
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

E.A. van der Meulen

Deriving incremental implementations from algebraic specifications

Computer Science/Department of Software Technology Report CS-R9072 December

,~11t'f ;• ► c:e, {

Centrum voor V, 1. i- snde en Inform~

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.) .

Copyright © Stichting Mathematisch Centrum, Amsterdam

Deriving Incremental Implementations
from Algebraic Specifications

E.A. van der Meulen

Centre tor Mathematics and Computer Science
P O Box 40 79, 1009 AB Amsterdam

The Netherlands
(email: emma@cwi.nlj

We present a technique for deriving incremental implementations for a subclass of algebraic
specifications, namely, conditional well-presented primitive recursive schemes. We use concepts of the
translation of well-presented primitive recursive schemes to strongly non-circular attribute grammars,
storing results of function applications and their parameters as attributes in an abstract syntax tree of the
first argument of the function in question. An attribute dependency graph is used to guide incremental
evaluation. The evaluation technique is based on a leftmost innermost rewrite strategy. The technique
is extended to conditional well-presented primitive recursive schemes. Whereas in the non-conditional
case attribute dependency graphs are constructed before evaluating a term, when working with condi
tional equations we construct the attribute dependency graph upon evaluation. The class of well
presented primitive recursive schemes is a very natural one for specifying the static semantics of
languages. Allowing conditions to equations in a primitive recursive scheme is the first step in extending
this class to one in which the dynamic semantics of languages can be described as well.

Key Words & Phrases: Software Engineering, Algebraic Specification, Conditional Term Rewriting, In
cremental Evaluation, Attribute Grammars, Attribute Dependency Graphs.

1985 Mathematics Subject Classification: 68N20 [Software]: Compilers and generators; 68050 [Theory
of computing]: Grammars, rewriting systems; 68065 [Theory of computing]: Abstract data types .

1987 CR Categories: D.2.1 [Software Engineering] : Requirements/Specifications; D.2.6 [Software En•
gineering]: Programming Environments.

Note: Partial support received from the European Communities under ESPRIT project 2177 (Generation
of Interactive Programming Environments, phase 2 - GIPEII) and from the Netherlands Organiza
tion for Scientific Research - NWO, project Incremental Program Generators.

1. Introduction

In our quest for methods for deriving incremental implementations from algebraic specifications we inevit
ably came across incremental evaluators for attribute grammars. Courcelle and Franchi-Zannettacci
proved that any well-presented primitive recursive scheme with parameters is equivalent to a strongly
non-circular attribute grammar [CF82a, CF82b]. The parameters of a function are interpreted as the inher
ited attributes of a sort and the result of each function is interpreted as a synthesized attribute. Primitive
recursive schemes, in turn, are a subset of algebraic specifications. Following this route we can transfer
techniques developed for attribute grammars to algebraic specifications. In particular we can transter tech
niques for incremental evaluation of attributes in a dependency graph to incremental evaluation of terms in
an algebraic specification. Reps, Teitelbaum and Demers have described an optimal time algorithm for
updating attribute values in the context of attribute grammars [RTD83]. We adapt their algorithm to an
algorithm for updating attributes in the context of algebraic specifications.

We extend our technique to conditional well-presented primitive recursive schemes. In a non
conditional primitive recursive scheme each equation has a unique left-hand side. In a conditional primi
tive recursive scheme conditions concerning attributes or the abstract syntax tree can be added to the equa
tions, and several equations may have the same left-hand side. Attribute dependencies are derived directly

Report CS-R9072
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

from equations, So, if we use a non-conditional primitive recursive scheme for evaluating a term, an attri
bute dependency graph can be constructed before evaluation. If we use a conditional primitive recursive
scheme the attribute dependency graph of a term is constructed upon evaluation. In this way, only the attri
bute dependencies of equations whose conditions succeed are added to the graph.

Our technique is to be implemented as part of the term rewriting engine of the ASF+SDF-system, a
programming environment generator. From a language definition written in the algebraic specification for
malism ASF+ SDF, a program environment is generated, at the moment consisting of a syntax directed edi
tor and a term rewriting system for evaluating terms in the editor. We aim at changing as little as possible
in the usual evaluation strategy of this system, which is a leftmost innermost rewrite strategy. Therefore,
we do not want to use the full translation of algebraic specifications to attribute grammars but only the attri
bute concept of Courcelle and Franchi-Zannettacci and deduce attribute dependencies directly from a
specification. Many algebraic specifications of static semantics of languages meet the requirements of a
well-presented primitive recursive scheme. Conditional well-presented primitive recursive schemes pro
vide more flexibility, however, and are a first step towards obtaining incremental implementations for a
more comprehensive class of algebraic specifications.

The paper is organized as follows. In Section 2 we give definitions for attribute grammars, algebraic
specifications, term rewriting strategies, well-presented primitive recursive schemes and the construction of
an attribute grammar from a well-presented primitive recursive scheme. In Section 3 we describe how
attributes and attribute dependency graphs can be constructed from a well-presented primitive recursive
scheme, and the algorithms for first tin1e evaluation of a term (i.e. evaluation of a term for which no
abstract syntax tree has been stored yet), and incremental evaluation of a term are presented. Section 4
deals with the extension of these techniques to conditional primitive recursive schemes.

