 3). (2.25)

These initial conditions correspond to low wavenumber smooth functions. When
θ = 0 the Fourier modes are eigenfunctions, as described in Section 2.3.1, and all
three initial conditions result in single frequency standing wave solutions whose
frequency is determined by the dispersion relation (2.11). When θ 6= 0, i.e. the
domain is tilted by the angle θ or the direction of gravity is changed, the Fourier
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Figure 2.6: Evolution of the stream function in time from the initial condition ψ1,2.

modes are no longer eigenfunctions, and we observe a different response from the
system for initial conditions (2.25).

In all three numerical examples we use the same numerical parameters and pa-
rameter values. We compute to final time Tend = 400 with time step τ = 0.05. The
spatial mesh sizes in both space dimensions are equal, ∆x = ∆z = 2 × 10−3. We
fix the stratification frequency Nf = 1 and choose θ = π/20 for the rotation angle
of the square. The Störmer-Verlet method (2.A.12)–(2.A.15) conserves energy in
time up to fluctuations of amplitude O(τ2). For this choice of τ the relative error of
the Hamiltonian function (2.19) remained smaller than 10−3 in all three numerical
experiments. Computational results with initial conditions ψ1,1 and ψ1,3 are shown
in Figure 2.2. Results with the initial condition ψ1,2 are shown in Figure 2.6. In all
three examples we plot the evolution of the stream function at three distinct times.

Complementary to the state variables we also look at the energy density function,
i.e. the distribution of the energy in space. Hence we define the discrete energy
density function at the cell centers, making use of the discrete velocities defined by
(2.A.7),

Ei+1/2,j+1/2 =
1

2
u2i+1/2,j+1/2 +

1

2
w2
i+1/2,j+1/2 +

1

2N2
f

b2i+1/2,j+1/2. (2.26)

In the numerical example with initial condition ψ1,1 we observe that energy
that is initially concentrated at the low wavenumber is transported to large wave
numbers. Evidently, in Figure 2.2 the whole family of (1, 1) attractors is observable.
The evolution from initial condition ψ1,3 is similar, but in this case the family of
(1, 3) wave attractors is obtained, see Figure 2.2. On the other hand, with initial
condition ψ1,2 the solution appears to consist mainly of a strong periodic component,
plus small scale fluctuations.

Despite the fact that the energy functional (2.9) is conserved along the solu-
tion of the continuous system (2.5)–(2.8) and the discrete energy function (2.19)
is conserved up to second order in time1 along the solution of the discrete system

1Backward error analysis of symplectic numerical integrators (Hairer et al. [37]; Leimkuhler
& Reich [63]) shows the existence of a perturbed Hamiltonian of the form H + O(τ2) which is
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Figure 2.7: Time series of the stream function, vorticity, buoyancy, velocity u,
velocity w and energy density function E at 3 points in space from computations
with initial condition ψ1,1 and b = 0.

(2.A.12)–(2.A.15), the amplitude of the stream function decays. That can be seen
by comparing the color bars in Figures 2.2 and 2.6. For total energy to remain
constant, there should either be a net exchange of kinetic into potential energy, or
the amplitude of vorticity should grow commensurate to the loss in stream function.
To confirm this we study the time series of the state variables: stream function, vor-
ticity, buoyancy, velocities (2.A.7) and the energy density function (2.26), at three
arbitrarily chosen points in space. These three points are shown in the top left
plot of Figure 2.2. In Figure 2.7 we plot numerical time series data at these three
points for the initial condition ψ1,1. From Figure 2.7 we see that for energy to stay
bounded when the amplitude of the stream function decays the amplitude of the
vorticity grows and buoyancy, energy density function and the components of the
velocity field stay bounded. This is reminiscent of the familiar cascade of vorticity
to large wave numbers in 2D fluids, but note that the nonlinear advection terms are
neglected in this model, so the observed effect is really due to dispersion among the
normal modes.

The presence of only a single family of wave attractors in the time evolution of
the initial conditions ψ1,1 and ψ1,3 suggests the excitation of only those frequencies
associated to the respective class of (1, 1) and (1, 3) wave attractors, respectively.
Similarly, the nearly periodic evolution from the ψ1,2 Fourier mode suggests the
dominance of the periodic (1, 2) solution.

exactly conserved. For our problem, this implies the total energy will be conserved up to bounded
fluctuations with amplitude O(τ2).
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Figure 2.8: Energy projections upon normal modes of the semi-discrete system
(2.16)–(2.17) for initial conditions ψ1,1 (left), ψ1,3 (middle), and ψ1,2 (right).
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Figure 2.9: Attractor period as a function of subharmonic forcing frequency ω/Nf for
the fixed angle θ = π/20. Horizontal bars indicate families of limit cycle attractors,
dashed lines indicate the discrete periodic cases.

To understand this, we project the Fourier modes onto the normal modes of
the tilted system. We expand the initial conditions (2.25) in the normal modes of
the semi-discretization (2.16)–(2.17) for θ = π/20 and Nf = 1 and plot the scaled
discrete energy values Hi/max{Hi} with respect to the frequencies of the discrete
system in Figures 2.8(a), 2.8(b) and 2.8(c). In each of these Figures we plot a dashed
line to indicate the standing wave solution frequency for θ = 0. The data for Figure
2.9 was taken from the cross-section of Figure 2.3(b) corresponding to tilt angle
θ = π/20, and were computed by following characteristics. The figure indicates the
attractor periods of the limit cycles observed as a function of (subharmonic) forcing
frequency, for attractors having period less than eighteen. The horizontal bars reflect
the fact that there is a continuous range of forcing frequencies that lead to limit cycle
attractors of a given geometry, e.g. the class of (1, 1)-attractors having period 4. For
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Figure 2.10: Normal modes of the stream function (Nf = 1). Left: within the
(1, 1) attractor frequency range (ω = 0.74, θ = 7π/72). Middle: within the (1, 3)
attractor frequency range (ω = 0.34, θ = π/18). Right: the (1, 2) periodic solution,
(ω = 0.43, θ = π/15).

θ = π/20 there exist precisely six periodic solutions of type (2n, 1) and (1, 2m) whose
discrete frequencies are indicated by the vertical dashed lines. Comparing Figures
2.9 and 2.8(a) we see that the (1, 1)-Fourier mode projects almost entirely onto the
range of (1, 1)-attractors. Since there is no energy transfer between normal modes
the solution of the semi discrete system with initial conditions ψ1,1 at any time is a
linear combination of the normal modes with frequencies in the range of the (1, 1)
attractors. Similarly, most of the energy in the (1, 3)-Fourier mode projects into the
range of (1, 3) attractors, Figure 2.8(b). In contrast, Figure 2.8(c) illustrates that
the (1, 2)-Fourier mode is concentrated at one discrete frequency, which is very near
that of the (1, 2) periodic solution, explaining the nearly periodic behavior of this
solution.

For future reference, Figure 2.10 shows normal modes with frequencies within
the (1, 1) and (1, 3) attractor ranges, as well as the distinct normal mode with (1, 2)
periodic solution frequency. The normal modes shown in Figure 2.10 are those whose
frequencies are closest to the forcing frequencies of the monochromatic solutions
in Figure 2.4. The same frequencies were used to generate the Floquet exponents
plotted in Figures 2.5(a) and 2.5(b), and to force the solutions shown in Figure 2.11.
The normal modes displayed in Figures 2.10(a) and 2.10(b) are irregular, with high
frequency oscillations near the grid scale, but a low frequency plateau structure is
also evident. We have inspected a number of the normal modes having frequencies
in the (1,1) and (1,3) attractor regimes. A subset of these possess a large scale
structure in which attractor geometry is discernible, as with Figures 2.10(a) and
2.10(b). On the other hand, many of the normal modes have no apparent relation to
the attractor structure. Furthermore, we were unable to see any functional relation
between the normal mode structure and either frequency or resolution. This is
perhaps unsurprising, when one considers that these solutions form an orthogonal
basis (in an appropriate inner product) for the discrete stream function space.

In summary, for the untilted case the response to an initial perturbation corre-
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sponds to an (n,m) normal mode that simply ‘sloshes’ sinusoidally in time at the
single frequency associated with that mode. In this case there are no other frequen-
cies excited. When the same initial spatial perturbation is given in the tilted square
domain, most of its energy is projected onto the whole ensemble of (n,m) attractor
modes, each associated with a different frequency residing in the (n,m) frequency
window.

2.4.2 Computation of wave attractors

In Section 2.2 we described how to compute monochromatic wave solutions in a tilted
square. We illustrated this with two examples of internal gravity wave attractors,
see Figures 2.4(a) and 2.4(b). In this section we compute internal wave attractors as
an initial value problem with parametric excitation, so-called parametric resonance
solutions.

We solve (2.16)–(2.17) with the Störmer-Verlet method. Since we generate insta-
bility in the system by parametric excitation, the amplitude of the solution grows in
time, and energy is no longer conserved. We choose forcing frequency 2ω = π such
that the wave period is T = 4 and choose the normalized subharmonic frequency
ω/Nf and tilt angle θ on the basis of the type of limit behavior we want to simulate.
We compute a (1, 1) attractor with parameter values ω/Nf = 0.74 and θ = 7π/72,
and a (1, 3) attractor with parameter values ω/Nf = 0.34 and θ = π/18.

Numerical parameters are fixed for both experiments: the forcing amplitude
ǫ = 0.1, time step τ = 0.05 and grid step sizes ∆x = ∆z = 2 × 10−3. Initial
conditions are chosen to be the Fourier modes ψ1,1 and ψ1,3 in the computation
of the (1, 1) and (1, 3) attractors, respectively. We force the system for 50 wave
periods and plot the stream function, buoyancy and the discrete energy density
function (2.26) at the final time in Figure 2.11.

Figure 2.11 (top) displays the results for the (1, 1) limit cycle attractor. The
energy is focused on the attractor, which reflects from each side of the square once.
We observe a standing wave solution with growing amplitude and a ‘plateau’ type
of attractor with piecewise constant stream function. After about 10 wave periods,
i.e. at time t = 40, the wave motion becomes localized along the straight lines of
the attractor. The same ‘plateau’ type of attractors where observed in laboratory
experiments (Hazewinkel et al. [43]). Since all sides of the tilted square are inclined,
in the case of a simple (1, 1) attractor, internal waves become focused at all bound-
aries, because the energy is transported in a counter-clockwise orientation around
the attractor, as is indicated in the plots of the energy density function2, see the
right top plot of Figure 2.11.

In Figure 2.11 (bottom) we consider an example of a (1, 3) attractor. It has
one reflection point with the upper and lower boundaries of the square, and three
reflection points each on the left and right sides of the square. Similarly to the case
of the (1, 1) attractor, we observe a standing wave solution that grows in amplitude,
and the wave energy is localized along the straight lines of an attractor. The form
of the attractor is again of ‘plateau’ type. Internal waves become highly focused

2Due to focusing, the energy density increases after reflection. Hence, the anticlockwise direc-
tion of energy propagation on the attractor can be deduced from the energy density plots.
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Figure 2.11: Wave attractors after 50 forcing periods (i.e. t = 200). Top: (1, 1)
attractor regime. Bottom: (1, 3) attractor regime. Shown are the stream function
(left), buoyancy (middle) and energy density (right). Initial conditions are the same
as in Figure 2.2 at time t = 0.

upon reflection from the upper and lower boundaries of the square and gradually
defocus in the rest of the domain, see the right bottom plot of Figure 2.11.

Following the discussion of Section 2.4.1, the choice of the initial conditions ψ1,1

and ψ1,3 ensures that there will be significant energy in the normal modes corre-
sponding to (1, 1) and (1, 3) attractors, a subset of which will grow in amplitude due
to resonance of the underlying Mathieu equations. Those modes with frequencies
outside the instability tongue of the Mathieu equations remain bounded for all times
and eventually become negligible compared to the unstable modes. Since we do not
have external damping (like in the experiment discussed in Maas et al. [72]; Lam
& Maas [56]), these modes also do not dissipate. Evolution of the stable modes is
primarily significant only during the early part of the simulation, before the wave
attractor dominates.

Experiments with smaller values of ǫ result in increased focusing in the neigh-
borhood of the attractor. Figure 2.5 suggests that early on in the computation all
the normal modes with frequencies in the resonant zone contribute to the dynamics.
But since those modes for which the real part of the Floquet exponent is greater
grow much faster in time, these become more prominently visible than others. Be-
cause of this energy becomes more and more focused near the attractor as time
progresses.
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Since there is no exchange of energy between normal modes, the precise structure
observed at large times will depend both on the associated Floquet multipliers,
and on the initial distribution of energy among the resonant frequencies. In other
words, the initial condition is relevant to what is observed in Figure 2.11. On
an intermediate time scale (here, 50 forcing periods), those normal modes whose
frequencies are associated with the largest Floquet multipliers dominate the solution,
and the observed steadily focusing attractor structure is a linear combination of these
modes. If integration is carried out for much, much longer times (e.g. thousands
of forcing periods for the current resolution), eventually only the distinct normal
mode of largest Floquet multiplier will be observable. This can largely be considered
a numerical artifact, in many cases having no recognizable attractor pattern, nor
corresponding to any physical solution. In the presence of viscosity, the various
normal modes do not evolve independently (cf. equation (2.B.24) in Appendix 2.B),
and the asymptotic solution is independent of the initial condition (Ogilvie [90]).

Typical normal modes are nonsmooth, for example, as shown in Figure 2.10.
The solutions observed in Figure 2.11 are primarily of plateau type. These solutions
are composite, consisting of a linear combination of the most resonant modes. Close
inspection of the solutions in Figure 2.11 reveals that the plateaus are not perfectly
flat, but that there are secondary oscillations of smaller amplitude present. To
better observe these, we subtract the plateau solution using the following formula:

δψi,j = trunc

(
ψi,j −min{ψ}

max{ψ −min{ψ}}k
)
, trunc(f) = f − ⌊f⌋,

where ⌊f⌋ indicates the largest integer less than f . The idea of the formula is to
rescale the stream function, such that the oscillations about the plateau solution
have an amplitude that is less than unity, and then subtract the integer part of the
solution everywhere. This is achieved for the empirically chosen value k = 12. We
plot the secondary wave solution in Figure 2.12 for the stream function at final time
t = 200. Note the symmetry of the solution and a passing resemblance to Figure
2.4, for which half cosine waves were prescribed on the fundamental intervals. The
secondary solutions are also robust with respect to spatial resolution and time step
τ . The shape of the secondary solution and its robustness with respect to numerical
parameters and perturbation amplitude ε suggests that the attractor shape is not
truly piecewise constant, but has higher order secondary waveforms.

2.5 Conclusions

In this chapter we have considered the simplest time dependent configuration in
which internal wave attractors can be generated in stratified fluids: linearized, in-
viscid flow with parametric forcing. We constructed a symmetric, energy conserving
finite difference method. For the case of a tilted square geometry we simulated both
the free evolution (unforced) wave evolution from Fourier mode initial conditions,
and the parametrically forced evolution towards a wave attractor. This simple con-
figuration, as well as the symmetries of the discretization, permit a complete normal
mode analysis of the initial value problem in the discrete case. Based on this analy-
sis we can conclude that the finite dimensional approximation has a complete basis
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Figure 2.12: Deviation from a piecewise constant solution, after 50 wave periods.
Left: (1, 1) attractor. Right: (1, 3) attractor.

of normal modes that is invariant in time, meaning the initial value problem can be
fully decoupled into scalar harmonic oscillators, each of which preserves its initial
energy. Therefore, the numerical solution is quasiperiodic, although the Poincaré re-
currence time (the time over which a discrete, energy conserving system recovers its
initial state) may be quite large. The same analysis can be carried out for the para-
metrically forced case, showing that the forced system of ODEs can be completely
decoupled into Mathieu equations. For a generic initial condition, and depending on
the frequency and magnitude of forcing, a range of normal mode frequencies will lie
in an Arnold tongue of instability, and the corresponding modes will grow in time,
eventually dominating the solution and forming a wave attractor. The shape of the
stream function is to first order a plateau, or piecewise constant function, but there
are secondary solutions that are robust with respect to discretization and forcing
parameters.

We remark that for a given forcing, it is possible to choose judiciously an initial
condition whose projection onto the amplified frequencies of the Mathieu equation
is zero. In this case, a wave attractor will never be generated. However, this no
longer holds if nonlinear advection is taken into account, due to nonlinear coupling.
In fact, even for the linearized model, if viscosity is included there is no global
decomposition into scalar dynamics, since the normal mode decomposition becomes
time dependent.

2.A Hamiltonian numerical discretization

The Euler equations for an ideal fluid have a well-known Hamiltonian structure
(Arnold [3]; Morrison [87]) that strongly constrains the dynamics. When construct-
ing approximate models such as the Euler-Boussinesq equations (2.1)–(2.4), it is
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usually advised to preserve such structure (Salmon [102]). As shown in Holm et
al. [45], the nonlinear Euler-Boussinesq equations inherit the noncanonical Hamilto-
nian structure from the ideal fluid Poisson bracket. Here we verify that the lineariza-
tion leading to (2.5)–(2.8) also preserves a linear Hamiltonian structure. A system
of PDEs on a function space F d equipped with an inner product (·, ·) : F d×F d → R

is said to constitute a Hamiltonian system (Olver [91]) in the variables f (x, t) =
(f1(x, t), . . . , fd(x, t))

T ∈ F d if there exists a functional H(f) : F d → R and a
constant, d × d matrix differential operator (structure matrix) J : F d → F d, that
is skew-symmetric with respect to (·, ·), such that the PDE can be expressed as

∂f

∂t
= J δH

δf
, (2.A.1)

where the variational derivative δH/δf is defined by

(
δH
δf

, g

)
= lim
ε→0

1

ε
[H(f + εg)−H(f)] , ∀ g ∈ F d.

One consequence of Hamiltonian structure is the conservation of the Hamiltonian
along solutions of (2.A.1), which follows from:

dH
dt

=

(
δH
δf

,
∂f

∂t

)
=

(
δH
δf

,J δH
δf

)
= 0,

by the skew-symmetry condition on J .

We show:

Proposition 2.A.0.1. For any value of θ the linearized Euler-Boussinesq equations
in the stream function formulation (2.5)–(2.8) can be written as a noncanonical
Hamiltonian system (2.A.1) in the L2 inner product with f = (q, b), structure matrix

J = −N2
f cos θ

[
0 ∂

∂x
∂
∂x 0

]
+N2

f sin θ

[
0 ∂

∂z
∂
∂z 0

]
(2.A.2)

and Hamiltonian

H =
1

2

∫

D

(
∇ψ · ∇ψ +

1

N2
f

b2

)
dx. (2.A.3)

Proof. The first variations of the Hamiltonian functional (2.A.3) with respect to q
and b are

δH =

∫

D

(
∇ψ · ∇δψ +

1

N2
f

bδb

)
dx =

∫

D

(
−ψ∆δψ +

1

N2
f

bδb

)
dx =

∫

D

(
ψδq +

1

N2
f

bδb

)
dx,
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where the boundary condition (2.8) has been used to carry out the integration by
parts. It follows that the variational derivatives of the Hamiltonian (2.A.3) with
respect to the vorticity q and the buoyancy b are

δH
δq

= ψ,
δH
δb

=
1

N2
f

b. (2.A.4)

Substituting (2.A.4) and (2.A.2) into (2.A.1) we get that

J δH
δf

= J
( δH
δq
δH
δb

)
=

( − ∂b
∂x cos θ +

∂b
∂z sin θ

−N2
f (

∂ψ
∂x cos θ − ∂ψ

∂z sin θ)

)
=

(
∂q
∂t
∂b
∂t

)
=
∂f

∂t

which agree with (2.5)–(2.8)

It follows that the Hamiltonian functional (2.A.3) is conserved along the solution
of the equation system (2.5)–(2.8).

2.A.1 Finite difference matrices

In this section we describe a numerical discretization for the Euler-Boussinesq equa-
tions that preserves a discrete analogue of the Hamiltonian structure in the inviscid,
unforced limit. In particular the spatially discrete system of ODEs has a first in-
tegral approximating the energy. The scheme also preserves the symmetries of the
continuous differential operators. Our approach is to discretize the Hamiltonian
and structure operator J separately, while enforcing the skew-symmetry of J , (see
McLachlan [81]). Although this approach leads to a rather standard staggered cen-
tral difference scheme here, it can be used to construct a Hamiltonian discretization
on more general domains and nonuniform grids, which will be important for studying
internal waves in ocean basins.

Consider the unit square domain D = [0, 1]2 divided into Nx ×Nz uniform rect-
angular cells. Subscripted indices shall indicate grid nodes xi,j = (i∆x, j∆z), where
∆x = 1/Nx and ∆z = 1/Nz are the grid sizes in x and z direction, respectively.
We shall construct a Hamiltonian structure-preserving staggered finite difference
scheme. To this end let us denote by U = RNx×Nz the space of cell-centered grid
functions and by V = R(Nx−1)×(Nz−1) the space of grid functions defined at cell
vertices, where in the latter case, we only include inner vertices, since the boundary
vertices are either known, or not needed in the discretization.

The discrete stream function ψi,j and vorticity qi,j are defined at cell vertices
and the buoyancy bi+1/2,j+1/2 at cell centers. The discrete analogue of the boundary
condition on the stream function (2.8) is

ψ0,j = ψNx,j = 0, ∀j, ψi,0 = ψi,Nz = 0, ∀i. (2.A.5)

We define column vectors q,ψ ∈ V consisting only of the interior grid point values
of qi,j and ψi,j . The buoyancy column vector b ∈ U consists of all the values of
bi+1/2,j+1/2 defined at cell centers.
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We also define discrete inner products on U and V:

〈a, b〉U =

Nx−1,Nz−1∑

i,j=0

ai+1/2,j+1/2bi+1/2,j+1/2 ∆x∆z, a, b ∈ U,

〈q, r〉V =

Nx−1,Nz−1∑

i,j=1

qi,jri,j ∆x∆z, q, r ∈ V.

For the inner product on V we assume zero boundary data for at least one of its
arguments.

Taking into account the discrete boundary conditions (2.A.5), the following ma-
trices implement the central finite difference approximations to the first derivatives
on cell edges:

(Dxψ)i+1/2,j =
ψi+1,j − ψi,j

∆x
, (Dzψ)i,j+1/2 =

ψi,j+1 − ψi,j
∆z

,

where Dx ∈ RNx(Nz−1)×(Nx−1)(Nz−1) and Dz ∈ RNz(Nx−1)×(Nx−1)(Nz−1). The dual
operators −DT

x and −DT
z represent central finite difference approximations to the

first derivatives on cell vertices from cell edges.
Additionally we define the averaged operator matrices from cell centers to cell

edges:

(Mxb)i,j+1/2 =
bi+1/2,j+1/2 + bi−1/2,j+1/2

2
,

(Mzb)i+1/2,j =
bi+1/2,j+1/2 + bi+1/2,j−1/2

2
,

where Mx ∈ RNz(Nx−1)×NxNz , Mz ∈ RNx(Nz−1)×NxNz and their transposes are
averaged operator matrices from the cell edges to the cell centers.

The matrices above can be composed in various ways to construct approximate
derivative operators from V to U and vice versa.

MT
z Dx : V → U, MT

x Dz : V → U, −DT
xMz : U → V, −DT

zMx : U → V.

The discrete Laplacian operator L : V → V, defined as

L = −(DT
xDx +DT

z Dz) ∈ R(Nx−1)(Nz−1)×(Nx−1)(Nz−1), (2.A.6)

is the standard symmetric, negative definite, five point central difference stencil, i.e.

(Lψ)i,j =
ψi+1,j − 2ψi,j + ψi−1,j

∆x2
+
ψi,j+1 − 2ψi,j + ψi,j−1

∆z2
,

where the boundary terms are modified to satisfy (2.A.5). We define the discrete
vorticity field by q = −Lψ.

For diagnostic purposes we also define the discrete velocity components at cell
centers:

u = −MT
x Dzψ, w =MT

z Dxψ. (2.A.7)
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2.A.2 Hamiltonian semi-discretization

To construct a Hamiltonian semi-discretization with structure analogous to (2.A.2),
we define a quadrature for H and a skew-symmetric structure that approximates J .

In terms of inner products on U and V, the discrete Hamiltonian is defined by

H(q, b) =
1

2

(
−〈ψ, q〉V +

1

N2
f

〈b, b〉U
)

=
1

2

(
−〈q, L−1q〉V +

1

N2
f

〈b, b〉U
)
. (2.A.8)

The variational derivatives of H are defined in the weak sense in these inner
products by

〈δH
δq

, r〉V = lim
ε→0

1

ε
(H(q + εr, b)−H(q, b)) = 〈ψ, r〉V, ∀ r ∈ V,

〈δH
δb

,a〉U = lim
ε→0

1

ε
(H(q, b+ εa)−H(q, b)) = 〈 1

N2
f

b,a〉U, ∀a ∈ U,

i.e.
δH

δq
= ψ,

δH

δb
=

1

N2
f

b.

Next, we define a composite space G = V ×U. A vector g ∈ G takes the form

g =

(
gV
g
U

)
,

where gV ∈ V and gU ∈ U. We also define a joint inner product on G:

〈〈g,h〉〉 = 〈gV,hV〉V + 〈gU,hU〉U,

and the variational derivative

δH

δg
=

(
δH
δg

V

δH
δg

U

)
.

We approximate the structure operator (2.A.2) using our finite difference matri-
ces:

J = −N2
f cos θ

[
0 −DT

xMz

MT
z Dx 0

]
+N2

f sin θ

[
0 −DT

zMx

MT
x Dz 0

]
.

Note that J is skew-symmetric with respect to 〈〈·, ·〉〉.
Choosing g = (q, b), the Hamiltonian semi-discretization of the Euler-Boussinesq

equations can now be defined by

dg

dt
= J

δH

δg
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or, in terms of q, b and ψ,

dq

dt
= DT

xMzb cos θ −DT
zMxb sin θ, (2.A.9)

db

dt
= −N2

f (M
T
z Dxψ cos θ −MT

x Dzψ sin θ), (2.A.10)

q = −Lψ. (2.A.11)

By construction the discrete total energy H is a first integral of the semi-
discretization. Additionally, this system of ODEs is reversible and symplectic.

2.A.3 Time integration

We have shown that semi-discrete Euler-Boussinesq equations constitute a time-
reversible Hamiltonian system. We solve the Hamiltonian system (2.A.9)–(2.A.11)
in time with the symmetric and symplectic Störmer-Verlet method (Hairer et al. [37];
Leimkuhler & Reich [63]):

qn+1/2 = qn +
τ

2
(DT

xMzb
n cos θ −DT

zMxb
n sin θ), (2.A.12)

ψn+1/2 = −L−1qn+1/2, (2.A.13)

bn+1 = bn − τN2
f (M

T
z Dxψ

n+1/2 cos θ −MT
x Dzψ

n+1/2 sin θ), (2.A.14)

qn+1 = qn+1/2 +
τ

2
(DT

xMzb
n+1 cos θ −DT

zMxb
n+1 sin θ), (2.A.15)

such that the Hamiltonian function (2.A.8) will be conserved in time up to small
fluctuations of second order amplitude. The method requires the solution of the
Poisson equation once per time step, but is otherwise explicit. We solve the Poisson
equation efficiently using a fast Poisson solver. The overall method is second order
in space and time. Sparse discretization in space combined with a fast Poisson solver
allows us to compute efficiently at high spatial resolution.

2.B Normal mode decomposition

We next consider the discrete model (2.16)–(2.17) with parametric forcing, written
in terms of the stream function ψ ∈ RM and buoyancy b ∈ RN :

[
−L 0
0 1

N2
f
IN

]
d

dt

(
ψ

b

)
=

[
0 α(t)K

−KT 0

](
ψ

b

)
, (2.B.16)

where N = NxNz, M = (Nx−1)(Nz−1), L ∈ RM×M is the discrete approximation
of the Laplacian (2.A.6), K ∈ RM×N is a finite difference matrix

K = DT
xMz cos θ −DT

zMx sin θ

and IN denotes the identity matrix on RN . The matrix L is symmetric and negative
definite, and hence possesses an orthogonal basis of eigenvectors, and we can write



2.B. Normal mode decomposition 89

−L = QDLQ
T , where QTQ = QQT = IM , Q ∈ RM×M and DL ∈ RM×M is a

diagonal matrix with positive entries. In matrix form we write
[
QDLQ

T 0
0 1

N2
f
IN

]
d

dt

(
ψ

b

)
=

[
0 α(t)K

−KT 0

](
ψ

b

)
.

We transform as follows:
[
QD

1/2
L 0
0 1

Nf
IN

] [
D

1/2
L QT 0
0 1

Nf
IN

]
d

dt

(
ψ

b

)

=

[
0 α(t)K

−KT 0

] [
QD

−1/2
L 0
0 NfIN

] [
D

1/2
L QT 0
0 1

Nf
IN

](
ψ

b

)

or, defining ψ̂ = D
1/2
L QTψ and b̂ = 1

Nf
b,

d

dt

(
ψ̂

b̂

)
= Nf

[
0 α(t)D

−1/2
L QTK

−KTQD
−1/2
L 0

](
ψ̂

b̂

)
. (2.B.17)

Now let C = NfD
−1/2
L QTK ∈ RM×N . The singular value decomposition of the real

matrix C is denoted
C = SΩRT ,

where S ∈ RM×M and R ∈ RN×N are orthogonal matrices and Ω = diag(ω1, . . . ,
ωM ) is an RM×N matrix whose off-diagonals are zero and whose diagonal contains
the M real, positive singular values of C. Hence (2.B.17) can be written as

d

dt

(
ψ̂

b̂

)
=

[
0 α(t)SΩRT

−RΩTST 0

](
ψ̂

b̂

)
.

Transforming again with ψ̃ = ST ψ̂ and b̃ = RT b̂ yields the system of (forced)
harmonic oscillators

d

dt

(
ψ̃

b̃

)
=

[
0 α(t)Ω

−ΩT 0

](
ψ̃

b̃

)
. (2.B.18)

Expressed in terms of components, the above system becomes

d2

dt2
ψ̃i = −α(t)ω2

i ψ̃i + α̇(t)ωib̃i, i = 1, . . . ,M, (2.B.19)

d2

dt2
b̃i = −α(t)ω2

i b̃i, i = 1, . . . ,M, (2.B.20)

d2

dt2
b̃i = 0, i =M + 1, . . . , N. (2.B.21)

To summarize, let X = QD
−1/2
L S ∈ RM×M and Y = 1

Nf
R ∈ RN×N . The columns

of X and Y , denoted (X1, . . . , XM ) and (Y1, . . . , YN ), respectively, represent the
normal modes of ψ and b. Then the normal mode decomposition

ψ = Xψ̃, b = Y b̃, (2.B.22)
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yields a system ofM independent systems (2.B.19)–(2.B.20), plus the N−M trivial
dynamics (2.B.21).

Remark. Note that if viscosity is included in the model, with viscosity param-
eter ν, then equation (2.B.16) takes the form

[
−L 0
0 1

N2
f
IN

]
d

dt

(
ψ

b

)
=

[
νL2 α(t)K
−KT 0

](
ψ

b

)
. (2.B.23)

By inverting the matrix on the left, this system is again a linear nonautonomous
differential equation of the form

df

dt
= A(t)f ,

for some time dependent matrix A(t). Even if A(t) can be diagonalized, the sim-
ilarity transformation that achieves this will typically be local in time, A(t) =
X(t)DA(t)X(t)−1, and so one would not expect there to be a change of variables
for which the dynamics decouples for all time. We can carry through the transfor-
mations used above in the inviscid case for (2.B.23), and (2.B.18) becomes

d

dt

(
ψ̃

b̃

)
=

[
νSTDLR α(t)Ω
−ΩT 0

](
ψ̃

b̃

)
, (2.B.24)

where we observe that the oscillators have become fully coupled through the (vis-
cous) diagonal term in general.



Chapter 3

Thermostats for Constrained
Systems

3.1 Introduction

Constraints are used in diverse ways in molecular dynamics studies. They replace
the stiffest bond stretches in biomolecular models, allowing simulation with larger
timesteps than would otherwise be possible [13]; they are part of free-energy and
reaction pathway techniques [12, 15, 25], and they are used to constrain normal
modes in some enhanced sampling approaches [17]. In general, these methods are
implemented in the setting of canonical sampling, i.e. with thermostats, or barostats.
The proper treatment of constraints in combination with appropriate thermostatting
devices is therefore of great importance and the neglect of their correct handling
may lead to uncontrollable errors in computed observables.

When constraints are introduced as a modelling device, they effectively reduce
the dimension of phase space. To achieve a good agreement in thermodynamical
calculations, a free energy correction, representing the energy of the missing degrees
of freedom, should be incorporated (e.g. through a Fixman potential [11, 29, 111]);
this thermodynamic correction (which can only be realized in a canonical simula-
tion, i.e. with a thermostat) has the potential to interfere with the calculation of
dynamical properties such as diffusion rates. In this chapter we discuss the use of
stochastic-dynamical techniques for treating constrained models in the context of
these issues.

Consider a Hamiltonian system with generalized coordinates q, p ∈ Rn and
Hamiltonian

H(q, p) =
1

2
pTM−1p+ V (q),

whereM is a positive definite and symmetric (typically diagonal) mass matrix. The
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equations of motion are

dq

dt
=M−1p, (3.1)

dp

dt
= −∇V (q). (3.2)

The Hamiltonian represents the total energy and is a first integral of (3.1)–(3.2).
Consequently, a trajectory of this system with initial condition (q0, p0) samples the
constant energy surface H(q, p) = H0 ≡ H(q0, p0), and when the flow is sufficiently
ergodic, we expect time averages to converge to ensemble averages in the micro-
canonical ensemble

ρµ(q, p) = Z−1
µ δ(H(q, p)−H0), Zµ =

∫
δ(H(q, p)−H0) dq ∧ dp,

where dq ∧ dp = dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn is the volume form on R2n.
In molecular dynamics one is often interested, not in the dynamics of an isolated

system at constant energy, but in a system in thermal equilibrium with a reservoir
at temperature β−1 = kBT . In this case an ergodic system should sample the
canonical (Gibbs) distribution

ρβ(q, p) = Z−1e−βH(q,p), Z =

∫
e−βH(q,p) dq ∧ dp. (3.3)

A wide variety of thermostatting devices have been proposed to perturb the Hamil-
tonian dynamics (3.1)–(3.2) in order to sample the canonical distribution (3.3). In
Section 3.2 of this chapter, we will discuss various schemes and the relationships
among them, and mention a recently proposed unified framework.

In Section 3.3 of this chapter we will generalize the discussion to the case in which
the dynamics (3.1)–(3.2) is subjected to a holonomic constraint, i.e. we enforce an
algebraic relation on the position variables q, i.e.

g(q) = 0, g : Rn → Rm. (3.4)

This constraint restricts the positions q to an n−m dimensional manifold M, and
implies a restriction of the velocities M−1p to the tangent space TqM, i.e.

∇g(q)M−1p = 0,

which follows by taking the derivative of (3.4) with respect to t along a trajectory.
The constraint is enforced by introducing a Lagrange multiplier λ ∈ Rm

dq

dt
=M−1p, (3.5)

dp

dt
= −∇V (q)−∇g(q)Tλ, (3.6)

0 = g(q) (3.7)
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with the augmented Hamiltonian

H̃(q, p, λ) =
1

2
pTM−1p+ V (q) + g(q)Tλ. (3.8)

Taking the second derivative of (3.4) with respect to time and making use of
(3.6) yields an explicit expression for the Lagrange multiplier

λ =
(
∇g(q)M−1∇g(q)T

)−1 (∇g(q)M−1∇V (q)−G(q)
(
M−1p,M−1p

))
,

where G(q) is the symmetric three-tensor (Hessian) of partial derivatives of ∇g(q),
whose contraction is denoted G(q)(·, ·).

When the flow of the constrained dynamical system (3.5)–(3.7) is sufficiently
ergodic, we expect time averages to converge to ensemble averages in the micro-
canonical ensemble

ρµ,c = Z−1
µ,cδ(H(q, p)−H0)δ(g(q))δ(∇g(q)M−1p),

Z−1
µ,c =

∫
δ(H(q, p)−H0)δ(g(q))δ(∇g(q)M−1p) dq ∧ dp.

In the context of molecular dynamics when one is interested in a system in thermal
equilibrium with a reservoir at temperature β−1, an ergodic system should sample
the hybrid (Gibbs) distribution

ρβ,c(q, p) = Z−1
c e−βH(q,p)δ(g(q))δ(∇g(q)M−1p), (3.9)

Zc =

∫
e−βH(q,p)δ(g(q))δ(∇g(q)M−1p) dq ∧ dp.

Some numerical methods for implementing constrained sampling methods discussed
in Section 3.3 are provided in the appendix of this chapter.

Thermostats are, by their very nature, artificial devices. The purposes of ther-
mostatting are varied, including the efficient decorrelation of sampling trajectories
and the correction of temperature perturbations due to numerical drift [48, 85] or
even applied forcing [50]. A strong motivation for some of the recent proposals (in
particular [7, 8, 104]) for thermostats has been the desire to control temperature
while exerting the least influence on the dynamics of the system, i.e. staying as close
as possible to microcanonical dynamics. This topic has been studied in detail in a
recent article [60]. If the convergence to equilibrium of two methods is similar, then
the problem is to compare the accuracy of autocorrelation functions produced by
the methods, as a measure of the efficiency of the thermostat. That is, for a given
rate of convergence to the equilibrium measure, a more efficient thermostat is one
that least perturbs the dynamics (measured in terms of autocorrelation functions).
Similarly, we say that a thermostat is gentle if its effect on dynamics is relatively
mild for a given rate of convergence of the measure. In this vein, we here demon-
strate in Section 3.4 that results of [60] on the smaller autocorrelation error of the
Nosé-Hoover-Langevin method compared to Langevin dynamics carry over to the
constrained setting.
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In Section 3.5 we consider the situation in which constraints are introduced as
modelling devices derived as limits of strong restraints. By restraints we mean stiffly
oscillatory forces or soft constraints. We have in mind applications in molecular
dynamics where the constraints are used as models for chemical bonds which should,
in a somewhat more accurate model, be allowed to stretch. The suppression of these
fast bond vibrations has an advantage for numerical integration: the fast vibration
necessitates a small timestep which is not in fact needed to resolve the expensive
components of the molecular force field (such as Coulombic interactions). However,
this simple approach has a fundamental problem: the thermodynamic properties of
a system with strong restraint are not equivalent to those of the constrained system.
We can see this by considering the fact that the model with restraint, however stiff,
still has momenta which sample a Boltzmann distribution, i.e. they are normally
distributed, whereas the constrained system cannot have this property due to the
associated tangent space constraint. The energy which would be equidistributed
into the transverse components to the constraint manifold must be accounted for in
the model using a Fixman biasing potential [11, 29, 40, 96, 111, 112].