2. Definitions

2.1. Attribute grammars

An attribute grammar <G,AIT,R,l > is a signature G, consisting of sorts and abstract tree constructors,
extended with an attribute system. This means that for each sort X of G two disjoint sets of attributes are
defined, the inherited attributes !NH (X) and the synthesized attributes SYN (X). We also define !NH and
SYN

lNH~lNH(X), SYN=uSYN(X), ATT=lNHuSYN.
X X

To each abstract tree constructor p of G semantic rules RP are added for defining the value of the attributes
of p . We define R= u RP . The interpretation l is the domain of attribute values.

peG

For example, in Fig. 1 attributes and semantic rules are added to three constructors program,empty
decls and decls of the toy language ASPLE. Each ASPLE program consists of a, possibly empty, series of
variable declarations followed by a series of statements. An interpretation is not given in this exan1ple but
let us assume that the semantic functions describe the typechecking of an ASPLE program. The result of
typechecking the declarations is a type-table: the synthesized attribute tcdecls. This provides the value of
the inherited attribute for the statements, env-stms. The result (true or false) of typechecking a program
equals the result of the typechecking of the statements, tcstms.

Attributes can be seen as labels attached to nodes in the abstract syntax tree used for transferring
information through the tree . Roughly speaking, inllerited attributes are used for transferring information
down the tree, while synthesized attributes are used for transferring information up the tree. The semantic
rules added to an abstract tree constructor define the values of both the inherited attributes of the children
and the synthesized attributes of the parent. These attributes are called the output attributes of a construc
tor. They are defined in terms of the input attributes of the constructor: the inherited attributes of the
parent and the synthesized attributes of the children.

An overview of attribute grammars is given in [DJL88]. Attribute grammars are widely used for
defining the static semantics of programming languages, e.g, in the Cornell Synthesizer Generator
[RT89b], the FNC-2 system [JP88], the GAG-system [Kas84] and the TOOLS system [KP90].

attributes:
INH(PROGRAM) = 0 SYN(PROGRAM) = {tcp}
INH(DECLS) = {env-decls) SYN(DECLS) = {tcdecls}
INH(DECL) = {env-dec/)
INH(STMS) = {env-stms}

constructors and semantic rules:

program : DECLS x STMS

SYN(DECL) = {tcdec/}
SYN(STMS) = {tcstms}

{

env -dec/s = empty-table

➔PROGRAM env-stms = tcdecls

tcp = tcstms

empty-decls: ➔DECLS tcdecls = env -decls

dec/s : DECL x DECLS 1 ➔DECLS
{

env -dee/ = env -dec/s

env -dec/s 1 = tcdec/

tcdec/s = tcdec/s 1

Fig. 1. Part of the ASPLE typechecker in an attribute grammar formalism

2.2. Attribute dependencies

3

One of the major advantages of attribute grammars lies in the possibilities they offer for incremental
evaluation of the attributes. By incremental evaluation we mean that if some attributes in an abstract syn
tax tree get a new value, for instance, because of a subtree replacement, we do not re-evaluate all other
attributes but only those, whose value depend on the ones changed. For this we need a dependency graph
of attributes in an abstract syntax tree. For each abstract tree constructor p :X1x · · · xXn➔Xo an attribute
dependency graph DP can be defined as follows: the vertices of DP are attributes of Xo, ... ,Xn and (a,b)
is an edge of DP if and only if a is used in the definition of b.

To obtain a dependency graph D, of the attributes of a tree t of the grammar we take the union of all
DP of instances of constructors pin the tree. An attribute grammar is welljormed or non-circular if D, is
cycle-free for each tree. In that case an evaluation order for attributes of each abstract syntax tree exists.
The attribute grammar is called strongly non-circular if for each node in each tree an evaluation order of
attributes exists that does not depend on the particular subtree rooted at that node. In Fig. 2 part of an attri
bute grammar is shown that is not strongly non-circular, as the evaluation order of the attributes of Xis
determined by the constructor applied at X.

y z

b=c
p :S➔X a=d

e=d

q:X➔Y c=a

r:X➔Z d=b

Fig. 2. A non-circular attribute grammar which is not strongly non-circular

4

2.3. Algebraic specifications

An algebraic specification consists of a signature and a set of (conditional) equations. In the signature sorts
and functions over the sorts are defined. The equations define equalities between the terms that can be con
structed from the signature. Algebraic specifications can be given of any abstract data-type, and can be
used to describe the syntax and static and dynamic semantics of languages. Several formalisms for
defining algebraic specifications exist. In the example in Fig. 3 part of the ASPLE typechecker is written in
the algebraic specification formalism ASF [BHK89, Meu88]. Algebraic specifications are usually imple
mented as term rewriting systems. Equations are considered as rewrite rules, with an orientation from left
to right. Evaluating a term means reducing it as far as possible. The result of such a reduction is a normal
form of a term.

functions:
program : DECLS x STMS ➔ PROGRAM
empty-decls: ➔ DECLS
decls : DECL x DECLS ➔ DECLS

tcp
tcdecls
tcdecl
tcstms

variables:

: PROGRAM
: DECLSxENV
: DECLxENV
: STMSxENV

➔ BOOL
➔ ENV
➔ ENV
➔ BOOL

Decls :➔DECLS
Env0 BCLS :➔ENV

Deel :➔DECL
Stms :➔STMS

equations:
[1] tcp(program(Decls,Stms)) = tcstms(Stms, tcdecls(Decls, empty-env))
[2] tcdecls(empty-decls, EnvoECLS) = EnvoECLS
[3] tcdecls(decls(Decl, Decls), Env0ECLS) = tcdecls(Decls, tcdecl(Decl, Env0BCLS))

Fig. 3. Part of the ASPLE typechecker in ASF

The idea of incremental evaluation of terms is that in re-evaluating a modified term we make use of the
normal forms of terms already found and we re-evaluate as little as possible. The na'ive way of doing this
is to store all terms that occur during the reduction process together with their normal form. This would,
obviously, take too much storage, and require long searches to determine if a term has been reduced before.
The idea would be more practical if a smart way of storing (a selection of) terms could be found. Titis is
too much to hope for in arbitrary rewrite systems as successive terms in a reduction can be very different.