The methods are applied to a small chain of 4 atoms with Lennard-Jones forces.
Our results suggest that Langevin dynamics performs in a reliable and robust man-
ner for the computation of (stationary) thermodynamic averages, but it is unable
to recover autocorrelation functions accurately. In our example, the Nosé-Hoover-
Langevin method and Stochastic Velocity Rescaling method prove superior to the
Langevin method when the goal is the calculation of dynamics.

3.2 Stochastic-dynamical thermostats

In this section, we discuss and compare a variety of methods for achieving canonical
sampling in the unconstrained setting. All of these can be written in a simple unified
framework [58].

Thermostats come in many different varieties, designed for a range of different
purposes. Sometimes thermal control is effected by means of a randomized step
with a Metropolis (Monte-Carlo) accept/reject step. In this chapter we are only
concerned with methods that generate sampling paths by discretization of a suitable
stochastic differential equation obtained as a perturbation of the original dynamics.
One of the most popular methods is Langevin dynamics defined by

dq =M−1p dt, (3.10)

dp = −∇V (q) dt− β

2
σσTM−1p dt+ σ dW, (3.11)

where W (t) is a vector of independent Wiener processes in Rn and σ ∈ Rn×n.
Nosé-Hoover-Langevin (NHL) dynamics [61, 104] is defined by

dq =M−1p dt, (3.12)

dp = −∇V (q) dt+ ξp dt, (3.13)

dξ =
1

α

(
n− βpTM−1p

)
dt− γξ dt+ σ dw, (3.14)
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where ξ ∈ R is an auxiliary thermostat variable and w(t) is a scalar Wiener process,
σ ∈ R and γ = ασ2/2. The NHL method is constructed such that the extended
measure

ρ̂(q, p, ξ) = ρβ(q, p)ρα(ξ) (3.15)

is stationary under the phase space flow, where ρα(ξ) is the mean-zero normal
distribution with variance α−1:

ρα(ξ) =

√
α

2π
exp

(
−αξ

2

2

)
. (3.16)

The NHL dynamics can furthermore be shown to be ergodic in the measure (3.15)
whenever the Lie algebra generated by p and ∇V (q) spans Rn. Whence the pro-
jected dynamics on R2n ergodically samples (3.3).

In [60] it was shown that the NHL dynamics allows a more accurate computa-
tion of velocity autocorrelation functions (VAF) in the asymptotic limit of small
correlation times.

Other schemes have been suggested recently for sampling purposes. Like NHL,
the Stochastic Velocity Rescaling (SVR) method of Bussi et al. [7, 8] has been
suggested to provide for thermostatting with a weak perturbation of dynamics.
This claim was verified analytically by [60] who generalized the method to:

dq = ∇pH dt, (3.17)

dp = −∇qH dt−Ψ(K)p dt+
√
2kBTΦ(K)p dW, (3.18)

where W (t) is a (scalar) Wiener process, and Φ, Ψ are related by

Ψ(K) = (2K − (1 + n)kBT )Φ(K)− 2kBTK
dΦ

dK
.

With these choices, the method can be shown to preserve the Gibbs distribution ρβ.
For the SVR method to be well defined, one also assumes

KΦ(K) is bounded as K → 0,

Φ(K) grows at most polynomially as K → ∞.

Frank & Gottwald [30] have shown that the NHL method converges to SVR (3.17)–
(3.18) in an appropriate strong perturbation limit α → 0.

We mention that all the various methods described in this section have been
unified into a single general formulation [58] which can be viewed as including any
canonical measure-preserving deterministic extensions of the equations of motion
coupled with measure-preserving stochastic perturbation. In general, one augments
the system by some degrees of freedom ξ1, ξ2, . . . , ξk and designs an extended dy-
namics so that the density ρβ ρ̂(ξ1, ξ2, . . . , ξk) is preserved, for some suitable choice
of ρ̂. Then, if ergodic, the extended system can be used to compute canonical phase
space averages with respect to ρβ (essentially by averaging out over the auxiliary
degrees of freedom).
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3.3 Extension to holonomic constraints

In this section we discuss various methods for treating the equations of motion with
holonomic constraints, including Langevin dynamics, the Nosé-Hoover-Langevin dy-
namics and the Stochastic Velocity Rescaling thermostats. Besides the added con-
straints and associated Lagrange multiplier, the main difference in the methods is
the reduction of degrees of freedom from n to n−m, which appears explicitly in the
thermostat relations. The derivations are included in Appendix 3.A.

The positions of the system (3.5)–(3.7) are constrained to the configuration man-
ifold M of co-dimension m:

M = {q ∈ Rn | g(q) = 0} ,

and the associated phase space is the tangent bundle denoted by

T M =
{
q, p ∈ Rn

∣∣ q ∈ M, ∇g(q)M−1p = 0
}
.

For a given q ∈ M, the tangent space is defined by

TqM =
{
p ∈ Rn

∣∣∇g(q)M−1p = 0
}
.

Given a measure (3.3) on the base space R2n, the associated measure on the
tangent bundle TM is obtained by restricting the volume form dq ∧ dp to TM.
Following [62] we introduce a local chart (ζ, η), where ζ, η ∈ D ⊂ Rn−m and a
mapping φ(ζ) : D → Rn satisfying g(φ(ζ)) = 0 and ∇g(q)∇φ = 0. We parametrize
TqM using the relations

q = φ(ζ), (3.19)

p = ∇φ
(
∇φT∇φ

)−1
η. (3.20)

Here we assume that the square matrix ∇φT∇φ has full rank. This map is a
canonical transformation. The Hamiltonian (3.8) is transformed to

Ĥ(ζ, η) =
1

2
ηT
(
∇φT∇φ

)−T (∇φTM−1∇φ
) (

∇φT∇φ
)−1

η + V (φ(ζ)), (3.21)

and the projected volume form transforms as

dq ∧ dp = dζ ∧ dη.

This means that expectations of a function f(q, p) can be evaluated (locally) as

E{f} =

∫

D

f(q(ζ), p(ζ, η))e−βĤ(ζ,η) dζ ∧ dη,

where the integration is understood as an integral over nonoverlapping local coor-
dinate charts. Hence we consider the projected distribution

ρ(ζ, η) = Z−1 exp
(
−βĤ(ζ, η)

)
, Z =

∫

D

exp
(
−βĤ(ζ, η)

)
dζ ∧ dη. (3.22)
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For future reference we note from (3.22) and (3.21) that η is mean-zero distributed
in ρ, i.e. 〈ηi〉 = 0.

The generalization of the Langevin dynamics (3.10)–(3.11) to the constrained
system (3.5)–(3.7) has been treated in [65]. Considering the phase space measure
µT M of T M. The system which admits this measure as an invariant equilibrium
measure is the following Langevin process with holonomic constraints:

dq =M−1p dt, (3.23)

dp = −∇V (q) dt−∇g(q)Tλdt− γ(q)M−1p dt+ σ(q) dW, (3.24)

0 = g(q), (3.25)

where W (t) is n-dimensional Wiener process, and γ(q), σ(q) are n×n real matrices.
The standard fluctuation-dissipation identity

σ(q)σ(q)T =
2

β
γ(q)

has to be imposed such that the canonical distribution on the tangent bundle T M
with the phase space measure µT M is invariant under the dynamics (3.23)–(3.25).

In local coordinates, the Langevin dynamics (3.23)–(3.25) takes the following
form:

dζ = ∇ηĤ dt, (3.26)

dη = −∇ζĤ dt− Γ(ζ)∇ηĤ dt+Σ(ζ) dW, (3.27)

where Σ(ζ) = ∇φTσ(φ(ζ)) and the standard fluctuation-dissipation identity

Σ(ζ)Σ(ζ)T =
2

β
Γ(ζ)

is satisfied in order for the projected distribution (3.22) to be invariant under the
dynamics of (3.26)–(3.27).

The Nosé-Hoover-Langevin dynamics extended with holonomic constraint read:

dq =M−1p dt, (3.28)

dp = −∇V (q) dt−∇g(q)Tλdt+ ξp dt, (3.29)

dξ = h(p) dt− γξ dt+ σ dw, (3.30)

0 = g(q), (3.31)

where ξ is an auxiliary thermostat variable, w(t) is scalar Wiener process, σ ∈ R,
γ = ασ2/2 and the function h(p) : Rn → R has to be determined.

To find the function h(ζ, η) we ask that the extended projected distribution

ρ̂(q, p, ξ) = ρ(ζ, η)ρα(ξ), (3.32)

where ρα is defined in (3.16), be invariant under the Fokker-Planck equation. The
calculation is given in Appendix 3.A. We find that

h(p) =
1

α

(
n−m− βpTM−1p

)
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in generalized coordinates (q, p). Note the difference between the constants n of
h(p) in NHL dynamics without constraint (3.12)–(3.14) and n −m of h(p) in the
NHL dynamics with constraint (3.28)–(3.31). This form is also applicable to the
original Hoover thermostat applied to constrained systems.

The Stochastic Velocity Rescaling thermostat method with holonomic constraints
reads:

dq =M−1p dt, (3.33)

dp = −∇V (q) dt−∇g(q)Tλdt−Ψ(K)p dt+
√
2kBTΦ(K)p dW, (3.34)

0 = g(q), (3.35)

where W (t) is a scalar Wiener processes, and Φ, Ψ are related by (see Appendix
3.A):

Ψ(K) = (2K − (1 + n−m)kBT )Φ(K)− 2kBTK
dΦ

dK
.

Note the difference in the constants 1+n in the SVR dynamics without constraints
(3.17)–(3.18) and 1+n−m for the dynamics with constraints (3.33)–(3.35). For the
SVR dynamics with constraints the original proposal of Bussi et al. [7, 8] transforms
to

Φ(K) =
γ′′

2K
, so that Ψ(K) =

(
1− n−m− 1

2K
kBT

)
γ′′. (3.36)

3.3.1 Numerical methods

All of the methods mentioned above are easily implemented in the constrained
setting using ideas of geometric integration (splitting methods). For a discussion of
numerical methods for Langevin dynamics, see [82]. The numerical implementations
are discussed in Appendix 3.B.

3.4 Relative efficiencies of NHL and Langevin

Our approach to investigating the relative efficiencies of the different schemes is to
determine the Maclaurin expansion of the velocity autocorrelation function (VAF),
comparing the asymptotic convergence of this expansion in the limit of small cor-
relation time τ . All methods are expected to recover the correct (de-)correlation
in the limit τ → ∞. The intermediate time 0 ≪ τ ≪ ∞ is also interesting, but
does not easily yield to analysis. However it is hard to imagine that a method can
be accurate for intermediate correlation times if it is inaccurate in the limit τ → 0
studied here. The analysis closely follows that of [60] and the results are analogous
to the unconstrained case. For that reason we consider here only the NHL and
Langevin methods, and refer the reader to [60] for the SVR method.

Following Leimkuhler et al. [60],

F (t) :=
1

F0
Eeq

{
p(0)TM−1p(t)

}
=

1

F0
Eteq

{
p(0)TM−1p

}
,

F0 := Eeq
{
p(0)TM−1p(0)

}
,
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in the measure (3.9) for both constrained Langevin dynamics (3.23)–(3.25) and
constrained NHL dynamics (3.28)–(3.31). These are compared with the expansion
arising from the microcanonical dynamics (3.5)–(3.7). In [60] it was shown that in
the limit tց 0, Langevin dynamics decorrelates linearly in t whereas NHL dynamics
decorrelates as t2, as does the microcanonical dynamics. That is, in the limit tց 0,
NHL dynamics approaches microcanonical dynamics asymptotically.

We expand the VAF in Maclaurin series,

F (t) = 1 + t
dF (t)

dt

∣∣∣∣
t=0+

+
t2

2

d2F (t)

dt2

∣∣∣∣
t=0+

+O(t3) (t > 0),

and for comparison we compute the first and the second derivatives of F for the
Hamiltonian, Langevin and NHL dynamics.

3.4.1 Hamiltonian dynamics

We compute the first derivatives of the VAF for the constrained Hamiltonian dy-
namics (3.5)–(3.7) (without a thermostat). Multiplying equation (3.6) by M−1p(0)
and taking the expectation with respect to the equilibrium measure (3.9) we obtain

dFHam(t)

dt
=

1

F0
Eteq

{
p(0)TM−1dp

dt

}
= − 1

F0
Eteq

{
p(0)TM−1∇V (q)

}

− 1

F0
Eteq

{
p(0)TM−1∇g(q)Tλ

}
(t > 0).

Using the canonical transformation (3.19)–(3.20) the first expectation value is

Eteq
{
p(0)TM−1∇V (q)

}
=

Eteq

{
η(0)T

(
∇φ(0)T∇φ(0)

)−T ∇φ(0)TM−1∇φT∇V (φ(ζ))
}
= 0,

since η in each component is mean-zero distributed in (3.22). Taking the limit tց 0,
the second expectation value is equal to zero since M−1p(0) belongs to the tangent
space Tq(0)M. Hence we obtain

dFHam(t)

dt

∣∣∣∣
t=0+

= 0.

We compute the second derivative of the VAF. Differentiating equation (3.6) with
respect to t, multiplying by M−1p(0) and taking the expectation value with respect
to the equilibrium measure (3.9) we obtain

d2FHam(t)

dt2
=

1

F0
Eteq

{
p(0)TM−1 d

2p

dt2

}
= − 1

F0
Eteq

{
p(0)TM−1Hessq(H̃)

dq

dt

}

= − 1

F0
Eteq

{
p(0)TM−1Hessq(H̃)M−1p

}
(t > 0),
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where Hessq(H̃) stands for Hessian matrix of the constrained Hamiltonian function
(3.8) with respect to q. In the limit tց 0, the term in braces is positive definite, so

d2FHam(t)

dt2

∣∣∣∣
t=0+

6= 0

(in fact this term is strictly negative). Hence the Maclaurin expansion of VAF of
the Hamiltonian dynamics

FHam(t) = 1 +
t2

2

d2FHam(t)

dt2

∣∣∣∣
t=0+

+O(t3) (t > 0)

decorrelates quadratically for small times t.

3.4.2 Langevin dynamics

We compute the first derivative of the VAF for the Langevin dynamics. Multiplying
equation (3.24) by M−1p(0), taking the expectation with respect to the equilibrium
measure (3.9) we obtain, since p(0) and dW are statistically independent if t > 0,

dFLD(t)

dt
=

1

F0
Eteq

{
p(0)TM−1 dp

dt

}

=
dFHam(t)

dt
− 1

F0
Eteq

{
β

2
p(0)TM−1σ(q)σ(q)TM−1p

}
(t > 0).

Taking the limit t ց 0, we obtain

dFLD(t)

dt

∣∣∣∣
t=0+

= − 1

F0
Eeq

{
β

2
p(0)TM−1σ(q(0))σ(q(0))TM−1p(0)

}
= −γ̂ 6= 0

and the Maclaurin expansion of the VAF for Langevin dynamics is

FLD(t) = 1− γ̂t+O(t2) (t > 0)

with explicit dependence on the parameter γ̂. Since Hamiltonian dynamics is the
same as Langevin dynamics with σ(q) = 0, which in turn implies γ̂ = 0, the error
in F (t) due to the use of Langevin dynamics rather than Hamiltonian dynamics is

∆LDF (t) := FLD(t)− FHam(t) = −γ̂t+O(t2) (t > 0).

Thus for small t the magnitude of the error is γ̂t.

3.4.3 The NHL dynamics

The NHL thermostat depends on the variable ξ. The following computations are
done with respect to the extended equilibrium hybrid (Gibbs) distribution (3.9).
We begin by computing the first derivative of the VAF for the NHL dynamics.
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Multiplying the equation (3.24) by M−1p(0), taking the equilibrium expectation
and dividing by dt we obtain

dFNHL(t)

dt
=

1

F0
Eteq

{
p(0)TM−1 dp

dt

}

=
dFHam(t)

dt
+

1

F0
Eteq

{
ξp(0)TM−1p

}
(t > 0).

Taking the limit tց 0, we find that

dFNHL(t)

dt

∣∣∣∣
t=0+

=
1

F0
Eeq

{
ξ(0)p(0)TM−1p(0)

}
= 0.

The result follows from the fact that ξ is mean-zero normally distributed in the
extended measure (3.32). Thus, the Maclaurin series of VAF for NHL dynamics
begins with a quadratic term, for which we need the second derivative of F (t) at
t = 0.

We define the function
y := −∇qH̃ + ξp

such that the equation (3.29) for dp can be written dp = y dt. Differentiating y by
the Itō-Doeblin formula and using the equations (3.28)–(3.30) we obtain

dy = −Hessq(H̃) dq + ξ dp+ p dξ

= −Hessq(H̃)∇pH̃ dt+ ξ(−∇qH̃ + ξp) dt

+ p (h(p) dt− γξ dt+ σ dw) (t > 0).

Hence

d2FNHL(t)

dt2
=

1

F0

d

dt
Eteq

{
p(0)TM−1y

}
=

1

F0
Eteq

{
p(0)TM−1 dy

dt

}
(t > 0).

Since p(0) and dw(t) are statistically independent if t > 0,

d2FNHL(t)

dt2
=
d2FHam(t)

dt2
− 1

F0
Eteq

{
ξp(0)TM−1(∇qH̃ + γp)

}

+
1

F0
Eteq

{
ξ2p(0)TM−1p

}
+

1

F0
Eteq

{
p(0)TM−1ph(p)

}
(t > 0).

Taking the limit t ց 0 and omitting the terms which turn out to be zero we find
that

d2FNHL(t)

dt2

∣∣∣∣
t=0+

=
d2FHam(t)

dt2

∣∣∣∣
t=0+

+
1

F0
Eteq

{
ξ(0)2p(0)TM−1p(0)

}

+
1

F0
Eteq

{
p(0)TM−1p(0)h(p(0))

}
=

d2FHam(t)

dt2

∣∣∣∣
t=0+

+ C(α),

where C(α) → 0 when α → ∞. This thermostat reduces to the Hamiltonian
dynamics in the limit α → ∞, since in this limit h(p) → 0 and the Gaussian
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Figure 3.1: Convergence of velocity autocorrelation functions for: microcanonical
simulation, NHL method, and Langevin method, in the limit of small t.

distribution for ξ converges to the delta function δ(ξ), such that the expectation
value of ξ(0)2 is equal to zero.

Thus

∆NHLF (t) := FNHL(t)− FHam(t) =
1

2
C(α)t2 +O(t3) (t > 0),

i.e. in the limit tց 0, NHL dynamics approaches microcanonical dynamics asymp-
totically. This asymptotic behaviour at small t is illustrated in Figure 3.1 for a
double pendulum.