Courcelle and Franchi-Zannettacci introduced a special kind of algebraic specifications: Wei/
presented Primitive Recursive Schemes with parameters (well-presented PRS, for short) [CF82a, CF82b],
and they proved that a well-presented primitive recursive scheme is isomorphic to a strongly non-circular
attribute grammar. From the viewpoint of algebraic specifications, well-presented primitive recursive
schemes provide a structure that makes it much more obvious how to select the terms whose normal forms
are to be stored, and how to store them economically.

2.4. Primitive recursive schemes

The following is a brief description of the results of Courcelle and Franchi-Zannettacci. First, we list the
properties that make an algebraic specification a PRS. Next, we describe the basics of the construction of
an attribute grammar from a PRS. Then, we explain why we need well-presentedness and we define this
notion.

(i) A PRS is indicated as a triple <G,S,<I>>, with G and S two signatures with disjoint sets of sorts, and
<I> a set of functions. The signature of a PRS is the union of G, Sand the signature of <I>. There are no
equations involving only G-terms. Intuitively, G represents a set of tree constructor functions,
describing, for instance, the abstract syntax of a programming language. For elements of <I> the fol
lowing holds.

(ii) The type of the first argument of each q, in <I> is a sort from G and the types of all other arguments,
called the parameters of q,, and the type of the output sort are sorts of S. <l>x is the set of all functions
of <I> that have the sort X as first argument. We assume function names in <I> not to be overloaded.

5

(iii) For each abstract tree constructor p:X1x · · · XXn➔Xo in G and each function q> in Cl>x., exactly one
defining equation eq ~ exists:

(eql)

(iv) All xi and Yj in the left-hand side of (eql) are different variables.

(v) All defining equations are strictly decreasing in G: in (eql) the only terms of G that are allowed in "t
are the variables x 1 , ... ,Xn. So, "tis a Su<I>u{x 1, .. . ,Xn }u{y 1, .. . ,Ym }-term

Some more definitions: A G-term is a term of some type X E G, an S-term is a term of type S ES, and we
use cI>-term to indicate a term of which the head symbol is a function of ct>. All cI>-terms are S-terms. The
parameters of a function q> are indicated by PAR+= {par(q>,j) I l~j~ arity(q>)-1 }. In (eql) the parameters
of q> are represented by the variables y 1, • . • ,Ym·

In the construction of an attribute grammar r from a PRS <G,S, cl>>, G is the signature of rand S
the domain of the attribute values. SYN (X) consists of all functions q> of cI>x. /NH (X) is defined by the set
of parameters of all q> in cI>,c. Because of property (iv), the first argument in a defining equation eq,P coin
cides with an abstract tree constructor p:X1x · · · XXn➔Xo in r. Such an equation is used to deduce
semantic rules R+P for attributes of p. The set RP of all semantic rules of pis the union over all R+P with
q>E Cl>x., .

Example 1.

The specification in Fig. 3 is a part of a PRS: program,empty -dec/s and dec/s are abstract tree constructors
in G, Sis formed by the union of the signature of the Booleans and signature of the Type-environments,
and ct> are the typecheck functions {tcp,tcdec/s,tcstms }. The construction of synthesized attributes is obvi
ous. We use variable names for the construction of the inherited attributes, assuming that EnvSTMs is the
variable used in the defining equation of tcstms. We derive from equation [1] in Fig. 3:

{

EnvoECLS = empty-env

R,cp program : EnvSTMs = tcdec/s .

tcp = tcstms

As tcp is the only element of cI>program, R,cp program is the whole set of rules Rprogram· From equations [2] and
[3] in Fig. 3 we derive

R,cdecls empty-decls : tcdecls = EnvoECLS

{

EnvoECL = EnvoECLS

R,cdecls decls : EnvoECLS, = tcdec/ .

tdec/s = tcdec/s 1

Thus, we obtain the attribute grammar of Fig. 1.

Example 2.

Consider the following equations

q>(p(x 1,X2),y) = X(X 1 ,/{y)) 'lf{p(x 1,X2),z) = X(Xi,COnstant)

Let Inh,, Inh'I' and Inhx be the inherited attributes corresponding to the parameters of q>, 'I' and X· If we
derive R+P and R'l'P we find that both sets contain a rule for Inhx, namely: Inhx = f(Inh,) and
Inh x = constant. This means we will not find a proper set of rules RP by taking the union R ♦P uR 'l'P.

Example 2 illustrates that we have to define a property for primitive recursive schemes which
guarantees that inherited attributes of the corresponding attribute grammar are uniquely defined. We call
this property well-presentedness. In the definition of well-presentedness requirements concerning the rela
tion between variable names in different equations are mentioned. This may seem strange, but, on the one
hand, we want to use variables to construct inherited attributes, as we did in Example 1, and this construc
tion is straightforward if each parameter is represented by exactly one variable (vi). On the other hand, if

6

each parameter is represented by exactly one variable, a simple syntactic check decides whether inherited
attributes (parameters) are uniquely defined (vii).
A PRS is well-presented if

(vi) For any two equations concerning the same function cj>

cj>(p(xi, , , , ,Xn),y 1, , , · ,Ym) = 't cj>(q(u t, · · · , Un),z 1, · · · , Zm) = 't',

the variable lists <yi, ... ,Ym> and <zi, . .. ,zm> are identical;

(vii) In all occurrences of the form

· · · '!'(X;,Vt, ... , Vm)' ..

in right-hand sides of defining equations of the same abstract tree constructor p, corresponding parameter
terms vi are identical.