3.5 Treatment of a flexible constraint

Let us briefly recount the observations of [28, 29, 33, 34, 96, 111, 112] regarding the
statistical mechanics of systems in which a stiff restraining term is replaced by a
holonomic constraint. To illustrate the discussion, consider, as in [96], a Hamiltonian

H = H0(q, p) + Uε(q), H0(q, p) =
pTM−1p

2
+ U(q), Uε(q) =

1

2ε
g2(q),

where g : Rn → R is a function of the position variables and ε is a (small) parameter.
The equations of motion are

dq

dt
=M−1p,

dp

dt
= −∇U(q)− ε−1∇g(q)T g(q).
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In the limit ε→ 0, the equations reduce to constrained Euler-Lagrange equations

dq

dt
=M−1p,

dp

dt
= −∇U(q)−∇g(q)Tλ,

0 = g(q).

If we denote the solution of the flexible system by (qε, pε) the suggestion is that

ε−1g(qε(t)) ∼ λ.

This simple analysis appears to justify replacing the stiff restraint by the constrained
alternative, but the situation is a little more complicated. Let us assume that our
original restrained system is modelled at a prescribed temperature T . We expect,
assuming ergodicity, that some energy is present in the degree of freedom corre-
sponding to the transverse (vibrational) motion. In the linearly restrained case,
i.e. if g(q) = γ · q − δ, for some vector γ and scalar δ, the energy of restraint is
quadratic and we easily justify

ε−1
〈
g2(qε)

〉
∼ kBT.

(It might be assumed that a similar relation holds for more general systems as long
as the constraints are sufficiently smooth.) Thus some energy is present in the
restraint, of fixed amount and independent of ε. In the constrained case there is no
transverse energy at all. Thus there is a gap between the two models, and this will
lead to incorrect calculation of statistical quantities when the constrained model is
substituted for the unconstrained one. In essence, this means that the stiffer the
restraint, the faster the restraint oscillates.

The idea of Van Kampen [111] and Fixman [29] was to “average out” over the fast
vibrational motion, computing the free energy of the remaining degrees of freedom
in the presence of this rapidly fluctuating auxiliary variable. Then it turns out that
the modification of configurational statistics needed in order to compensate for the
vibrational degrees of freedom can be modelled by the incorporation of the simple
potential energy correction term, often termed the Fixman potential. The modified
constrained system is then simply

dq

dt
=M−1p,

dp

dt
= −∇U(q)−∇UFix(q)−∇g(q)Tλ,

0 = g(q),

where
UFix(q) = kBT ln ‖∇g‖. (3.37)

The observation is that the canonical statistical mechanics of this system will pro-
vide configurational averages which are corrected for the constraining approxima-
tion. That is, canonical averages of functions of the positions of the Fixman- ad-
justed constrained system will correspond, in the limit ε→ 0, to the corresponding
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averages taken in the unconstrained system. (This relationship has recently been
explored in detail by C. Hartmann [40].) Hence the corrected model can be used as a
foundation for configurational sampling. It is important to note, however, that even
the stationary averages of functions of momenta—let alone autocorrelation functions
or diffusion constants—will be incorrect with or without the Fixman term.

This raises an interesting question. If our goal is to compute some dynamical
quantities, how can we achieve this in the setting of constrained dynamics? Clearly
we have no hope of calculating accurate dynamics that heavily depends on the
vibrational (transverse to the constraint manifold) degrees of freedom, unless we are
prepared to properly model this. But what if the function of interest is, for example,
a long term rearrangement involving some coarsened degrees of freedom such as
backbone dihedral angles or tertiary structural characteristics in a biomolecule, or
order parameters or end-to-end stretch in a polymer? Then one may still hope that
the dynamics of the Fixman system will reflect some of the dynamical properties of
interest. However, there is an additional complication: the thermostat! The Fixman
system itself only makes sense if it is implemented within a framework of canonical
molecular dynamics, implying the use of a thermostat. The thermostat will itself
complicate the picture in general, and distort the dynamics of the model. Thus we
see an added motivation for a gentle thermostat in the setting of soft constraints.

3.6 Numerical experiment

In this section, we compare a number of the mentioned methods for the problems
of calculating equilibrium distributions and dynamics of a small planar constraint
chain. We begin with the model of an N -particle chain defined by the Hamiltonian

H =
1

2

N∑

i=1

‖pi‖2 +
1

2ε

N∑

i=1

(‖qi − qi−1‖ − 1)2 +

N∑

i=0

N∑

j=i+2

φLJ (‖qi − qj‖), (3.38)

where qi ∈ R2, ‖ · ‖ represents Euclidean 2-norm and φLJ is the Lennard-Jones
potential, acting between all atom pairs except those sharing a bond. We define
q0 ≡ 0 in all summations. For appropriately scaled initial conditions, when ε is
driven to zero the system assumes the constrained form with N−1 constraints of the
form gi(q) = ‖qi+1−qi‖2−1 = 0 [112]. Fixman forces were calculated for this model
and are given (for pedagogical purposes) in Appendix 3.C. We were interested in
the comparison of both sampling and dynamics of the different constrained methods
with those of the unconstrained model. We used a small value ε = 10−4 for the
restraint, making a stiff spring which introduced an additional numerical challenge
due to stability of the numerical method. For simplicity we worked with a chain of
length 4 which gave sufficiently interesting behaviour.

We first compare the equilibrium distributions obtained by the various methods.
We chose to compute the end-to-end distance (chain extension) R = ‖qN − q0‖ as
observable. The distributions (at kBT = 2) for R were computed with each method.
These are shown in Figure 3.2. For the calculation in the unconstrained case we
used small stepsizes ∆t = 10−4 and in the constrained case ∆t = 10−2. All long
time simulations were run on the interval t ∈ [0, 106].
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Figure 3.2: Probability density functions of the end-to-end distance R = ‖qN − q0‖
for the chain model (3.38), using stiff restraints (top left) and constraints: Langevin
with strong γ = 1 (top center) and weak γ = 0.01 (top right) thermostatting, SVR
(bottom left) and NHL (bottom center) methods. The bottom right pdf illustrates
the necessity of the Fixman correction.

As shown in Figure 3.2 all thermostat methods (Langevin, SVR, and NHL)
produced pdfs that were essentially identical to the reference distribution, over a
wide range of parameter values γ. This indicates that the methods are ergodic
in the desired measure, and that the Fixman force is effective in correcting the
distribution to that of the stiff restrained case. On the contrary, the lower right
subplot in Figure 3.2 includes a distribution computed without Fixman correction
(using NHL). The distribution is altered, especially for large extension lengths R,
illustrating the necessity of the correction term.

Next, we considered the approximation of autocorrelation functions using the
constrained thermostat methods. The analysis of Section 3.4 showed that the NHL
method reproduces the velocity autocorrelation function to second order in τ as
τ → 0. It is clear from the derivation that this analysis is specific to velocity
autocorrelations. In this section we instead consider a different autocorrelation
function, i.e. the relaxation of the difference of the end-to-end distance from its
mean value (calculated by averaging over a trajectory),

ϕ(τ) = Eeq
{(
R(τ)− R̄

) (
R(0)− R̄

)}
.

We will investigate numerically the accuracy of the NHL, SVR and Langevin dynam-
ics for this function, following the common practice of evaluating the expectations
through long time averaging, relying on the assumption of ergodicity. Leimkuhler
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Figure 3.3: Convergence to temperature kBT = 2 for the Langevin, SVR, and NHL
methods, averaged over a 104-member ensemble with initial temperature kBT = 2.4.

et al. [60] derive a first order analysis of the rate of convergence to the canonical
measure for NHL, SVR and Langevin dynamics. The analysis in [60] indicates a
rate of convergence for all methods proportional to the dissipation parameter γ and
to the number of degrees of freedom. In our simulations we choose, for the Langevin
and SVR thermostats, γ = 0.25; and for the NHL thermostat, γ = 1, α = 12. For
these values, all methods approach the desired temperature at approximately the
same rate (slope −1/2), as shown in Figure 3.3. We then investigate the degree
to which the associated autocorrelation function for R approximates that of the
reference curve. The reference solution was computed using a 106-member ensem-
ble, canonically distributed initial conditions, and Hamiltonian (constant energy)
dynamics with a stiff restraint (ε = 10−4).

In Figure 3.4 we see that Langevin dynamics with γ = 0.25, although giving
a good sampling of the equilibrium state, completely misses the dynamics of the
system beyond the first trough. For smaller values of γ the results can be improved
somewhat, but in no case was the autocorrelation function well approximated on the
given interval. Both the SVR and NHL methods capture the qualitative shape of
the autocorrelation function, with NHL approximating the reference solution very
closely over the whole interval.

3.7 Conclusion

In this chapter, we have presented an overview of stochastic-dynamical thermostat-
ting methods for constrained molecular modelling. We have shown that these
methods have properties analogous to those of the unconstrained case. The Nosé-
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Figure 3.4: Autocorrelation of the end-to-end distance as a function of time using
Langevin, SVR, and NHL thermostats. The reference curve was computing using
constant energy simulations from a canonically distributed ensemble.

Hoover-Langevin method and the Stochastic Velocity Rescaling method were shown
to weakly perturb the dynamics of the system. An application where thermostats
are probably essential is in the evolution of constrained systems in the presence of
a thermodynamic correction, and for these problems we have shown that the NHL
and SVR thermostats with Fixman correction can provide improved accuracy in the
autocorrelation function compared to a stiffly restrained model.

3.A Constrained stochastic thermostats

In this appendix, we provide the derivations of the constrained forms of thermostat
dynamics for the NHL and SVR methods, by introducing local coordinates on the
constraint manifold.

We write down the equations (3.28)–(3.29) in local chart coordinates by differ-
entiating the relations (3.19)–(3.20).

dq = ∇φdζ,
∇φdζ =

(
M−1∇φ

) (
∇φT∇φ

)−1
η dt.

We multiply both sides by ∇φT and invert matrix ∇φT∇φ:
(
∇φT∇φ

)
dζ =

(
∇φTM−1∇φ

) (
∇φT∇φ

)−1
η dt,

dζ =
(
∇φT∇φ

)−1 (∇φTM−1∇φ
) (

∇φT∇φ
)−1

η dt,

dζ = ∇ηĤ dt. (3.A.1)
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Similarly,

dp = ∇φ
(
∇φT∇φ

)−1
dη + d

(
∇φ
(
∇φT∇φ

)−1)
η.

We multiply both sides by ∇φT and use property ∇φT p = η to find dη:

∇φT dp = dη +∇φT d
(
∇φ

(
∇φT∇φ

)−1
)
η,

dη = −∇φT d
(
∇φ

(
∇φT∇φ

)−1
)
η +∇φT dp,

dη = −∇φT d
(
∇φ

(
∇φT∇φ

)−1
)
η −∇φT∇V (φ(ζ)) dt + ξη dt,

dη =
[
−D(ζ)

(
η,M−1∇φ

(
∇φT∇φ

)−1
η
)
−∇φT∇V (φ(ζ)) + ξη

]
dt,

dη = −∇ζĤ dt+ ξη dt, (3.A.2)

where D(ζ) is the symmetric three-tensor (Hessian) of partial derivative of

∇φ
(
∇φT∇φ

)−1
, whose contraction is denoted D(ζ)(·, ·). Equation (3.30) simply

takes the following form:

dξ = h(ζ, η) dt− γξ dt+ σ dw. (3.A.3)

To find the function h(ζ, η) we ask that the extended projected distribution (3.32)
be invariant under the Fokker-Planck equation. We find that

h(ζ, η) =
1

α

(
∇ · η − β∇ηĤ · η

)
=

1

α

(
n−m− β∇ηĤ · η

)
.

The NHL method for the equations in the local chart coordinates (3.A.1), (3.A.2)
and (3.A.3) is ergodic in the extended projected measure (3.32) whenever the Lie
algebra generated by η and ∇ζĤ spans Rn−m.

Since

∇ηĤ · η =
((

∇φT∇φ
)−1 (∇φTM−1∇φ

) (
∇φT∇φ

)−1
η
)
· η

=
(
M−1∇φ

(
∇φT∇φ

)−1
η
)
·
(
∇φ

(
∇φT∇φ

)−1
η
)

= pTM−1p,

we find that

h(p) =
1

α

(
n−m− βpTM−1p

)

in generalized coordinates (q, p).

For the SVR thermostat (3.33)–(3.35), to find the relation between Φ and Ψ, we
re-write the equations in local chart coordinates:

dζ = ∇ηĤ dt,

dη = −∇ζĤ dt−Ψ(K̂)η dt+

√
2kBTΦ(K̂)η dW,
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where K̂ is the kinetic energy in local coordinates. We ask that the projected
distribution (3.22) be invariant under the Fokker-Planck equation. We find that
functions Ψ(K̂) and Φ(K̂) are related by

Ψ(K̂) = (2K̂ − (1 + n−m)kBT )Φ(K̂)− 2kBTK̂
dΦ

dK̂
.

In coordinates on R2n this relation reads:

Ψ(K) = (2K − (1 + n−m)kBT )Φ(K)− 2kBTK
dΦ

dK
.

The original proposal of Bussi et al. [7, 8] for the SVR dynamics without con-
straints corresponds to the choice

Φ(K) =
γ′′

2K
, so that Ψ(K) =

(
1− n− 1

2K
kBT

)
γ′′,

where γ′′ is a positive constant (the constant 1/2γ′′ is termed the ’relaxation time’).
For the SVR dynamics with constraints the original proposal of Bussi et al. trans-
forms to

Φ(K) =
γ′′

2K
, so that Ψ(K) =

(
1− n−m− 1

2K
kBT

)
γ′′.

3.B Aspects of time integration

In this appendix, we describe the numerical implementations of the Langevin, NHL
and SVR thermostats with holonomic constraints. For all thermostat methods we
adapt the RATTLE algorithm by splitting the system into deterministic and stochas-
tic parts. RATTLE is a symmetric method and symplectic in the Hamiltonian limit.
The stochastic part can be then solved, depending on the equations, analytically or
numerically.

We denote the time index with a superscript, and we consider a single time step,
i.e. the map (q0, p0) 7→ (q1, p1).

We consider the Langevin thermostat, the Nosé-Hoover-Langevin thermostat
and the Stochastic Velocity Rescaling thermostat equations with holonomic con-
straints (3.23)–(3.25), (3.28)–(3.31) and (3.33)–(3.35), respectively.

We split the right hand side vector field of (3.23)–(3.25) into a Hamiltonian part
and a fluctuation-dissipation part acting only on the momentum. For simplicity,
we restrict ourselves to constant, scalar σ. Hence the fluctuation-dissipation part
reduces to the simple Ornstein-Uhlenbeck process, and since the mass matrix is typ-
ically diagonal the computation of the analytic solution of the Ornstein-Uhlenbeck
process is cheap. Generalizations to constant and position dependent matrix σ are
straightforward by adapting the approach of [65].

The numerical method for the Langevin dynamics with holonomic constraints
reads:



p̃ = exp
(
−γM−1 τ

2

)
p0 + σ

√
1− exp(−γM−1τ)

2γ
M ∆W 0 − τ

2
∇g(q0)Tλ0,

0 = ∇g(q0)M−1p̃,
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



q1 = q0 + τM−1p1/2,

p1/2 = p̃− τ

2
∇V (q0)− τ

2
∇g(q0)Tλ1,

0 = g(q1),

p̂ = p1/2 − τ

2
∇V (q1)− τ

2
∇g(q1)Tλ2,

0 = ∇g(q1)M−1p̂,




p1 = exp
(
−γM−1 τ

2

)
p̂+ σ

√
1− exp(−γM−1τ)

2γ
M ∆W 1 − τ

2
∇g(q1)Tλ3,

0 = ∇g(q1)M−1p1,

where τ is a time step and ∆W 0 and ∆W 1 are independently and identically dis-
tributed Gaussian random variables of mean 0 and covariance matrix Idn.

For the Nosé-Hoover-Langevin thermostat equations with holonomic constraints
(3.28)–(3.31) we split the right hand side vector field in three parts, i.e. a Hamilto-
nian part, an external forcing and an Ornstein-Uhlenbeck process. Each resulting
vector field is solved exactly, i.e. we solve

dp

dt
= ξp

for fixed value of ξ, and the scalar Ornstein-Uhlenbeck process

dξ = γ(µ− ξ) dt+ σ dw

is also solved exactly for given Wiener increments. The numerical method for the
Nosé-Hoover-Langevin thermostat equations with holonomic constraints reads:

{
p̃ = exp

(τ
2
ξ0
)
p0,





q1 = q0 + τM−1p1/2,

p1/2 = p̃− τ

2
∇V (q0)− τ

2
∇g(q0)Tλ1,

0 = g(q1),
{
ξ1 = exp(−γτ)ξ0 + 1

γ
h(p1/2)(1 − exp(−γτ)) + σ

√
1− exp(−2γτ)

2γ
∆w,

{
p̂ = p1/2 − τ

2
∇V (q1)− τ

2
∇g(q1)Tλ2,

0 = ∇g(q1)M−1p̂,
{
p1 = exp

(τ
2
ξ1
)
p̂,

where τ is a time step and ∆w ∼ N (0, 1). Since the velocities p0 and p̂ belong to
the tangent spaces Tq0M and Tq1M, respectively, it follows that the velocities p̃
and p̂ belong to the tangent spaces Tq0M and Tq1M, respectively. Hence we do not
need to perform additional projection of the velocities onto the tangent spaces.

The stochastic part of the Stochastic Velocity Rescaling thermostat equations
(3.33)–(3.35) reads:

dp = −Ψ(K)p dt+
√
2kBTΦ(K)p dW. (3.B.4)
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Shortly we will show that the solution of this differential equation only changes the
scaling of p and not its direction. Since the RATTLE step ensures p ∈ TqM, it is
not necessary to introduce a Lagrange multiplier into (3.B.4).

We make the ansatz p(t) = α(t)p0, where α(t) is a scalar function. Substituting
this solution into (3.B.4) gives the SDE

p0dα = −Ψ(α2K0)αp
0 dt+

√
2kBTΦ(α2K0)αp

0 dW. (3.B.5)

Since each term contains a factor p0, we can omit it, leaving a scalar SDE for α,
and proving our assertion.

For simplicity, we consider the relation (3.36) between functions Ψ(K) and Φ(K)
of the original proposal of Bussi et al. for the systems with constraints such that
SDE (3.B.5) takes the particular form

dα = −
(
α− n−m− 1

αK0
kBT

)
γ dt+

√
2kBTγ

K0
dW,

where K0 = pT0M
−1p0. We note that this SDE has additive noise, making it more

amenable to numerical integration than the equation forK proposed in [7]. We solve
it by splitting into a nonlinear term and an Ornstein-Uhlenbeck process, applied
symmetrically about the RATTLE step. Alternatively one could use the exact
solution given in [7], but for our experiments the splitting method with single Wiener
process was found to be a cheap alternative. Furthermore, we observed no adverse
effects from splitting errors. The numerical method reads:





K0 = p0
T
M−1p0,

α̃ =

√
n−m− 1

K0
kBTγτ + 1,

α = exp
(
−γ τ

2

)
α̃+

√
1− exp(−γτ)

K0
kBT ∆W 0,

p̃ = αp0,




q1 = q0 + τM−1p1/2,

p1/2 = p̃− τ

2
∇V (q0)− τ

2
∇g(q0)Tλ1,

0 = g(q1),

p̂ = p1/2 − τ

2
∇V (q1)− τ

2
∇g(q1)Tλ2,

0 = ∇g(q1)M−1p̂,




K0 = p̂TM−1p̂,

α̃ = exp
(
−γ τ

2

)
+

√
1− exp(−γτ)

K0
kBT ∆W 1,

α̃ =

√
n−m− 1

K0
kBTγτ + α̃2,

p1 = αp̂,

where τ is a time step and ∆W 0,∆W 1 ∼ N (0, 1).
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3.C Fixman forces for the chain model

In this appendix, we give the detailed description of the Fixman potential (3.37)
and force for the chain model considered in Section 3.6.