(viii) If two parameters par('f,j) and par(c,,k) are represented by the same variable in left-hand sides of
equations over the same constructor p, in all subterms

of right-hand sides of defining equations eq tP and eq '11/P vi is identical to wk.

Requirement (viii) states that it is allowed to represent different parameters by the same variable, if the
parameters are defined in the same way. Tiris is illustrated in the following example.

Example 3.

InaPRSwithconstructors p:X1 xX2➔Xo, q:X3➔X1 and equations

[l] cj>(p(x 1,x2),y) = f('l'(X 1,Y),X(X2,Y))

[2] 'l'(q(x 3),z) = c,(x3,f (z))

[3] x(q(x3),z) = c,(x3,f (z))

the first equation says that par('!', 1), i.e. y, is equal to par(X, 1). Therefore, we may use one variable, z, to
represent both parameters in the left-hand sides of the other equations. If we would not have done this
par(c,, 1) would have been defined in two different ways in [2] and [3] and the equations would not have
been well-presented.

Of course, renaming of variables does not change the meaning of a specification, as long as no name
clashes are introduced. What really matters is whether a PRS can be made well-presented by a suitable
renaming of variables. In that case we call the PRS well-presentable. The PRS in Example 2 is neither
well-presented nor well-presentable. In their paper, Courcelle and Franchi-Zannettacci have given an algo
rithm for deciding whether a PRS is well-presentable. The algorithm transforms a well-presentable PRS
into a well-presented one.

3. Evaluation of terms

For incremental evaluation of terms in a PRS we consider functions and parameters of functions attributes
of a tree. We will not bother with the full translation to attribute grammars, as we aim at finding an incre
mental evaluation technique for terms over a primitive recursive scheme which is as close as possible to the
left-most innermost rewriting technique we already use for general algebraic specifications. The normal
forms of <l>-terms are stored in the following way. The first argument of a given <l>-term is a G-term, say T.
As no equations are given on terms of G, Tis already in normal form. We store this term, or tree. The
other direct subterms of a <l>-term are parameters of the function in the head symbol. We store the normal
forms of these parameters as attributes of the top node of T. Finally, the normal form of the whole <l>-term
is stored as an attribute of the top node of T as well. Likewise, we store the normal forms of all <l>-terms
that are met during reduction. Since the PRS is strictly decreasing in G, all G-terms T of these <l>-terms are
subterms of the original G-term T. So, all normal forms of functions and parameters are stored as attributes
of nodes in one tree.

7

3.1. Attribute dependencies in a primitive recursive scheme

A single modification in a term q>(T,t 1, .•• , tm) corresponds either to a subtree replacement in T or to a
change in a parameter attribute at the top node of T. After such a modification the value of some parameter
attributes may have changed and the value of some function attributes have to be recalculated. Also incre
mental evaluation can be used when a term 'ljf(T,s 1 , ••• , S,t) has to be evaluated and we already have an
attributed abstract syntax tree of T. We calculate new attribute values for 'ljf and its parameters and we may
be able to use already obtained values of other attributes in T. In all cases we need to know which attri
butes may be affected when an attribute has changed value or which attributes are used for calculating
other attributes. In other words, we need to know the attribute dependencies. Attribute dependencies for
each abstract tree constructor in G can be deduced from a PRS. From each defining equation eqfpp we
derive dependencies Dfpp between function attributes and parameter attributes. (a,b)eDP means that the
value of a is needed to calculated the value of b. In the following derivation q> indicates both the function
name and the corresponding attribute, att(par(q>,j)) indicates the attribute that corresponds to the j-th
parameter of q>. We derive D fpp from the equation q>(p(x 1, ••• ,xn),y 1, ... ,Ym) = -r:
• For each y i in -r:

• if an occurrence of Yi is a subterm of a fl>-term in 't, q> depends on att(par(q>,j)).

• If Yi occurs as the subterm of a fl>-term in 't, and 'ljf(x;, ... V.t, ...) is the smallest fl>-term that encloses Yi
withyi a subterm ofv.t, then att(par('ljf,k)) depends on att(par(q>,j)).

• For each fl>-term in 't e.g 'ljf(x;, v 1 , .•• , V,t) :

• if an occurrence of 'ljf(x;, v 1, ••• , V.t) is not a subterm of a <1>-term 't, q> depends on 'I',

• if 'ljf(x;, v 1, • • • , V,t) occurs as subterm of a <l>-term in 't, and 1;(x;, ... w1, ...) is the smallest <l>-term that
encloses it, with 'ljf(x;, v 1, .•• , V.t) a subterm of w1, then att(par(c;,,l)) depends on '1'·

The dependencies that can be derived from the equations in Fig. 3 are:

D,cp program= { (tcdecls, EnvSTMs), (tcp,tcstms)}

D,cdecls empty-decls = {(EnvoECLS,tcdecls)}

D tcdecls decls = { (tcdecl' Env DBCLS)' (tcdecls i, tcdecls)}

Fig. 4 shows the top of the attributed abstract syntax tree we obtain when the term
tcp (program(decls(int:x,empty-decls),stms(assign(x,5)))) is reduced

p.rog.~

... ··· ··· ····· ... ~
.. ·· ·· ~ ·-.. ~

empty-env __ 1ecr~::. env (x, int env (x, int · ·s~ ~

empty-de els

Fig. 4. Part of an attributed tree of an ASPLE program

The algorithm for deducing a dependency graph from an equation is given in Fig. 5. The dependency
graph DP of all attributes of an abstract tree constructor is the union of all D fpp . These dependencies are the
same that exist in the isomorphic attribute grammar.

The attribute dependency graph Dr of a tree T, is obtained by pasting together all dependencies of
the instances of constructors that occur in the tree. The graph Dr is non-circular for each T. This is an
immediate consequence of the isomorphism proved by Courcelle and Franchi-Zannettacci. Informally
speaking: It is clear that each D fpp is non-circular. Due to the strictly decreasing property no dependencies

8

MAKEDEP-EQ(eq +,,)
eq.,, is (p (x 1, .. . ,x.),y 1 •··• ,Ym) = 't
D.,,:=0
MAKEDEP-FUNC(-r , eq.,,)
END

MAKEDEP-FUNC(functerm,eq ♦p)
functerm is a subterm of the right hand side of eq♦,,

casefuncterm =Yi• je{l, . . . ,m}
add (att(par(♦, j)), ♦) to D +,,

case functerm = f (s 1, . . . , St), f "- <I>
for j=l to k do

MAKEDEP-FUNC(si , eq.,,) od
casefuncterm = 'lf(X;, v 1, ... ,Vt)

add ('I', ♦) to D +,,
for j=l to k do

MAKEDEP - PAR(vi, 'I', j , eq ♦p) od
END

D.,, is a global variable indicating the
set of attribute dependencies.

MAKEDEP-PAR(parterm, 'I', m , eq+,,)
parterm is a subterm of the term at the m-th parameter
position of 'I' in the right hand side of eq +,,
casepanerm=yi, je{l, . . . ,m}

add (att(par(♦, j)),att (par('!', m))) to D ♦,,
casepanerm =f(s1, ••·• st)

for j=l to k do
MAKEDEP-PAR(si, 'I', m,eq+P) od

case panerm = !;(x1, v 1, . . . , Vt)

add (!;, att(par('lf, m))) to D ♦P
for j=l to k do

MAKEDEP-PAR(vi. !;, j ,eq+,,) od
END

Fig. 5. Algorithms for deducing a dependency graph from an equation

between synthesized attributes of the top node of a constructor p can be derived from an equation eq ♦P. It
is also obvious that talcing the union of all D 4,p to obtain DP will not introduce cycles. Thus, we only have
to check that the pasting of graphs DP does not introduce cycles: The dependencies between attributes of a
node N in a tree caused by the underlying subtree are always a subset of the set of dependencies between
parameter attributes and the function attributes they belong to: {(att(par(q>,k}},q>}I q,e<I>N,
1 ~ k ~ arity (q,)-1 } . As for the dependencies between attributes of a node N caused by the constructor p at
the parent node of N, we note that well-presentedness guarantees for any pair q, , 'If of function attributes at
N, that if a parameter of 'I' depends (directly or transitively) on q> in Dp, no parameter of q> will depend on
'1'· This means a parameter attribute never depends on a function attribute it belongs to.

3.2. First time evaluation

If a <I>-term q,(T, t 1, .•• , t,.) has to be evaluated using a well-presented PRS, the abstract syntax tree of Tis
attributed with attributes with value "unknown" and a dependency graph Dr is constructed using the
dependencies deduced for each abstract tree constructor. The reduction strategy we use is the leftmost
innermost strategy, that is: if a term has to be reduced we first reduce all its subterms, starting with the left
most subterm. Reducing these subterms is done in the same way. While reducing, normal forms of <I>
terms and of parameter terms are stored in attributes. The algorithms in Fig. 6 and Fig. 7 describe inner
most reduction interleaved with checks on the value of an attribute: each time a <I>-term or a parameter
term has to be reduced the corresponding attribute is checked. If this attribute already contains a value,
reduction of the term is skipped and the term is replaced by this value. Otherwise, the term is reduced to its
normal form, and the result is stored in the attribute.

REDUCE -NEW (term, T)
term is a closed <l>-tenn:
♦(p(x 1 , ... ,x.),t1 , . . . ,tm)
for j = l tom do

ti := normal form oft;
store ti in att(par(♦, j)) at Tod

term matches with equation
♦(p(x1, · • • ,x.),Y1, · · · ,ym)='t
value+ :=REDUCE-FUNC(-r, eq ♦,,, T)
END

T=attributed parse tree of p(x 1, ••• ,x.)
T is a subtree of T, T; is the i-th subtree of T
a, b, cp, 'I' are attributes,
initially all attributes have value "unknown"

Fig. 6. Algorithm for reducing a <I>-term and storing values in attributes

REDUCE-FUNC(functerm, eq.,,, T')
functerm is (a subterm of) the right hand side
of eq ♦P
case functerm = parameter of q, with attribute a in T'

return value0

case functerm = f (s 1, .•• , s1), / e 11>
for j = 1 to k do

sj :=REDUCE-FUNC(sj, eq+,,, T') od
return normal form of f(s 1, ••• , s1)

case functerm = 'lf(X;, v 1 , ... , Vt)

if value'¥= "unknown" at T'; then
X; := T';
for j = 1 to k do

let b be the attribute for par('lf, j) at T';
ifvalueb = "unknown" then

valueb :=REDUCE-PAR(vj, 'If, j, eq.,,, T') fl
vj := valueb od

The instantiated functerm matches with equation
eq 'fq with right hand side CJ

value'¥ :=REDUCE-FUNC(CJ, eq'fq• T';) fi
return value'¥

END

REDUCE-PAR(partenn,f,, m,eq.,,, T')
partenn is (a subterm of) the term
at the m-th parameter position of l;
in the right hand side of eq +P
case parterm = parameter of q, with attribute a in T'

return value0

case parterm = f (s 1, ... ,s1), fr#. 11>
for j=l to k do

sj :=REDUCE-PAR(sj, S, m, eq.,,,T') od
return normal form of parterm

case parterm = 'lf(X;, vi, ... , v1)