The Fixman potential for the chain model is defined by

UFix(q) =
kBT

2
ln det

(
∇g(q)∇g(q)T

)
,

where ∇g(q) is the Jacobian matrix of constraint g(q). The matrix product A :=
∇g(q)∇g(q)T is a tridiagonal symmetric matrix. To find the Fixman force

FFix = −∇UFix = − kBT

2 det (∇g(q)∇g(q)T )∇ det
(
∇g(q)∇g(q)T

)

we need to compute the gradient of the determinant [28]. Let detA be the determi-
nant of the matrix A, then the determinant can be expressed as

detA =

N∑

i=1

ai,jCi,j

for any j = 1, . . . , N , where Ci,j = (−1)i+jMi,j is a so-called cofactor and Mi,j is a
minor. Note that for the symmetric matrices Ci,j = Cj,i.

The derivative of the determinant detA with respect to each component of po-
sition vector qk is

∂ detA

∂qk
=
∑

i,j

∂ detA

∂ai,j

∂ai,j
∂qk

=
∑

i,j

Ci,j
∂ai,j
∂qk

.

For the chain model special care has to be taken when k = 1, 2, N − 2, N . The
Fixman forces for the chain model can be computed by the following formulas:

F 1
Fix = 2C1,1q1 + 4C2,2(q1 − q2) + 2C1,2(2q1 − q2) + 2C2,3(q3 − q2),

F 2
Fix = 4C2,2(q2 − q1)− 2C2,1q1 + 4C3,3(q2 − q3)

− 2C2,3(q1 − 2q2 + q3) + 2C3,4(q4 − q3),

F kFix = 4Ck,k(qk − qk−1) + 2Ck,k−1(qk−2 − qk−1) + 4Ck+1,k+1(qk − qk+1)

− 2Ck,k+1(qk−1 − 2qk + qk+1)

+ 2Ck+1,k+2(qk+2 − qk+1), k = 2 . . .N − 2,

FN−1
Fix = 4CN−1,N−1(qN−1 − qN−2) + 2CN−1,N−2(qN−3 − qN−2)

+ 4CN,N(qN−1 − qN )− 2CN−1,N(qN−2 − 2qN−1 + qN ),

FNFix = 4CN,N(qN − qN−1) + 2CN,N−1(qN−2 − qN−1),

where each vector F kFix must be multiplied by −kBT/2/ det
(
∇g(q)∇g(q)T

)
.



Chapter 4

Weakly Coupled Heat Bath
Models for PDEs

4.1 Introduction

Thermal bath models such as Langevin dynamics or Nosé-Hoover dynamics are
widely used techniques for maintaining the canonical distribution in molecular sim-
ulation. Simple thermal baths allow the simulation of bidirectional energy flow,
whereas more complicated methods can be designed to provide momentum trans-
fer (barostats) or mimic relaxation processes (generalized Langevin dynamics). As
there are natural parallels between turbulent fluids and molecular dynamics, it is
interesting to adapt these techniques to hydrodynamics applications. In this chap-
ter, as a first step, we consider an artificial thermal bath for semi-discretized partial
differential equations, specifically the Burgers-Hopf and KdV equations.

Molecular dynamics (in the common use of the term) has the structure of a finite
dimensional Hamiltonian system, with a total energy function that is a function of
positions and momenta. Under typical conditions (the so-called NVT ensemble),
the volume of the simulation cell is restricted and the number of atoms is fixed,
and these may be assumed to share energy equally (equipartition). The system is
assumed to be immersed within a larger system (and freely exchanging energy with
it) and the energy of the entire system including thermal bath is assumed to remain
fixed. In this situation, Gibbs proposed that the microstates of the isolated system
will be distributed according to the law

ρβ ∝ e−βH ,

where H is the Hamiltonian (total energy function) of the subsystem, meaning that
the invariant measure of the extended system has an associated density which, when
integrated out with respect to the bath degrees of freedom, is proportional to ρβ.
The Gibbs (canonical) distribution is only rigorous for special systems in the so-
called thermodynamic limit (N → ∞, V → ∞, N/V fixed); for typical systems
such as molecular liquids or proteins, the Gibbs distribution is often assumed and
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is the starting point for simulation. In order to maintain the canonical distribu-
tion in simulation, various devices are used. The sampling problem refers to the
calculation of averages of given functions with respect to a specified invariant (equi-
librium) distribution. Molecular models may involve constraints (for example fixing
the distance between two atoms) or modifications such as those required to model
an imposed environmental pressure, so the form of the Gibbs distribution is often
modified in practice to reflect such considerations.

In the case of the Gibbs distribution, or, more generally, any distribution defined
by a suitably bounded smooth, positive density function, we have a few choices for
the mechanism by which sampling is achieved. The Monte-Carlo method [9] is
an iteration strategy that combines a randomly generated step with a Metropolis-
Hastings accept/reject condition in order to guarantee that the points generated
have the desired distribution. In some cases, for example with steep molecular
potentials, Monte-Carlo methods may experience large numbers of rejected steps,
which can lead to an inefficient sampling of the phase space. Moreover, the se-
quence of points generated by a Monte-Carlo method has no temporal correlation.
For these reasons, molecular modellers often rely on dynamical approaches or the
use of stochastic differential equations. These techniques generate paths in phase
space which can be used to calculate thermodynamic averages under an ergodic
hypothesis: the assumption that the path emanating from any particular initial
condition densely covers the relevant portion of phase space with an appropriate
probability density. The ergodicity of stochastic dynamics sampling methods such
as Brownian or Langevin dynamics can be demonstrated by showing that the ad-
joint generator (i.e. the Fokker-Planck, or Kolmogorov forward operator) is elliptic
or, more generally, hypoelliptic [38, 39, 52, 79, 97, 101].

An alternative to Langevin dynamics often used in molecular simulations is the
Nosé-Hoover thermostat [46, 88, 89] which modifies Newtonian dynamics to in-
clude an auxiliary variable that provides partial control of the molecular dynamics
ensemble; when applied to a sufficiently strongly mixing dynamical system, such de-
terministic schemes can be effective in practice, although in order to have a rigorous
ergodic property it is necessary to incorporate an additional stochastic perturbation.
Generalized thermostat methods which combine auxiliary dynamics with stochastic
perturbation are studied in [7, 58, 61, 104].

4.1.1 Thermostats and PDE models

The foundation for studying the motions of a fluid dynamics model by reference to
an invariant distribution has been considered by a variety of authors [4, 10, 27, 55,
69, 83, 84, 92, 99, 100, 103], and there is numerical evidence that these systems typ-
ically evolve near thermodynamic equilibrium [2, 20, 21, 78]. Thus it is also natural
to consider adapting the thermostatting methodologies to partial differential equa-
tions (or their semi-discrete analogues). Equilibrium statistical mechanics is largely
dictated by the conservation laws of the system. These constrain the probability
space and enter directly into the invariant measure. For partial differential equa-
tions, the discretization in space destroys or modifies some or all of the conservation
laws, and thereby the invariant measure, resulting in numerical bias [20, 21]. This
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creates a potential application for thermostats which is distinct from their motiva-
tion in the molecular dynamics setting: they may allow the correction of defects in
the distribution due to spatial discretization.

For example, for 2D ideal fluids, the most comprehensive mean field equilibrium
theory yields the Miller-Robert-Sommeria (MRS) measure [83, 84, 99, 100], which is
grounded in the conservation of the full infinite family of vorticity invariants of the
Euler equations. By contrast, standard numerical methods preserve total energy,
and at most two of the vorticity invariants. Consequently, when the dynamics of
such a system is ergodic, its invariant measure is necessarily significantly different
from the MRS measure. (Possible exceptions are the sine-bracket truncation [114]
and particle methods [21].)

In addition to perturbing the invariant measure, models for fluids involve dy-
namics at a range of spatio-temporal scales, and in particular, there may be no
clear scale separation. Additionally, there is usually a downscale cascade of vortic-
ity and in some cases kinetic energy, i.e. a secular tendency to excite motion on ever
smaller scales: the phenomena known as turbulence. Spatial discretization must
arrest this cascade and some sort of closure model (either implicit in the discretiza-
tion or explicitly modelled and parameterized) is necessary. The choice of closure
has consequences for statistical mechanics, and it may be desirable to restore the
invariant distribution to correct for the numerical bias. Hence, solely for the pur-
pose of correcting thermodynamic calculations for discretization effects, there is a
need to study thermostatting methods in the context of partial differential equa-
tions. In Section 4.2 of this chapter, we describe a general framework for treating
semi-discrete PDEs using a reasonably general thermostatting methodology.

4.1.2 Weak thermostats and accurate dynamical approxima-
tion

In the setting of fluids modelling, there can be an additional issue in play. While it
can be said that much of molecular modelling is solely focused on the recovery of
Gibbs averages, the purpose of simulation in fluids is more often to model dynamics
in the vicinity of a Gibbs state. The thermostats used in PDEs may thus be viewed
as model corrections to maintain the environment for a dynamical simulation. The
requirements of: (1) fast convergence to the invariant distribution (as needed to
efficiently compute ensemble averages) and (2) minimal disturbance of the short
term time dynamics (as needed for accurately computing correlations) are mutually
competing ones, and the design of a good thermostat implies a choice in the tradeoff
between these. For this reason, we discuss the concept of a weak thermostat.

In the meteorology literature, DelSole [16] observed that the covariance matrix
of a variable satisfying a smooth deterministic ordinary differential equation must
take the form

C(τ) = C0 + τS + τ2A+ · · ·
with S a skew-symmetric and A a symmetric matrix. By comparison, the covariance
matrix of a variable satisfying a multivariate Ornstein-Uhlenbeck process must take
the form

C(τ) = C0 exp(τÃ),
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where Ã is a (different) symmetric matrix with nonpositive eigenvalues.
In particular, a stochastic process η(t) is mean-square differentiable if there exists

a function η̇(t) such that the expectation

lim
ε→0

〈[
η(t+ ε)− η(t)

ε
− η̇(t)

]2〉
= 0

holds in mean-square sense. This derivative is consistent with the deterministic
concept. The solution of a smooth dynamical system is differentiable, whereas that
of a stochastic differential equation is not so. For accurate computation of dynamical
quantities, mean-square differentiability is a desirable property for thermostated
dynamics.

Recently, Leimkuhler, Noorizadeh & Penrose [60] have proposed a criterion for
assessing the efficiency of a thermostat as a function of the above two criteria. Their
analysis in the context of Hamiltonian dynamics showed that the velocity auto-
correlation function (VAF) of Nosé-Hoover-Langevin (NHL) dynamics [61] scales as
c(τ) = 1−κ2τ2 in the limit of small correlation times τ , just as the unperturbed dy-
namics. By comparison, for Langevin dynamics the VAF scales as c(τ) = 1−κ1τ in
this limit. In particular, this implies that VAFs under Langevin dynamics have the
wrong curvature at τ = 0, making accurate computation of auto-correlations impos-
sible. For NHL dynamics the noise process is only present in the differential equation
for the auxiliary thermostat variable; hence it is integrated once before influencing
the momenta variables (and twice before influencing the positions). Consequently
the noise in the NHL dynamics takes the form of a memory term or colored noise
process and allows for a more accurate computation of correlations.

We mention in passing that another potential application in which the trade-off
between fast sampling and accurate dynamics can be expected to play a promi-
nent role is the application of the fluctuation-dissipation theorem to determine the
sensitivity of an invariant measure to perturbations in the underlying dynamics
[64, 74, 75]. The non-equilibrium response of a system to a small change in its
vector field is computed from correlation functions in the unperturbed equilibrium
measure. To do so it is necessary both to ensure that the numerical simulation
samples the correct measure, and at the same time to perturb the system as little
as possible, while allowing the accurate computation of temporal autocorrelations.

4.1.3 Results for the Burgers-Hopf and KdV equations

Herein, we apply stochastic-dynamical thermostats to truncated PDE models, in the
form of discretized nonlinear wave equations, under the restrictions: (1) that the
finite dimensional phase flow is divergence-free, and that (2) the invariant measure is
a smooth function of the conserved quantities of the finite dimensional flow (possibly
conditional on δ-function measures involving additional conserved quantities).

We demonstrate weakly coupled thermal regulation techniques in the setting of
the inviscid Burgers-Hopf (BH) and Korteweg-de Vries (KdV) models

ut + uux + µuxxx = 0, (4.1)
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where µ = 0 for BH and µ > 0 for KdV. Both equations are one-dimensional
models inheriting the quadratic nonlinearity of fluid motion. The models share a
bi-Hamiltonian structure and are formally integrable. However, classical solutions of
the Burgers-Hopf equation fail to exist for all time, whereas solutions of the the KdV
equation remain smooth. Finite truncation of the BH and KdV models typically
breaks integrability. Truncated BH models exhibit chaos and decorrelation of modes
on a range of different time scales, and as such it has been used in the literature as
a highly simplified model representative of certain aspects of climate [1, 76, 77]. In
contrast, truncated solutions of the KdV model may be supposed to retain KAM
tori, obstructing ergodicity, and making it a good test model for thermostatting.
The truncated BH/KdV models preserve discrete approximations to the first three
integrals of the bi-Hamiltonian hierarchy, i.e. the momentum M =

∫
u dx, kinetic

energy E =
∫

1
2u

2 dx, and Hamiltonian H =
∫

1
6u

3 − µ
2u

2
x dx.

In a series of papers, [1, 76, 77] Majda and co-workers studied the equilibrium
statistical mechanics of finite difference and spectral discretizations of the Burgers-
Hopf equation (µ = 0), discussing the associated conservation laws and weak in-
variant sets, and their relation to ergodicity. They computed pdfs of the spectral
coefficients, mean spectra, and time-correlation functions. Since the BH equation
can be written as a Hamiltonian system in two distinct forms, the definition of the
Gibbs measure ρ ∝ exp(−βH) depends on the choice of Hamiltonian. Abramov et
al. [1] choose the linear Poisson bracket and cubic Hamiltonian, for which the as-
sociated Gibbs measure is unbounded. However, since their deterministic dynamics
also preserves a quadratic invariant, the resulting product measure (the Gibbs mea-
sure restricted to a level set of a hypersphere) does define a probability measure. In
this chapter we introduce a perturbation to the BH/KdV model to ensure ergodic
sampling of this measure, ρ ∝ exp(−βH)δ(E−E0)δ(M), where H ≈ H, E ≈ E and
M ≈ M, and E0 is the initial energy.

4.1.4 Ergodicity

For the truncated incompressible Navier-Stokes equation, E & Mattingly [24] proved
ergodicity under highly degenerate stochastic forcing of just two modes in the low
wave number range, with viscous damping at the large wave number end of the
spectrum. Their proof requires establishing a Lyapunov function and verifying the
Hörmander condition for their drift and diffusion vector fields. Our concept of ther-
mostatting is meant to provide a realistic model for the interaction of a semidiscrete
PDE with the unresolved high modes of the full (infinite) representation, thus we
introduce thermostatting only in the high modes and have in effect a situation op-
posite to that of E and Mattingly. Nevertheless we show that their method based on
commutators could in principle be applied in the present instance, were the phase
space is flat. In fact our vector fields (in the case of a N -mode truncation) are
confined to the tangent space of the (2N − 1)-dimensional hypersphere, so that the
calculation of high order brackets becomes extremely involved. We therefore rely on
numerical experiments to verify the ergodic property and show that the expected
density is obtained with a high degree of accuracy.

The remainder of this chapter is laid out as follows. In Section 4.2 we introduce
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the thermostat techniques and discuss the relevant theory. In Section 4.3 we describe
the pseudospectral truncations of the BH and KdV equations, present their equilib-
rium statistical mechanics, discuss ergodicity in the context of thermostatting, and
propose some perturbation vector fields. Results with the thermostated dynamics
of the BH and KdV are presented in Section 4.4. Discussion and conclusions are
given in Section 4.5.

4.2 Thermostats

In this section we discuss thermostats in the context of finite-dimensional Hamilto-
nian systems. In particular we encounter noncanonical Hamiltonian systems with
multiple conserved quantities. We discuss the statistical mechanics of general Hamil-
tonian systems by introducing microcanonical, canonical and mixed canonical dis-
tribution functions. To sample the mixed canonical distribution function we discuss
the use of a generalized thermostat method for the Hamiltonian system with con-
served quantities and consider its theoretical foundation (in particular the ergodicity
property).

4.2.1 Finite-dimensional Hamiltonian dynamics and statisti-
cal mechanics

Consider a Hamiltonian system on Rd, i.e. an initial value problem of the form

dX

dt
= f(X) ≡ J ∇H(X), X(t) ∈ D ⊂ Rd, X(0) = X0, (4.2)

where J = −JT is a constant skew-symmetric matrix, H(X) : D → R is the
Hamiltonian, and ∇ denotes the vector of partial derivatives with respect to X .
The Poisson bracket is an abstract geometrical object associated with the form J
and defined by

{F,G} := ∇F (X)
T
J ∇G(X), (4.3)

for arbitrary functions F (X), G(X) : D → R. Note that the time derivative of a
function F (X(t)) : D → R along a solution to (4.2) is given by

dF

dt
= {F,H}.

Evident from the antisymmetry of the Poisson bracket, H(X) is invariant under the
flow, since dH/dt = {H,H} = 0. In fact, it can be easily checked that any function
µ(H(X)) is also invariant. More generally, a first integral of the system is a function
I(X) such that

{I,H} = ∇I(X)
T
J ∇H(X) = 0.

The Hamiltonian vector field f(X) defines a flow on Rd. A probability density
function ρ(X, t) : D × R → R, satisfying ρ(X, t) ≥ 0,

∫
ρ(X, t) dX = 1, ∀t, is

transported under the Hamiltonian flow according to

∂

∂t
ρ(X, t) +∇ · ρ(X, t)f(X) = 0. (4.4)
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Equilibrium statistical mechanics is concerned with stationary solutions of (4.4). An
equilibrium pdf is a solution of

∇ · ρ(X)f(X) = 0.

It may be readily checked that the vector field f(X) associated with (4.2) is
divergence-free, ∇ · f(X) = 0, in which case the above relation simplifies to

f(X) · ∇ρ(X) = 0. (4.5)

It follows that ρ(X) is itself a first integral of the flow ({ρ,H} = 0). In particular,
if (4.2) admits precisely J + 1 independent first integrals H , I1, . . . , IJ , then any
equilibrium pdf must be a function of these:

ρ(X) = ρ(H(X), I1(X), · · · , IJ (X)). (4.6)

On the other hand, it is clear that any such function ρ that depends on X only
through its invariants is stationary under (4.4).