if value'¥ = "unknown" at T'; then
X; :=T';
for j = 1 to k do

let b be the attribute of par('lf, j) at T';
if valueb = "unknown" then

valueb :=REDUCE-PAR(vi,'1'• j, eq+i,, T') fl
vj := valueb od

The instantiated parterm matches with equation
eq 'fq with right hand side CJ

value'¥ :=REDUCE-FUNC(CJ, eq'fq• T';) fi
return value'V

END

Fig. 7. Algorithms for reducing function-terms and parameter-terms

3.3. Incremental evaluation

9

To describe incremental evaluation we consider the case in which a term q,(T, ti, ... , tn) is offered for
evaluation after the term q,(T, ti, ... , tn) has already been reduced, and T differs from T in a single sub
tree. fu other words: Tis obtained from T by replacing oldsub by newsub in node N. All functions on
newsub have to be evaluated. If the new values of function attributes of N differ from the old values, other
function attributes, depending on the ones changed, have to be re-evaluated.

Two considerations are at the basis of the design of the algorithm for incremental evaluation: Firstly,
we want to re-evaluate values of attributes (parameters or functions) only if the value of a predecessor attri
bute has changed. Secondly, we want to evaluate each attribute at most once. For this purpose each attri
bute is given an index to indicate its status: "C" (changed), "UC" (unchanged) or "TE" (to be
evaluated). To avoid double evaluation of attributes we only evaluate a function attribute after its parame
ters have obtained their final value. Another thing to keep in mind is that, unlike attribute grammars, primi
tive recursive schemes only provide defining equations for function attributes. The definition for parameter
attributes is not given explicitly. This means that if some function attribute of a node N has got a new
value and its successor happens to be a parameter attribute of N or of one of its siblings, we have to re
evaluate a function attribute of the parent node to find the new value of this parameter attribute.

When we start evaluating the functions on the new subtree, we have to know the evaluation order of
the functions. The order of evaluation of functions of a node N in a tree T is determined by the context of
N, i.e. T minus the tree rooted at N. It does not depend on the tree rooted at N. This follows directly from
the fact that the graph we use is isomorphic to the one we would obtain for the corresponding the one we
would obtain for the strongly non-circular attribute grammar corresponding to the PRS. It follows, as well,
from the argumentation in Section 3 .1.

We define a special case of the superior characteristic graph introduced by Reps, Teitelbaum and
Demers [RTD83]. This graph describes for each node in a tree which parameter attributes depend,
directly or transitively, on which function attributes. The algorithm CREATE-SUP(T, Dr), not explicitly
given here, describes the top-down construction of all superior characteristic graphs in a tree. The root of a
tree does not have such a graph, the construction of a superior characteristic graph of any other node in a
tree is described in Fig. 8.

We use this superior characteristic graph to determine the evaluation order of functions at a node N.
Function q> has to be evaluated before 'I' if some parameter of q, depends on 'If: ('lf,par(q,,j))EDifP. Thus

10

we obtain a partial evaluation ordering of attributes in each node.

CREATE-SUP-NODE(N, T,D)
N"'P:=0
for all function attributes ♦ of N do

if an attribute a of N exists such that(♦, a)eD
add(♦, a) to N'"P fl

if an attribute a of N exists
and attributes 'If and b of the parentnode M of N
such that: (♦, 'lf)E (D7/DN--srJ,r

od
END

('If, b)eM"'P
(b , a)e(D7/DN-s,,J,t then

add (♦, a) to N"'P ti

N -sub is the subtree of T rooted at N
D7 is the attribute dependencygraph of T
D7/DN-s,,J, is D7 minus the
dependencies between attributes of N-sub.
(D7/DN--srJ,r is the transitive closure of DTIDN-s,,J,
N"'P is the superior characteristic graph at N

Fig. 8. Algorithm for creating the superior characteristic graph of a node in a tree

In Fig. 9 and Fig. 10 the incremental update algorithms are given. We start in the top node N of newsub.
The attributes of N still have their original values. All other attributes of newsub have value "unknown"
and index set to "TE". The index of all function attribute of N is set to "TE", the index of the parameter
attributes of N, that have incoming edges in DfvP is also set to "TE". The index of all other attributes in
the tree is ' ' UC'' .

All functions on N that have ''UC'' parameter attributes can be evaluated: we use the values of the
parameter attributes to construct a term q>(newsub, par(q>,l), ... ,par(q>, n)) and reduce this term using the
algorithms of Fig. 6. Other attributes of new sub will get a value too, their indices then are set to "C". If
the value of q> has not changed its index is set to ''UC'' and its successors in Dj;P are checked. If a parame
ter attribute has only unchanged predecessors its own index is set to ''UC'' as well.

UPDATE -NEW -SUBTREE (New sub, T) T=attributed parse tree with an attribute dependency graph D7,
N = top of N ewsub N ewsub is a subtree of T.
C-list:=0 All nodes ofT-Newsub have a superior characteristic graph
for all function attributes ♦ of N do T can be any subtree of T, Ti is the i-th subtree of T

index♦ :=TE C -list is a global variable for all changed attributes of T
PROP-TobeEVAL-SUP(♦, N) od

Current Node :=N
for Cu"ent Node do

T := tree rooted at Current Node
for all attributes ♦ of Cu"ent Node which have
index TE and parameters with index UC do

construct term with ♦, T and parameters
UPDATE(term , T) od

if TE-attribute exists at Current Node then
Current Node := parent of Current Node od

swap the index of all attributes of C-list to UC
create superior characteristic graphs for Newsub
END

UPDATE (term,T)
term is a closed cl>-tenn ♦(p (xi, . .. ,x.),ti, . . . , tm)
oldvalue :=value♦
term matches with the equation
♦(p(xi, . .. ,x.),Y1, ... ,ym)='t
value+:=UPDATE-FUNC(t, eq♦P• T)
if oldvalue=value♦ then

index+:= UC
else

index+ := C, add ♦ to C -list
PROP-TobeEVAL-UP(♦, T) fl

END

Fig. 9. Algorithms for updating attribute values after a subtree replacement

If a function attribute q> has obtained a new value, its successors in DT must be re-evaluated. These succes
sors are either function attributes of M, the parent node of N, or parameter attributes of N itseJf or parame
ter attributes of siblings of N. In either case, the new value of these successors can only be found by re
evaluating the (function) attribute of M that comes first when the dependency graph is followed, starting at
the changed attribute. The algorithm PROP-TobeEVAL-UP of Fig. 11 searches this attribute using the
following strategy. If a function attribute of N or one of its siblings gets index "TE", its successor attri
butes also get index "TE". If a parameter attribute gets index "TE", "TE" is propagated further via the
function attributes belonging to this parameter. If a function attribute of M is reached, all its direct and
transitive successors in M'"P get index "TE" as well. When no more functions of N can be evaluated, all
functions of node M that have index ''TE'' and have unchanged parameters are re-evaluated Those attri
butes of N that still need to be evaluated will get a new value when one of the "TE" functions of Mis re-

UPDATE-FUNC(functerm, eq.,,, T)
functerm is a subtenn of the right hand side of eq+P
case functerm = parameter of~ with attribute a in T

return value0

case functerm = f (s 1, . . . , St), f e <I>
for j = I to k do

S/=UPDATE-FUNC(sj, eq♦p• T) od
return normal form of functerm

case functerm = 'lf(X;, v 1, • •• , Vt)
if index"'= TE at T; then

X;:=T;
for j = 1 to k do

let b be attribute for par('lf, j)
if indexb= TE then

old-value :=valueb
valueb:=UPDATE-PAR(vj, 'V, j , eq.,, , T)
if old-value = valueb then

indexb:= UC
else

indexb:= C, add b to C-list
PROP-TobeEVAL-DOWN(b,T) fi fi

V/=valueb od
if all direct predecessors of 'I'
in DT have index UC then

index.,,,:= UC
else

old-value :=value"'
functerm matches with equation
eq "!q with right hand side c:r
value"':=UPDATE-FUNC(cr, eqVfq• T;)
if old-value= value"' then

index'I':= UC
else

index 'I' := C, add 'I' to C -list fi fi fi
return value 'I'

END

UPDATE-PAR(parterm,S, m,eq.,,, T)
parterm is (a subterm of) the term at the m-th parameter
position of~ in the right hand side of eq♦p
case parterm = parameter of~ with attribute a in T

return value0

caseparterm =/(s1, -- -,st), /e <I>
for j=l to k do

S/=UPDATE-PAR(sj, S, m, eq.,,,T) od
return normal form of parterm

case parterm = 'lf(X;, v 1, ••• , v.)
if index"'= TE at T; then

X;:=T;
for j= 1 tok do

let b be the attribute for par('lf,j)
if indexb= TE then

old-value :=valueb
valueb:=UPDATE-PAR(vj, 'If, j, eq.,,, T)
if old-value = valueb then

indexb:= UC
else

indexb:= C, add b to C-list
PROP-TobeEVAL-DOWN(b,T) fi fi

V/=valueb od
if all direct predecessors of 'I'
in DT have index UC then

index"':= UC
else

old -value :=value"'
parterm matches with equation
eq Vfq with right hand side c:r
value"':=UPDATE-FUNC(cr, eqVfq• T;)
if old-value=value"' then

index"':= UC
else

index 'V := C, add 'I' to C -list fi fi fi
return value"'

END

11

Fig. 10. Algorithms for re-evaluating function-terms and parameter-terms after a subtree replacement

evaluated. If the value of such a parameter attribute, say at node N', turns out to have been changed its
direct and transitive successors in the nodes of the construction rooted at N' also get index "TE". The
PROP -TobeEV AL-DOWN algorithm in Fig. 11 takes care of this. When no "TE"-functions in Mare left
the process stops. Otherwise, "TE" - functions on the parent of Mare re-evaluated. After this process has
stopped, all function attributes in T that are somehow connected to a function attribute of the top node have
a correct value. Finally, all "C" indices are switched to "UC".

3.4. Comparison with the algorithm of Reps, Teitelbaum and Demers

The update algorithm described above is an adaptation of the optimal time algorithm of Reps, Teitelbaum
and Demers [RTD83] for updating attributes after a subtree replacement. In their algorithm, as well as in
ours, attributes are re-evaluated at most once and only if they have changed predecessors. Differences are
caused by the fact that they have attribute rules for each attribute and because their algorithm applies for
arbitrary non-circular attribute grammar. To point out similarities and differences we give a short descrip
tion of the algorithm. The attributes dependencies that run from inherited attributes to synthesized attri
butes in a node are determined by the tree rooted at that node. A special graph, the characteristic subordi
nate graph N,ub, describes these dependencies. (We use the "parameter-of-function" relation instead).
The update algorithm starts in the top N of newsub and with a "working-graph" called Model. Initially
Model is N'"PuN,ub· All attributes of Model that have only direct predecessors with a known value are
evaluated. To this end two list of attributes are kept. The list S for all attributes in Model that are ready to
be evaluated because all their predecessors have got their final value, and the list TobeEvaluated for all
attributes in Model with at least one predecessor that has obtained a new value. An attribute of S is