For a system of particles in thermal contact with a heat reservoir, such that
energy is exchanged at constant temperature, volume and mass, the likelihood of
states is given by the canonical Gibbs density

ρ(X) ∝ exp(−βH(X)), (4.7)

where β is the inverse temperature. When more invariants are present, this pdf may
be generalized to

ρ(X) ∝ exp(−βH(X)− β1I1(X)− · · · − βJIJ (X)). (4.8)

For the Gibbs measure to define a pdf, it has been assumed that the function is nor-
malizable, i.e. there exists a finite proportionality constant such that

∫
ρ(X) dX = 1.

More generally, one can define an equilibrium pdf as a generalized function, such
as the singular measure

ρ(X) ∝ δ(H(X)−H0)δ(I1(X)− I01 ) · · · δ(IJ (X)− I0J ), (4.9)

where δ is the Dirac distribution. In statistical physics this pdf is referred to as
the microcanonical ensemble and specifies the relative probabilities of various mi-
crostates of a system at fixed values of energy, volume and mass (as well as the other
first integrals). It is a stationary solution to (4.4) only in a weak sense.

In some cases it is useful to define a mixed canonical-microcanonical measure
such as

ρ(X) ∝ exp (−βH(X)) δ(I1(X)− I01 ) · · · δ(IJ (X)− I0J ). (4.10)

For example, [1] investigated the statistics of finite-truncations of the Burgers-Hopf
equation in a pdf of the form

ρ(X) ∝ exp(−βH(X))δ(E(X)− E0)δ(M(X)), (4.11)

where the level sets of a quadratic invariant E define compact subspaces upon which
the Gibbs measure (in the cubic Hamiltonian, see Appendix 4.A) can be normalized.
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The expectation of an observable F (X) under the measure ρ(X) is defined as
the ensemble average

〈F 〉 =
∫

D

F (X)ρ(X) dX =

∫

D

F (X) ν(dX)

for some proper measure ν such that ν ≥ 0 and
∫
D
ν(dX) = 1. In general the

approximation of such an integral by numerical quadrature is prohibitively expen-
sive due to the large dimension of X encountered in practical applications. Instead
Metropolis Monte-Carlo methods are frequently used to compute expectation, de-
spite their slow convergence rate. Such methods give us no information about the
dynamics of (4.2) however.

An equilibrium distribution ρ is practically meaningful when it is the density of
the unique invariant measure ν under (4.4). Let Φt(X) denote the time-t flow map
of (4.2), and denote by Φnt (X), its nth iterate. We say the flow of (4.2) samples the
distribution ρ if the iterates {Φnt (X), n ∈ Z} ∼ ρ, for almost all t and almost all
X . In particular, if the flow is ergodic with respect to ρ(X), then for almost every
initial condition X0, the solution to (4.2) samples the equilibrium density ρ, and the
time average

F̄ = lim
T→∞

1

T

∫ T

0

F (X(t)) dt

equals the ensemble average F̄ = 〈F 〉.
We remark that solutions to the transport equation (4.4) starting from a smooth,

nonstationary initial density function ρ(X, 0) do not asymptotically approach a
steady state in the sense of classical solutions, due to lack of diffusion. However,
they may converge weakly to an equilibrium measure (for example, a uniform mea-
sure with compact support on a proper subset of the kinetic energy manifold may
converge weakly to the uniform measure on the whole manifold).

The autocorrelation function c(τ) of observable F (X) is defined by

c(τ) =
〈F (ΦτX)F (X)〉

〈F (X)2〉 .

If the flow is ergodic, the autocorrelation can be computed from the time average
according to

c(τ) = c−1
0 lim

T→∞

1

T

∫ T

0

F (X(t))F (X(t+ τ)) dt, c0 = lim
T→∞

1

T

∫ T

0

F (X(t))2 dt.

4.2.2 Generalized Bulgac-Kusnezov thermostats

A typical trajectory of (4.2) cannot ergodically sample a distribution like (4.7) due to
preservation of the Hamiltonian H . Therefore, in molecular dynamics a number of
mechanisms have been introduced to model the thermal exchange with the reservoir,
so perturbing the Hamiltonian vector field that typical trajectories of the perturbed
dynamics do ergodically sample (4.7).

One such approach is Langevin dynamics, in which balanced stochastic noise
and dissipation are added to the Hamiltonian flow, such that the desired measure
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becomes the unique, globally attracting invariant measure of the associated Fokker-
Planck equations. A generalized form of Langevin dynamics that perturbs (4.2)
such that it samples the Gibbs distribution (4.7) is

dX = f(X) dt− βσ2

2
∇H(X) dt+ σ dW,

where W (t) is a vector of independent Wiener processes. One limitation of this
approach is that it destroys all invariants of the original system. In order to retain
some of these it would be necessary to introduce constraint projections which would
also create significant difficulties in discretization. It is well known that additive
noise is much easier to treat accurately in discretization than multiplicative noise.

Another approach, proposed by Nosé [88, 89] and Hoover [46], involves the in-
troduction of an auxiliary variable, embedding the Hamiltonian flow in a higher
dimensional phase space, such that the projected dynamics on the original phase
space is (one hopes) ergodic. The deterministic approach is often non-ergodic, how-
ever, motivating the inclusion of Langevin forcing of the auxiliary variable [104].
Nosé-Hoover type schemes can be expanded to include multiple auxiliary variables
and more general couplings than originally conceived; a broadened framework was
proposed in [58] and termed Generalized Bulgac-Kusnezov (GBK) thermostatting.
In the simplest form of a GBK thermostat, we augment the system (4.2) with a
small number of additional variables ξk, k = 1, . . . , dT , and perturbation vector fields
which for our purposes may be assumed to be linear in the ξk. Let gk(X) : D → Rd,
k = 1, . . . , dT , be smooth vector fields. The complete system is then a set of coupled
ordinary and stochastic differential equations of the form:

dX = f(X) dt+

dT∑

k=1

ξkgk(X) dt, (4.12)

dξk = hk(X) dt− γξk dt+ σ dwk, k = 1, . . . , dT , (4.13)

where the wk(t) are independent scalar Wiener processes. The number of thermostat
variables dT is typically small, say dT = 1 or dT = 2, so the computational cost of
simulating the thermostated system is essentially equivalent to that of simulating
the physical model.

Recall that the Ornstein-Uhlenbeck (OU) process

dξ = −γξ dt+ σ dw (4.14)

has analytical solution

ξ(t) = e−γtξ(0) + σ

√
1− e−2γt

2γ
∆w,

where ∆w ∼ N (0, 1). Choosing γ = ασ2/2, the normal distribution with mean zero
and variance α−1, i.e.

ϑ(ξ) =

√
α

2π
exp

(−α
2
ξ2
)
, (4.15)
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satisfies the stationary Fokker-Planck equation

γ
∂

∂ξ
(ξϑ(ξ)) +

1

2
σ2 ∂

2

∂ξ2
ϑ(ξ) = 0. (4.16)

In particular, it is well known that the density (4.15) is the unique, globally at-
tracting, steady state solution of the Fokker-Planck equation associated to (4.14).
Hence, solutions of (4.14) ergodically sample (4.15).

Of course our interest is not in the simple Ornstein-Uhlenbeck equation but
in (4.12)–(4.13). Given a desired distribution ρ(X), we seek hk(X) : Rd → R,
k = 1, . . . , dT , such that the product distribution

π(X, ξ) = ρ(X)ϑ(ξ) (4.17)

is a stationary solution of the Fokker-Planck equation associated with (4.12)–(4.13),
i.e.

∇ · π(X, ξ)
(
f(X) +

∑

k

ξkgk(X)

)

+
∑

k

[
∂

∂ξk
(π(X, ξ)(hk(X)− γξk))−

σ2

2

∂2

∂ξ2k
π(X, ξ)

]
= 0. (4.18)

We proceed formally, assuming a smooth density of the general form (4.6), but note
that for singular measures such as (4.10), the above requirement must be satisfied
in an appropriate weak sense. The case when the measure depends on a subset of
Ij via a Dirac distribution will be handled later.

For concreteness, let ρ(X) = exp(−F (X)), where

F (X) = F (H(X), I1(X), . . . , IJ(X))

is differentiable with respect to all of its arguments, and denote β0(X) = ∂F/∂H
and βj(X) = ∂F/∂Ij, j = 1, . . . , J . The expression (4.18) simplifies under the
conditions ∇ · f = 0 and ∇H · f = ∇Ij · f = 0. Additionally using the fact that
the terms of the OU process (4.14) satisfy the stationary Fokker-Planck equation
(4.16), the relation (4.18) reduces to

0 =
∑

k

ξk∇ · π(X, ξ)gk(X) + hk(X)
∂

∂ξk
π(X, ξ)

=
∑

k

ξkπ(X, ξ)∇ · gk(X)− ξkπ(X, ξ)


β0 ∇H +

∑

j=1

βj∇Ij


 · gk(X)

− αξkπ(X, ξ)hk(X)

=
∑

k

ξk


∇ · gk(X)−


β0 ∇H +

∑

j=1

βj ∇Ij


 · gk(X)− αhk(X)


 .
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Hence it is sufficient to take

hk(X) =
1

α


∇ · gk(X)−


β0 ∇H +

∑

j=1

βj ∇Ij


 · gk(X)




for a given vector field gk(X). For the Gibbs distribution (4.7), hk(X) reduces to

hk(X) =
1

α
(∇ · gk(X)− β∇H · gk(X)) . (4.19)

We have yet to specify the vector fields gk. The construction of this section
ensures that the target distribution is invariant under the thermostated Fokker-
Planck operator for any choice of gk.

4.2.3 The ergodic property

The previous derivation of the GBK method ensures that the augmented probability
distribution π is invariant under the Fokker-Planck flow associated with the GBK
dynamics (4.12)–(4.13). To ensure correct sampling, one must also show that π is
the density of the unique ergodic invariant measure. By construction, (4.12)–(4.13)
define a phase flow under which the density π is invariant. The associated measure
is positive for all open sets on the phase space. Hence, to show uniqueness and
thereby ergodicity, it suffices to show that the Fokker-Planck operator associated to
(4.12)–(4.13) is hypoelliptic, which follows from the controllability condition due to
Hörmander [38, 39, 52, 79, 97].

Hörmander’s condition can be tailored slightly for the GBK thermostat, as
demonstrated next. Let L(V0, V1, . . . , VdT ) denote the ideal of the vector fields Vk
with k > 0 within the Lie algebra generated by all of the Vk:

L(V0, V1, . . . , VdT ) = {Vk0 , [Vk0 , Vk1 ], [[Vk0 , Vk1 ], Vk2 ], . . . },

where [·, ·] denotes the commutator of vector fields, k0 takes values in the set
{1, . . . , dT }, and k1, k2, etc. take values in {0, · · · , dT }. Denoting by ∂ξk the unit
vector in Rd+dT corresponding to the variable ξk, Hörmander’s condition [101] to
ensure a smooth probability measure for this system is

Rd+dT ⊂ spanL(F, ∂ξ1 , . . . , ∂ξdT ),

where

F =




f(X) +
∑
k ξkgk(X)

h1(X)− γξ1
...

hdT (X)− γξdT




denotes the deterministic vector field of (4.12)–(4.13). Defining

Gk = [F, ∂ξk ] =

(
gk(X)
−γ∂ξk

)
, k = 1, . . . , dT , (4.20)
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we find that

[F,Gk] =

(
[f, gk]

0

)
+ c1Gk + c2(X)∂ξk . (4.21)

Since the unit vectors ∂ξk form a globally defined basis for the auxiliary space of
the thermostat variables ξk, it remains to construct a basis for the original space
Rd. Eliminating the ξk and the Gk from (4.21), shows that the following reduced
Hörmander condition holds:

Lemma 4.2.3.1. The GBK method (4.12)–(4.13) satisfies Hörmander’s condition
at a point (X, ξ1, . . . , ξdT ) ∈ Rd+dT if the related Hörmander condition on Rd holds
at X:

Rd ⊂ spanL(f, g1, g2, . . . , gdT ).

When choosing appropriate vector fields gk, it is important to ensure that f and
the gk do not all share an invariant manifold of co-dimension one. For example, in
the case dT = 1, g = g1, if N = {X ∈ D | η(X) = 0} defines a smooth invariant
manifold such that ∇η(X) ·f(X) = ∇η(X) · g(X) = 0 for all X ∈ N , then it follows
that

f, g ∈ TXN ⇒ [f, g] ∈ TXN ,

and consequently, the Lie algebra will be rank deficient on N , and Hörmander’s
condition will fail there. Furthermore, if N is of co-dimension one, it may partition
the phase space.

When constructing thermostats for a mixed measure such as (4.10) we take
advantage of the just noted symmetry of the Lie algebra. That is, we choose the
perturbation vector fields gk(X) to satisfy ∇Ij · gk(X) = 0, ∀j, k, and subsequently
determine the hk(X) to ensure the invariance of the smooth part of the measure
(4.10), according to (4.19).

To choose the gk(X), one can either appeal to underlying symmetries of the
Hamiltonian vector field (4.2), or make use of a projector onto the tangent bundle
of the manifold defined by intersection of the conditions Ij(X) = I0j , j = 1, . . . , J .

Let A(X) ∈ Rd×dT denote the matrix whose columns are the gradients of the first
integrals Ij(X):

A(X) = (∇I1, · · · , ∇IJ ) ,

and assume A has full column rank. Then for a given perturbation vector field g̃(X),
the projected vector field

g(X) = (I −A(ATA)−1AT )g̃(X) (4.22)

preserves the invariants Ij .

4.3 Semidiscrete PDE models

To illustrate the application of thermostats to PDEs, we select two related model
problems, the inviscid Burgers-Hopf (BH) and Korteweg-De Vries (KdV) equations.



4.3. Semidiscrete PDE models 125

We choose these models as simple one-dimensional problems with features in com-
mon with more sophisticated fluid models, i.e. quadratic nonlinearity, multiple con-
served quantities, a tendency to generate fine scale dynamics from smooth initial
conditions, and slow (fast) decorrelation times for low (high) wave numbers.

The BH/KdV model (4.1) is discretized using a pseudospectral truncation (see
Appendix 4.A), resulting in an equation of the form (cf. 4.A.9)

∂uN
∂t

+
1

2

∂PNu2N
∂x

+ µ
∂3uN
∂x3

= 0, (4.23)

where uN := PNu(x) is the projection of the function u onto N Fourier modes.
The truncated model retains as first integrals the discrete analogs of M, E and

H, respectively [76]:

M =

∫ 2π

0

uN dx, (4.24)

E =
1

2

∫ 2π

0

u2N dx, (4.25)

H =

∫ 2π

0

(
1

6
u3N − µ

2

(
∂uN
∂x

)2
)

dx. (4.26)

4.3.1 Statistical mechanics of the truncated model

Abramov et al. [1] proposed a statistical mechanics for the pseudospectral truncation
of the Burgers-Hopf equation, which carries over to the KdV equation. The spectral
representation of (4.23) is (cf. 4.A.10)

dûn
dt

= f̂n(û) = − in
2


 ∑

|n−m|≤N

ûn−mûm


 + in3µûn, |n|, |m| ≤ N, (4.27)

where û, f̂ ∈ C2N+1, û−n = û∗n. First note that the vector field f̂(û) is divergence-
free:

∇ · f̂(û) = 2Re
∑

|n|≤N

∂f̂n
∂ûn

= 2Re
∑

|n|≤N

(
−inû0 + in3µ

)
= 0,

since û0 ∈ R for a real smooth 2π-periodic function u(x). This implies that an
equilibrium density is a function of the conserved quantities

In [1] it is noted that a Gibbs-like density ρ(û) = exp(−βH(û)− γE(û)) cannot
be normalized due to the unboundedness of level sets of the highest order terms in
H . Noting that level sets of E are hyperspheres whenM = 0, and hence compact, [1]
instead propose a mixed ensemble that is microcanonical in E andM , and canonical
in H , i.e.

ρ(û) ∝ exp(−βH(û))δ(E(û)− E0)δ(M(û)).

We adopt this density here. Since the phase space is compact, the system supports
both positive and negative regimes for the statistical temperature β−1 [92].
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Figure 4.1: Probability density functions of the Hamiltonian H(û) for different
values of β, E0 = 1. Left: BH equation. Right: KdV equation.

We used the Metropolis-Hastings algorithm to compute probability density func-
tions of the Hamiltonian H for E0 = 1 and different values of β. The pdfs shown
in Figure 4.1 were obtained using 108 samples and N = 15. Because the phase
space is compact the temperature assumes both positive and negative values. For
the Burgers-Hopf equation we note that the skewness varies in a nonlinear way as a
function of β, but that the pdfs are anti-symmetric with respect to β = 0. For the
KdV equation the pdf with β = 0 has negative skewness and it changes to positive
near the value β = 0.1.

In Figure 4.2 we plot expectation values of the kinetic energy spectrum |ûn|2 as
a function of wave number n. Note that the energy is equipartitioned for β = 0
which corresponds to the case of a uniform distribution on the sphere δ(E(û)−E0).
For the Burgers-Hopf equation we observe significant tilt in the spectrum for values
β 6= 0. More energy resides in the large scales (small wave numbers). Furthermore,
the spectra are identical for opposite signed β. For the KdV equation we observe
opposite tilt in the spectrum depending on the sign of β, with more energy at low
wave numbers for β < 0 and at high wave numbers for β > 0.

4.3.2 Ergodicity of stochastic hydrodynamics models

For the truncated incompressible Navier-Stokes equation, E & Mattingly [24] proved
ergodicity under highly degenerate stochastic forcing of just two modes in the low
wave number range, with viscous damping at the large wave number end of the
spectrum. The proof of [24] requires establishing a Lyapunov function and verifying
the Hörmander condition for the drift and diffusion vector fields.

In this chapter we use GBK thermostats [58] to effect a simple non-dissipative
closure model, with forcing implemented at the small scales/large wave numbers.
Because the thermostats control the flux of energy into and out of the system,
they do not require a separate dissipation term to maintain stability. Here we
illustrate through analysis that thermostatting the small scales (essentially through
“backscatter”) can be effective, i.e. we show the Hörmander condition for this type
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Figure 4.2: Mean kinetic energy spectrum, for different values of β. Left: BH
equation. Right: KdV equation.

of forcing. Our starting point is the GBK method (4.12)–(4.13) on C2N+1 ×RdT .
The form of Lemma 4.2.3.1 suggests adapting the analysis of E and Mattingly to

Burgers-Hopf equation, and forcing at large wave numbers. We next derive a suitable
set of perturbation vector fields ĝ1, . . . , ĝM that ensure Hörmander’s condition.

The truncated BH/KdV model (4.27) is derived in Appendix 4.A. For the rest
of this section we restrict our attention to the case µ = 0 of Burgers-Hopf equation,
because the formulas are simpler, and the dispersion term does not contribute to
mixing between distinct wave numbers. Following [24], define ûn = an + ibn, and
denote the unit vectors in the respective real coordinates by ∂an and ∂bn . Then

f̂n = − in
2

∑

|m−n|<N

(an−m + ibn−m)(am + ibm)

=
n

2

∑

|m−n|<N

(an−mbm + ambn−m)∂an + (bn−mbm − an−mam)∂bn .

Since the solution u(x, t) of the BH/KdV model is real valued, the Fourier modes
ûn satisfy û−n = û∗n, which in turn implies the conditions a−n = an and b−n = −bn.
We also assume û0 ≡ f̂0 ≡ 0.

Fixing n > 0 for the moment, define the index sets N+
n = {n + 1, . . . , N} and

N−
n = {1, . . . , n− 1}, and note that

m ∈ N+
n ⇒ m > 0, n−m < 0,

m ∈ N−
n ⇒ m > 0, n−m > 0,

m ∈ (n−N+
n ) ⇒ m < 0, n−m > 0.

With this in mind, the vector field f̂n is written as

f̂n =
n

2

∑

m∈N−
n

(an−mbm + ambn−m)∂an + (bn−mbm − an−mam)∂bn

+
n

2

∑

m∈N+
n

(am−nbm − ambm−n)∂an + (−bm−nbm − am−nam)∂bn
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+
n

2

∑

m∈(N+
n −n)

(−an+mbm + ambn+m)∂an + (−bn+mbm − an+mam)∂bn ,

where now all indices are positive. Furthermore, it can be checked that the last two
sums are equivalent, so the formula simplifies to

f̂n =
n

2

∑

m∈N−
n

(an−mbm + ambn−m)∂an + (bn−mbm − an−mam)∂bn

+ n
∑

m∈N+
n

(am−nbm − ambm−n)∂an + (−bm−nbm − am−nam)∂bn .

Next we compute commutators with the canonical unit vectors, for future refer-
ence. (These are the columns of the Jacobian matrix of f̂ .) We find:

Xℓ = [f̂ , ∂aℓ ] = n(bn−ℓ − bℓ−n + bℓ+n)∂an + n(−an−ℓ − aℓ−n − aℓ+n)∂bn ,

Yℓ = [f̂ , ∂bℓ ] = n(an−ℓ + aℓ−n − aℓ+n)∂an + n(bn−ℓ − bℓ−n − bℓ+n)∂bn ,

where henceforth it is understood that the index of each term is either an element
of the set {1, . . . , N}, or the term itself is neglected, meaning that each expression
in parentheses above has at least one and at most two (when ℓ+m ≤ N) nontrivial
terms.

The commutators of Xℓ and Yℓ with respect to generic unit vectors ∂am and ∂bm
are:

[Xℓ, ∂am ] = n(−δn−ℓ,m − δℓ−n,m − δℓ+n,m)∂bn

= −(m+ ℓ)∂bm+ℓ
− (ℓ−m)∂bℓ−m

− (m− ℓ)∂bm−ℓ
,

[Xℓ, ∂bm ] = (m+ ℓ)∂am+ℓ
− (ℓ −m)∂aℓ−m

+ (m− ℓ)∂am−ℓ
,

[Yℓ, ∂am ] = (m+ ℓ)∂am+ℓ
+ (ℓ −m)∂aℓ−m

− (m− ℓ)∂am−ℓ
,

[Yℓ, ∂bm ] = (m+ ℓ)∂bm+ℓ
− (ℓ −m)∂bℓ−m

− (m− ℓ)∂bm−ℓ
,

where δm,ℓ is the Kronecker delta.

If the unit vector ∂aℓ is an element of the Lie algebra L(f̂ , ĝ1, . . . , ĝK) (hereafter
simply denoted by L), then so is Xℓ. Likewise, inclusion of ∂bℓ implies that of Yℓ.
As a result, we have the following inclusions:

∂aℓ , ∂am ∈ L ⇒ (∂b|ℓ−m|
± ∂bℓ+m

) ∈ L,
∂aℓ , ∂bm ∈ L ⇒ (∂a|ℓ−m|

± ∂aℓ+m
) ∈ L,

∂bℓ , ∂bm ∈ L ⇒ (∂b|ℓ−m|
± ∂bℓ+m

) ∈ L,

where the second term on the right in each relation is present only if ℓ +m ≤ N .
From the last of these three recursions, it immediately follows that if ∂b1 is in L,
so are all of the ∂bℓ . If additionally ∂a1 ∈ L, then from the second implication
above, all of the ∂aℓ also follow, and the Hörmander condition is satisfied. Hence,
to demonstrate the Hörmander condition, it suffices to thermostat only the lowest
wave number, taking ĝ1 = ∂a1 , ĝ2 = ∂b1 .
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On the other hand, directly thermostatting the low wave numbers is likely to be
intrusive in the dynamics. Instead we wish to thermostat the highest wave numbers,
which constitute an uncertain component in the solution anyway. If ∂aN and ∂aN−1

are in L, then we obtain ∂b1 ∈ L from the commutator [XN , ∂aN−1 ], and subse-
quently all of the ∂bℓ and associated Yℓ. Finally, the commutator [YN , ∂aN−1] yields
∂a1 ∈ L, subsequently all of the ∂aℓ , and Hörmander is again satisfied. Therefore, we
can construct a GBK thermostat satisfying Hörmander’s condition for Burgers-Hopf
equation and perturbations only to the real parts of the two highest wave numbers,
taking ĝ1 = ∂aN , ĝ2 = ∂aN−1 . Combining this with a Lyapunov function would
ensure ergodicity in the measure ρ(X) = exp(−βE(X)), where E is the quadratic
invariant of BH/KdV.

The above approach will not allow sampling of a mixed measure (4.11), however,
since the perturbation vector fields so defined do not lie in the tangent bundle to
the hypersphere of constant kinetic energy E. Instead, we may choose a single
perturbation vector field ĝ that is a rotation about one or more coordinate axes, for
example,

ĝ = bN∂aN − aN∂bN . (4.28)

Since both f̂ and ĝ are defined in the tangent space to the manifold of constant E,
the Lie algebra generated by these vectors also preserves the first integral. The phase
space is compact, and ergodicity follows from the Hörmander condition. However,
with quadratic f̂ and linear ĝ, the commutators are all quadratic or higher in order,
making this condition difficult to check. Instead we include numerical experiments
to assess ergodicity.

4.3.3 Thermostated dynamics for the semidiscrete model

In this section we specify the thermostated dynamics in the context of the truncated
BH/KdV equation (4.23) and the mixed canonical distribution (4.11). The GBK
thermostat for equation (4.23) and a single thermostat variable ξ is:

duN = fN (uN ) dt+ ξgN (uN ) dt, (4.29)

dξ = 2Reh(uN ) dt− γξ dt+ σ dw, (4.30)

where fN(uN ) = − 1
2
∂PN (u2

N )
∂x − µ∂

3uN

∂x3 . The function g(uN ) is chosen such that its
projection gN (uN) := PNg(uN ) satisfies the constraints

∫ 2π

0

δM

δuN
gN (uN) dx = 0,

∫ 2π

0

δE

δuN
gN(uN ) dx = 0. (4.31)

These relations constrain the dynamics to the Dirac distributions on M and E.
Taking into account that PN is symmetric, the constraints (4.31) reduce to

∫ 2π

0

g(uN) dx = 0,

∫ 2π

0

uNg(uN) dx = 0. (4.32)

Without loss of generality one may assume M = 0, since the nonzero case may
be handled with a change of variables. Furthermore, in spectral representation this
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condition takes the simple form û0 ≡ 0, which can be easily enforced by simply
neglecting the constant mode in the spectral representation, taking û = (ûn; 1 ≤
|n| ≤ N).

To preserve the kinetic energy constraint we either choose g(uN) to respect the
rotation symmetry, as in (4.28), or use a projection such as (4.22).

For a given function g̃(uN ), using the definitions (4.24) and (4.25) of M and E,
and taking M = 0, we observe that the function

g(uN) = g̃(uN)−
1

2π

∫ 2π

0

g̃(uN ) dx− 1

2E
uN

∫ 2π

0

uN g̃(uN ) dx (4.33)

satisfies the constraints (4.32). In spectral representation, ĝ0 = 0 and

ĝn(û) =
1

2π

∫ 2π

0

g(uN)e
−inx dx, 1 ≤ |n| ≤ N.

Using (4.19) we compute h(û) from

h(û) =
1

α
(∇û · ĝ(û)− β∇ûH(û) · ĝ(û)).

The gradient of the Hamiltonian H(û) is

∂H(û)

∂ûn
=

∫ 2π

0

δH

δuN

∂uN
∂ûn

dx =

∫ 2π

0

δH

δuN
einx dx = 2π

(
δ̂H

δuN

)∗

n

, 1 ≤ |n| ≤ N,

which yields

∇ûH(û) · ĝ(û) =
∑

1≤|n|≤N

∂H(û)

∂ûn
ĝn(û)

= 2π
∑

1≤|n|≤N

(
δ̂H

δuN

)∗

n

ĝn(û) =

∫ 2π

0

δH

δuN
gN (uN) dx.

The spectral representation of h(uN) follows:

h(û) =
1

α


∇û · ĝ(û)− 2πβ

∑

1≤|n|≤N

(
δ̂H

δuN

)∗

n

ĝn(û)


 .

For each value of 1 ≤ |n| ≤ N :

∂ĝn(û)

∂ûn
=

1

2π

∫ 2π

0

∂g(uN)

∂uN

∂uN
∂ûn

e−inx dx =
1

2π

∫ 2π

0

∂g(uN)

∂uN
dx.

This gives us

h(uN ) =
1

α

(
N

π

∫ 2π

0

∂g̃(uN )

∂uN
dx −N

E

∫ 2π

0

uN g̃(uN) dx− β

∫ 2π

0

δH

δuN
gN (uN) dx

)
.
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4.4 Numerical study

We rely on a series of numerical simulations to test the performance of the ther-
mostats mentioned above in the setting of the Burgers-Hopf and KdV equations.
Our interest here is in two crucial issues: (i) the ergodic nature of the extended SDE
models, even under limited contact with the stochastic heat bath, and (ii) the degree
to which thermodynamic corrections alter dynamic observables (e.g. temporal cor-
relation functions). In evaluating the experimental results, we use the terminology
from Subsection 4.2.1 and explicitly define the autocorrelation functions of the real
part of the Fourier modes, i.e.

cn(τ) = C lim
T→∞

1

T

∫ T

0

Re {ûn(t+ τ)}Re {ûn(t)} dt, n = 1, . . . , N, (4.34)

where C is a suitable normalization constant so that cn(0) = 1.

4.4.1 Thermostated Burgers-Hopf equation

In our computations we set N = 15, E0 = 1 and β = −30. We solve equations
(4.29)–(4.30) in time by applying a Strang splitting method, thus dividing the cal-
culation into two steps: (1) the solution of the equation for the auxiliary variable,
and (2) the solution of the equations governing Fourier coefficients of the solution.
The stochastic differential equation for the auxiliary variable can be solved exactly
when uN is fixed, whereas in step (2) the system for uN is treated using the implicit
midpoint rule (a scheme which preserves quadratic first integrals, i.e. the hyper-
sphere).

The numerical method is

ξ∗ = e−γ
τ
2 ξ0 +

2Reh(u0N )

γ

(
1− e−γ

τ
2

)
+ σ

√
1− e−γτ

2γ
∆w0,

u1N = u0N + τfN (u
1/2
N ) + τξ∗gN(u

1/2
N ), u

1/2
N :=

u1N + u0N
2

,

ξ1 = e−γ
τ
2 ξ∗ +

2Reh(u1N )

γ

(
1− e−γ

τ
2

)
+ σ

√
1− e−γτ

2γ
∆w1,

where ∆w0,∆w1 ∼ N (0, 1) and τ is a time step.
The first question concerns the ergodic sampling of the target distribution. This

can depend on the choice of g. We let g̃(uN ) = u2N . With this particular choice of
function g̃(uN ) from expression (4.33) we find

g(uN) = u2N − 1

2π

∫ 2π

0

u2N dx− 1

2E
uN

∫ 2π

0

u3N dx

and compute

h(uN ) = − 1

α

(
N

E

∫ 2π

0

u3N dx+ β

∫ 2π

0

δH

δuN
gN (uN ) dx

)
.
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Figure 4.3: Gentle thermostatting of BH equation with GBK method, taking
g̃(uN ) = u2N , α = 30 and γ = 20. Left: probability density function of H(û).
Right: mean kinetic energy spectrum.

Numerical results are presented in Figure 4.3. In the computations we used 109

data points and τ = 0.001. In Figure 4.3 we compare the numerically computed
histogram of H(û) and the spectrum to the Monte Carlo simulations using the
Metropolis-Hastings algorithm. Since a single trajectory produces what is essentially
a perfect Hamiltonian pdf and spectrum we infer that the method is ergodic.

We then set about constructing a thermostat that controls the invariant measure
using only forcing at high wave numbers. To this end we work with a spectral
representation of g(uN). For any skew-Hermitian matrix B(û) the vector field

ĝ(û) = B(û)û

is norm preserving and therefore retains the first integral E. We choose matrix B
such that it only acts on the large wave number Fourier coefficients, i.e.

ĝ(û)n =

{
0, |n| < n∗,
i sign(n)ûn, |n| ≥ n∗,

(4.35)

and refer to this method as GBK(n∗). In this case the effect of the perturbation is to
directly modify the phase of only the (N−n∗+1) highest Fourier modes. This can be
contrasted directly with the approach of E & Mattingly [24], who stochastically force
the lowest modes of a truncated Navier-Stokes model using a Langevin approach.
Here we thermostat at the finest scales, effectively controlling the measure through
backscatter.

The results for n∗ = 11 are shown in Figure 4.4 using 109 data points. All
computations are done with τ = 0.01. These results again suggest that the method
is ergodic. Not only can we get away with thermostatting directly only the highest
five wave numbers, it is in fact possible to control the distribution using only a single
mode. In Figure 4.5, the pdfs are shown for the real parts of the Fourier coefficients
1, 5, 10 and 15 when only the highest wave number û15 is directly coupled to the
stochastic auxiliary variable ξ. Note that while E0 = 1, the dynamics is constrained
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Figure 4.4: Gentle thermostatting of BH equation with GBK(n∗ = 11) method,
α = γ = 1. Left: probability density function of H(û). Right: mean kinetic energy
spectrum.
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Figure 4.5: Probability density function of real parts of Fourier coefficients 1, 5, 10
and 15. GBK(n∗ = 15) thermostat method compared to reference.

to the hypersphere with radius 1/
√
2π ≈ 0.4, and this number bounds the support

of the pdfs.

Thermostatting only the high wave numbers leads to a reduced rate of conver-
gence of averages compared to a thermostat that acts directly on all components.
This effect can be seen in Figure 4.6. Slope values are approximate. When plotted
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Figure 4.6: Convergence of the expected value of Hamiltonian for an ensemble of
20 000 initial conditions, α = γ = 1.
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as a function of n∗ and compared to the least square fitted exponential function in
Figure 4.7 on a logarithmic scale we observe good agreement. This suggests that
the rate of convergence decreases exponentially with respect to n∗.

On the other hand, although the convergence rate of averages may be reduced
by using a weak thermostat, the perturbation of slow dynamics is simultaneously
reduced, meaning that where the dynamics of slow variables is relevant, these meth-
ods are likely to be of greatest value. As we noted in the introduction, the advantage
of the GBK thermostat over direct Langevin thermostatting is that the stochastic
forcing only influences the original dynamics after integration—as a memory or red
noise term—leading to a second order perturbation of autocorrelation functions of
the fast modes ûn, n ≥ n∗. In fact, a straightforward calculations shows that we
would expect only third order or higher perturbations to autocorrelations of the
slow modes ûn, n < n∗, which are not directly thermostated.

In Figure 4.8(a) we plot the L2 error of the pdf of the Hamiltonian as a function
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Figure 4.8: L2 errors as a function of sampling time with small scale forcing (4.35)
of wave numbers n ≥ n∗. Top left: evolving pdf of the Hamiltonian, Top right and
bottom: autocorrelation functions for Re û1, Re û3 and Re û5 in the evolving pdf of
the Hamiltonian, α = γ = 1.

of sampling time, showing the convergence to the reference pdf. We observe the
expected sampling convergence rate, 1/2. In Figures 4.8(b), 4.8(c) and 4.8(d) we
plot L2 errors, computed on the interval τ ∈ [0, 50], as a function of sampling time of
the autocorrelation functions c1(τ), c3(τ) and c5(τ), respectively. Observe that the
graphs level off indicating a convergence to a limiting value of the net perturbation.
(To see that the graph for the method GBK(n∗ = 15) eventually stabilizes, we would
have to integrate even longer in time.) Complementary to Figure 4.8 we plot in
Figures 4.9 and 4.10 the same autocorrelation functions and visually compare them
to reference curves. The reference curves are computed using constant Hamiltonian
simulations from a mixed canonically distributed ensemble of 106 initial conditions.

Note the big differences in errors between GBK(n∗ = 1) and the others in Fig-
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Figure 4.9: Gentle thermostatting of BH equation with GBK(n∗) method, α = γ =
1. (a) autocorrelation function c1(τ). (b) autocorrelation function c1(τ) for small
correlation times τ . The reference curves were computed using constant Hamiltonian
simulations from a mixed canonically distributed ensemble of 106 initial conditions.

ure 4.8(b). Only in the case of GBK(n∗ = 1) is the equation for Re û1 directly
perturbed. This leads to the second order perturbation of autocorrelation function
while the other methods, GBK(n∗ > 1), lead to third order or higher perturbations
of autocorrelation functions. This can be seen in Figure 4.9(b) where we compare the
autocorrelation functions c1(τ) for two methods, GBK(n∗ = 1) and GBK(n∗ = 11),
with the reference curve for the small correlation times τ . It is clearly evident that
the method GBK(n∗ = 11) is more accurate than GBK(n∗ = 1).

Interestingly errors in autocorrelation functions also depend on the value of n∗.
For larger value of n∗ we observe smaller errors, see Figures 4.8(b), 4.8(c) and 4.8(d).
In Figure 4.9(a) it is easy to see that two methods GBK(n∗ = 3) and GBK(n∗ = 11),
which do not directly perturb the equation for Re û1, have better autocorrelation
functions compared to method GBK(n∗ = 1). But it is also notable that the more
gentle method, i.e. the GBK(n∗) method with larger value of n∗, has the more
accurate autocorrelation function.
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Figure 4.10: Gentle thermostatting of BH equation with GBK(n∗) method, α = γ =
1. (a) autocorrelation function c3(τ). (b) autocorrelation function c5(τ). The ref-
erence curves were computed using constant Hamiltonian simulations from a mixed
canonically distributed ensemble of 106 initial conditions.

Similar effects of perturbation order to autocorrelation functions can be seen in
Figures 4.8(c) and 4.8(b). In both methods, GBK(n∗ = 1) and GBK(n∗ = 3), the
thermostat variable ξ is directly coupled to the equation for Re û3. This gives larger
errors compared to the other methods, GBK(n∗ > 3), as seen in Figure 4.8(c). We
observe similar trends in the results in Figure 4.8(d). And these translate also to
Figures 4.10(a) and 4.10(b).

Numerical results presented in Figures 4.8, 4.9 and 4.10 show that the direct
coupling to the thermostat ξ in the equations for the slow modes can significantly
effect the errors in autocorrelation functions of these modes and vice versa. Since
errors in autocorrelation functions decrease with larger value of n∗ while, at the
same time the convergence rate decreases with larger value of n∗ (Figure 4.6), it
suggests seeking n∗ to obtain the optimal trade-off between rate of convergence and
rate of perturbation to dynamics. (Of course the choice would also depend on the
goal of simulation.)
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4.4.2 Thermostated KdV equation

In the case of the KdV equation we note that the Hamiltonian function H(û) can
be written as the sum of two parts H = H1 +H2, where

H1(uN ) =

∫ 2π

0

u3N dx, H2(uN) = −1

2

∫ 2π

0

(
∂uN
∂x

)2

dx.

The Hamiltonian systems generated by H1(uN ) and H2(uN ) each conserves the first
integrals M and E individually. Now we consider the following GBK thermostated
KdV equation:

∂

∂t
uN = − ∂

∂x
PN

δH

δuN
− ξ

∂

∂x
PN

δH2

δuN
= − ∂

∂x
PN

δH1

δuN
− (1 + ξ)

∂

∂x
PN

δH2

δuN
,

dξ = 2
β

α
Re

∫ 2π

0

δH1

δuN

∂

∂x
PN

δH2

δuN
dxdt− γξ dt+ σ dw,

where dw is scalar Wiener process. This approach was suggested in a slightly dif-
ferent form (and for finite dimensional systems only) in [58] and is referred to as a
force-perturbation thermostat since it perturbs the ‘natural forces’ of the system, or
rather the balance between these, to realize a thermal control. For the KdV equa-
tion we effectively thermostat the system by controlling the strength and direction
of dispersion.

To integrate the dynamics numerically in time, we use the following splitting
method, which generates a map (u0N , ξ

0) 7→ (u1N , ξ
1) with time step τ :

ξ1/2 = e−γ
τ
2 ξ0 +

2

γ
Reh(u0N )

(
1− e−γ

τ
2

)
+ σ

√
1− e−γτ

2γ
∆w0,

u∗N = e−(1+ξ1/2) τ
2

∂3

∂x3 u0N ,

u∗∗N = u∗N + τfN (u
1/2
N ), u

1/2
N :=

1

2
(u∗N + u∗∗N ),

u1N = e−(1+ξ1/2) τ
2

∂3

∂x3 u∗∗N ,

ξ1 = e−γ
τ
2 ξ1/2 +

2

γ
Reh(u1N )

(
1− e−γ

τ
2

)
+ σ

√
1− e−γτ

2γ
∆w1,

where ∆w0,∆w1 ∼ N (0, 1). Numerical results with τ = 0.001 are presented in
Figures 4.11–4.12 (showing, in Figure 4.11, the convergence of the Hamiltonian
probability density function and the spectrum, and, in Figure 4.12, the autocorre-
lation functions). 109 data points were used to compute the graphs in Figure 4.11
and 4.12.

Results from Figure 4.11 demonstrate that a single trajectory produces what is
essentially a perfect Hamiltonian pdf and spectrum, hence we infer that the method
is ergodic. On the other hand Figure 4.12 shows that, for the particular values of
α and γ, the GBK method has only a small impact on dynamics as measured by
autocorrelation functions.
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Figure 4.11: Gentle thermostatting of KdV equation with GBK method, α = 15
and γ = 40. Left: probability density function of H(û). Right: mean kinetic energy
spectrum.
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Figure 4.12: Gentle thermostatting of KdV equation with GBK method, α = 15
and γ = 40. Top: autocorrelation function c1(τ). Bottom: autocorrelation function
c2(τ). The reference curves were computed using constant Hamiltonian simulations
from a mixed canonically distributed ensemble of 106 initial conditions.
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4.5 Conclusions

In this chapter we have outlined a framework for controlling the invariant measures
of discretized PDEs, via coupling to one or more thermostat variables. Ergodicity
is guaranteed if the perturbation vector fields satisfy Hörmander’s condition.

The convergence rate of the time averages to the ensemble average in the de-
sired measure depends on the strength of the thermostat, which can be controlled
either through method parameters, or through choosing the degree of coupling be-
tween dynamical and thermostat wave numbers. The strength of the thermostat
must be weighed against the degree of perturbation of dynamical quantities such as
correlations.

For the example of the Burgers-Hopf equation, we have demonstrated that ef-
fective sampling can be achieved with perturbation only to the Fourier mode with
largest wave number, providing a simple model of energetic exchange with unre-
solved modes. In this way the invariant measure is controlled by perturbing the
least accurate component of the solution, and without introducing explicit viscous
terms, which might suppress an inverse cascade. A test for this framework will come
in extending the results to the 2D Euler equations, which is the subject of current
work.

4.A Burgers-Hopf/Korteweg-de Vries model

The BH and KdV equations can be written in unified form

ut + uux + µuxxx = 0, (4.A.1)

where the dispersion constant µ is zero for the BH equation and nonzero for the
KdV equation. The classical KdV equation is obtained for µ = 1/6 by rescaling
time by the same factor. The BH and KdV equation are Hamiltonian PDEs with
similar structure, as we briefly review in the next subsection.

4.A.1 Hamiltonian structure and conserved quantities

We consider Hamiltonian PDEs on a function space U of smooth, 2π-periodic func-
tions equipped with an inner product. The Poisson bracket (4.3) generalizes to an
integral

{F ,G} :=

∫ 2π

0

δF
δu

J δG
δu

dx, F ,G : U → R,

i.e. a skew-symmetric, bilinear form acting on functionals on U and satisfying the
Jacobi identity [91]. Here, u(x, t) ∈ U is a (possibly vector-valued) function, δ

δu
denotes the variational derivative with respect to u, and J is a (matrix) differential
operator, skew-symmetric with respect to the inner product on U . The Hamiltonian
PDE is given by

∂u

∂t
= {u,H}. (4.A.2)
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Hence the evolution of any functional F under the dynamics of a Hamiltonian PDE
(4.A.2) obeys the equation

∂F
∂t

= {F ,H}.
A functional I satisfying {I,H} = 0 is a first integral and constant along classical
solutions to (4.A.2), as long as these exist.

Equation (4.A.1) has a bi-Hamiltonian structure [91] and is therefore integrable.
The Hamiltonian structure we will use here is defined by

J = − ∂

∂x
, H =

∫ 2π

0

(
1

6
u3 − µ

2

(
∂u

∂x

)2
)

dx. (4.A.3)

Hence the corresponding Poisson bracket is

{F ,G} := −
∫ 2π

0

δF
δu

∂

∂x

δG
δu

dx. (4.A.4)

One conserved quantity of (4.A.2) is the linear momentum

M =

∫ 2π

0

u dx, (4.A.5)

which we can assume to be zero up to Galilean change of coordinates.
Equation (4.A.1) has infinitely many conserved quantities, as mentioned above,

depending on the value of µ. For the BH equation (µ = 0), the integral of any
function of u is conserved, and in particular the moments

I =

∫ 2π

0

up dx, p = 1, 2, . . . (4.A.6)

The first of these is the momentum mentioned earlier and assumed to be zero. The
second moment represents the kinetic energy

E =
1

2

∫ 2π

0

u2 dx. (4.A.7)

The third moment is the Hamiltonian
∫
u3, i.e. (4.A.3) with µ = 0.

For the KdV equation, the first integrals of the infinite class are given by

In =

∫ 2π

0

P2n−1

(
u,
∂u

∂x
,
∂2u

∂x2
, . . .

)
dx, n = 1, 2, . . . ,

where the polynomials Pn are defined recursively [86] by

P1 = u,

Pn = − ∂

∂x
Pn−1 +

n−2∑

m=1

PmPn−m−1, n ≥ 2.

The even-indexed polynomials P2n are exact differentials and thus trivially pre-
served. The polynomial P1(u) corresponds to momentum (4.A.5), P3(u)/2 to the
kinetic energy (4.A.7) and P5(u)/2 to the Hamiltonian functional (4.A.3) with
µ = 1/6. Hence, all three functionals (4.A.5), (4.A.7) and (4.A.3) are conserved
quantities of the equation (4.A.1) for any value of µ.
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4.A.2 Spectral truncation

As noted by McLachlan [81], the Hamiltonian structure of a PDE can often be
retained in a finite dimensional truncation, by taking care to discretize the Poisson
bracket and Hamiltonian separately. The Poisson bracket should be truncated such
that remains skew-symmetric and, when nonlinear, satisfies the Jacobi identity. The
Hamiltonian can be approximated by any consistent finite dimensional truncation.
Majda & Timofeyev [76] present such a truncation for the BH equation, and show
that it retains as first integrals approximations of (4.A.6) for p = 1, 2, 3. We recall
their discretization here and note that it readily extends to the KdV equation.

Let PN denote the standard N -mode Fourier projection operator, i.e.

fN := PNf(x) =
∑

|n|≤N

f̂ne
inx,

where

f̂n =
1

2π

∫ 2π

0

f(x)e−inx dx

is the nth Fourier coefficient of the function f(x). Since f(x) is real we have

f̂−n = f̂∗
n.

It can be directly verified that PN is symmetric with respect to the L2 inner
product (·, ·) and commutes with the derivative operator ∂

∂x . Consequently the

composite operator ∂
∂xPN is skew-symmetric with respect to (·, ·) and a truncated

Poisson bracket (4.A.4) may be defined by

{FN ,GN} := −
∫ 2π

0

δFN
δuN

∂

∂x
PN

δGN
δuN

dx. (4.A.8)

The Hamiltonian restricted to the truncated function uN is given by

H =

∫ 2π

0

(
1

6
u3N − µ

2

(
∂uN
∂x

)2
)

dx.

Therefore the finite truncation follows from (4.A.2):

∂uN
∂t

= − ∂

∂x
PN

δH

δuN
,

where
δH

δuN
=

1

2
u2N + µ

∂2uN
∂x2

.

That is,

∂uN
∂t

+
1

2

∂PN(u2N )

∂x
+ µ

∂3uN
∂x3

= 0. (4.A.9)
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In terms of Fourier coefficients this can be written

dûn
dt

= − in
2


 ∑

|n−m|≤N

ûn−mûm


+ in3µûn = − in

2π

∂H

∂û∗n
, |n| ≤ N, (4.A.10)

and the Hamiltonian is

H =
π

3

∑

ℓ+m+n=0
|ℓ|,|m|,|n|≤N

ûℓûmûn − µπ
∑

|ℓ|≤N

ℓ2ûℓû
∗
ℓ .

The Poisson bracket (4.A.8) possesses a Casimir invariant

M =

∫ 2π

0

uN dx = û0,

the total momentum, which without loss of generality we assume to be zero.
Additionally the quadratic invariant

E =
1

2

∫ 2π

0

u2N dx

is conserved since

{E,H} = −1

2

∫ 2π

0

uN
∂PN(u2N )

∂x
dx− µ

∫ 2π

0

uN
∂3uN
∂x3

dx

=
1

2

∫ 2π

0

u2N
∂uN
∂x

dx+ µ

∫ 2π

0

∂uN
∂x

∂2uN
∂x2

dx

=
1

6

∫ 2π

0

∂u3N
∂x

dx+
µ

2

∫ 2π

0

∂

∂x

(
∂uN
∂x

)2

dx = 0,

due to symmetry of PN and its commutativity with ∂
∂x . In terms of Fourier coeffi-

cients,

E = 2π
∑

|n|≤N

1

2
ûnû

∗
n = πû20 + 2π

N∑

n=1

|ûn|2 = 2π

N∑

n=1

|ûn|2.

To solve (4.A.9) numerically, we evaluate the nonlinear terms in real space using
a standard pseudospectral approach (see, e.g. [110]). Due to cubic terms in the
Hamiltonian and the thermostat equation, anti-aliasing requires applying the FFTs
on a grid of dimension 4(N + 1), where N is the number of Fourier modes retained
in the truncation. All computations are done for fixed value of N = 15.
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Summary

The research in this thesis is devoted to geometric numerical integration and ther-
mostat methods for Hamiltonian ODEs and PDEs with applications in molecular
dynamics and geophysical fluid dynamics.

We develop geometric methods for Hamiltonian wave equations arising in fluid
dynamics. The separation of physical phenomena, such as energy conservation,
advection, viscous diffusion and forcing, allows us to study these effects in isolation
and identify the components responsible for a given phenomenon. In Chapter 2 we
apply this philosophy to the model equations of internal gravity waves in a stratified
fluid. We solve two initial value problems with several disturbances of the initial
stream function field: for its free evolution and for its evolution under parametric
excitation. We do this by developing a structure-preserving numerical method for
internal gravity waves in a 2D stratified fluid domain. We recall the linearized,
inviscid Euler-Boussinesq model, identify its Hamiltonian structure, and derive a
staggered finite difference scheme that preserves this structure. For the discretized
model, the initial condition can be projected onto normal modes whose dynamics
is described by independent harmonic oscillators. This fact is used to explain the
persistence of various classes of wave attractors in a freely evolving (i.e. unforced)
flow. Under parametric forcing, the discrete dynamics can likewise be decoupled
into Mathieu equations. The most unstable resonant modes dominate the solution,
forming wave attractors.

In many cases Hamiltonian structure must be violated to simulate a given phe-
nomenon. An example is given by constant temperature molecular dynamics, where
it is mean kinetic energy, rather than total energy, that is conserved. In Chap-
ter 3 we emphasise that a broad array of canonical sampling methods is available
for molecular simulation based on stochastic-dynamical perturbation of Hamiltonian
(Newtonian) dynamics, including Langevin dynamics, Stochastic Velocity Rescaling,
and methods that combine Nosé-Hoover dynamics with stochastic perturbation. For
temperature control we discuss several stochastic-dynamical thermostats in the set-
ting of simulating Hamiltonian systems with holonomic constraints in contact with
a thermal energy reservoir. The approaches described are easily implemented and
facilitate the recovery of correct canonical averages with minimal disturbance of the
underlying dynamics. For the purpose of illustrating our results, we examine the
numerical application of these methods to a simple atomic chain, where a Fixman
term is required to correct the thermodynamic ensemble.

In Chapter 4 thermal bath coupling mechanisms as utilized in molecular dy-
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namics are extended to partial differential equation models. Working from a semi-
discrete (Fourier mode) formulation for the Burgers-Hopf or KdV equation, we in-
troduce auxiliary variables and stochastic perturbations in order to drive the system
to sample a target ensemble which may be a Gibbs state or, more generally, any
smooth distribution defined on a constraint manifold. We examine the ergodicity
of approaches based on coupling the heat bath to the high wave numbers, with the
goal of controlling the ensemble through the fast modes. We also examine different
thermostat methods in the extent to which dynamical properties are corrupted in
order to accurately compute the average of a desired observable with respect to the
invariant distribution. The principal observation of this chapter is that convergence
to the invariant distribution can be achieved by thermostatting just the highest
wave number, while the evolution of the slowest modes is little affected by such a
thermostat.



Samenvatting

Het onderzoek in dit proefschrift is gewijd aan geometrische numerieke integratie en
thermostaatmethoden voor Hamiltoniaanse gewone en partiële differentiaalvergelij-
kingen met toepassingen in de moleculaire dynamica en de geofysische stromingsleer.

We ontwikkelen geometrische methoden voor Hamiltoniaanse golfvergelijkingen
die opduiken in de stromingsleer. De scheiding van fysische verschijnselen, zoals
energiebehoud, advectie, viskeuze diffusie en aandrijving, staat ons toe deze effec-
ten afzonderlijk te bestuderen en de componenten te identificeren die verantwoor-
delijk zijn voor een bepaald verschijnsel. In hoofstuk 2 passen we deze filosofie
toe op de modelvergelijkingen voor interne zwaartekrachtgolven in een gestratifi-
ceerde vloeistof. We lossen twee beginwaardeproblemen op met diverse verstoringen
van het initiële stroomfunctieveld: een met vrije evolutie en een met parametri-
sche aandrijving. We doen dit door een structuurbehoudende numerieke methode
voor interne zwaartekrachtgolven in een 2D gestratificeerd vloeistofdomein te ont-
wikkelen. We nemen het gelineariseerde viscositeitsvrije Euler-Boussinesq model
in herbeschouwing, identificeren zijn Hamiltoniaanse structuur en leiden een ver-
sprongen (‘staggered’) eindig differentieschema af dat deze structuur behoudt. In
het gediscretiseerde model kan de beginconditie geprojecteerd worden op normale
modi wier dynamica beschreven wordt door harmonische oscillatoren. Dit gebruiken
we om de persistentie van verscheidene klassen van golf-aantrekkers in een vrijelijk
ontwikkelende (d.w.z. niet aangedreven) stroming te verklaren. In het geval van
parametrische aandrijving kan de discrete dynamica evenzo worden ontkoppeld in
Mathieu vergelijkingen. De instabielste resonante modi domineren de oplossing en
vormen golf-aantrekkers.

In veel gevallen moet de Hamiltoniaanse structuur worden opgeheven om een
bepaald verschijnsel te simuleren. Bijvoorbeeld, in de constante temperatuur mole-
culaire dynamica is het de gemiddelde kinetische energie en niet de totale energie die
behouden blijft. In hoofdstuk 3 benadrukken we dat er een breed scala aan canonieke
steekproefmethoden beschikbaar is voor moleculaire simulatie die gebaseerd zijn
op stochastisch-dynamische verstoring van Hamiltoniaanse (Newtoniaanse) dyna-
mica, waaronder Langevin dynamica, de zogenaamde Stochastic Velocity Rescaling,
en methoden die Nosé-Hoover dynamica combineren met stochastische verstoring.
Wat betreft temperatuurcontrole bediscussiëren we diverse stochastisch-dynamische
thermostaten in de context van het simuleren van Hamiltoniaanse systemen met
holonomische beperkingen binnen een thermische-energie reservoir. De beschreven
benaderingen zijn gemakkelijk te implementeren en vergemakkelijken het terugvin-
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den van de correcte canonieke gemiddelden met een minimale verstoring van de
onderliggende dynamica. Met het doel onze resultaten te illustreren, bestuderen we
de numerieke toepassing van deze methoden op een simpele atoomketting, waarbij
een Fixman term nodig is om het thermodynamisch ensemble te corrigeren.

In hoofdstuk 4 worden thermischbadkoppelmechanismen, zoals gebruikt in de
moleculaire dynamica, uitgebreid voor de toepassing in partiële differentiaalverge-
lijkingen. Werkende vanuit een semi-discrete (Fourier modus) formulering van de
Burgers-Hopf of Korteweg-de Vries vergelijking, introduceren we hulpvariabelen en
stochastische perturbaties zodat het systeem bij het nemen van steekproeven een
bepaalde doelverdeling toont, wat een Gibbs toestand kan zijn of algemener elke
gladde verdeling die gedefinieerd is op een beperkte variëteit. We bestuderen de
ergodiciteit van aanpakken die gebaseerd zijn op koppeling van het warmtebad aan
de hoge golfgetallen, met het doel het ensemble te beheersen via de snelle modi. Ook
bestuderen we in hoeverre diverse thermostaatmethoden dynamische eigenschappen
corrumperen om het gemiddelde van een gekozen waarneming, met betrekking tot
de invariante verdeling, accuraat te berekenen. De belangrijkste observatie van dit
hoofdstuk is dat de convergentie naar de invariante verdeling bereikt kan worden met
een thermostaat die alleen het hoogste golfgetal direct aandrijft, terwijl de evolutie
van de trage modi weinig bëınvloed wordt.
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