12

PROP-TobeEVAL-UP(a,T)
if a function attribute of N

for all bsuch that (a,b)eD do
if bulb= UC then

lndb:=TE
if b parameter attribute of sibling of N
or b parameter attribute of N then

PROP-TobeEVAL-UP(b , T)
else (b function attribute of parent of N)

PROP-TobeEVAL-SUP(b , M)
fl fi od

else (a parameter attribute of some node N)
for all function attributes b of N
such that a is parameter of b do

if lndb= UC then
lndb := TE
PROP-TobeEVAL-UP(b, T)

fi od fi
END

PROP-TobeEV AL-DOWN(a,T)
let N be the node of T,
with a parameter attribute of N
for all b such that (a,b)eD do

if b parameter attribute of child of N then
if lndb= UC then

lndb :=TE
PROP-TobeEVAL-HOR(b , T)

ti fi od
END

PROP-TobeEVAL-SUP(a, M)
if a function attribute of M

for all b such that (a,b)eM""' do
if lndb= UC then

lndb :=TE
PROP-TobeEVAL-SUP(b, M)

fi od
else (a parameter attribute of M)

for all function attributes b
such that a is a parameter of b do

if lndb= UC then
lndb :=TE
PROP-TobeEVAL-SUP(b, M)

fi od fi
END

PROP-TobeEVAL-HOR(a,T)
if a parameter attribute of node N

for all function attributes b of N
such that a is parameter of b do

if lndb= UC then
lndb:=TE

PROP-TobeEVAL-HOR(b, T)
fi od

else (a function attribute of some node N)
for all b such that (a,b)eD do

if b parameter attribute of sibling of N
or b parameter attribute of N then

END

if Indb= UC then
lndb :=TE
PROP-TobeEVAL-HOR(b , T)

fi fi od fi

Fig. 11. Algorithms for propagating "TE" in an attribute dependency graph

evaluated only if it is an element of TobeEvaluated. If a changed attribute of node N has a successor that is
not in Model, Model is extended with one production, as follows: If the successor attribute is an attribute of
the parent of N, N ' "P is replaced in M by the dependencies of the upper production plus the subordinate
graph of al the siblings of N plus the superior graph of the parent of N. If the successor is an attribute of
one of the children of N, N sub is replaced in M by dependencies of the production rooted at N plus the
subordinate graphs of each of its children.

The top node and bottom nodes of Model are the same we reach when propagating TE. Our algo
rithms for propagating TE does not only select direct successors of changed attributes, but all attributes that
lay either on the route to a function attribute of the parent node (PROP-TobeEval-UP), or on the route to
a function attribute of a child node (PROP-TobeEval - DOWN). In a later stage the index of TE attributes
may be set to UC when it is certain that none of its predecessors has obtained a new value. The set of attri
butes that get index TE sometime during the update process equals the set of attributes that become ele
ments of S when the algorithm of Reps c.s. is applied. The set of attributes that are actually re-evaluated
when applying our algorithm is the same as the set attributes that eventually become elements of
TobeEvaluated.

Like the algorithm of Reps c.s, our update algorithm is an optimal time algorithm in the sense that the
number of steps is proportional to the number of changed attributes. The number of successors or predeces
sors of an attribute is bound by the maximum number of attributes of an abstract tree constructor, that is the
maximum number of functions (and parameters of these functions) defined on each sort of a constructor.
The propagation of "TE" to the upper node is bound by this number and so is the propagation-down of
"TE". This means that the number of all "TE" attributes is always proportional to the number of changed

13

attributes. "TE" attributes are either re-evaluated, which is counted as a unit step, or or its index is set to
"UC", depending on the indices of its predecessors. The switching from "C" to "UC" in the end is
obviously proportionally to the number of changed attributes.

In both update algorithms the optimal time property is lost when abstract tree constructors of variable
arity, e.g. list constructors, occur in the grammar. Either because the number of steps of the propagate algo
rithm is no longer bound by a maximum or because the extension of Model is not bound to a limited
number of nodes and attributes.

4. Conditional primitive recursive schemes

In this section we will describe how the incremental evaluation method of the previous section can be
adapted to a well-presented PRS with conditional equations. In a PRS with conditional equations several
defining equations for each pair (q>,p) may exist. It may happen as well that a certain cl>-term cannot be
reduced. Conditional primitive recursive schemes are a superclass of primitive recursive schemes and pro
vide more flexibility for writing specifications, especially for describing some aspects of dynamic seman
tics of languages.

We use EQ,P to indicate the list of equations with left-hand side cp(p(xi, ... ,xn),y 1, •.• ,Ym), eq$pj
is the j -th equation in this list. The attribute dependencies for each abstract tree constructor are obtained by
taking the union of the dependencies of all equations that apply to that constructor: Dp=up $pj·

$pJ
In the non-conditional case an attribute dependency graph for an abstract syntax tree was constructed

by simply patching the dependency graphs DP of all occurrences of constructors pin the tree. But, if acer
tain term cp(p(T1, . .. ,Tn), ...) has to be reduced only one eq$[,j will be used for this reduction. We do not
want to have the dependencies of all other members of EQ '11 in the attribute dependency graph of the tree
p(T 1, ... , Tn) . Therefore, attribute dependencies for a tree are constructed upon reduction.

4.1. Restrictions on conditions

Conditions in cl>-equations may concern attributes, as well as subtrees. Consider the equation

A.1 = P1 , Ai = P2
q>(p(x 1, ••• , Xn),y i, • • • , Ym) = 't

(eq2)

If a condition A.k = Pk concerns an attribute, A.k and Pk are of type SES, e.g. /(yj)= · · · or 'lf(X;, ...)= · · · . If
it concerns a subtree of p(x 1, ... ,xn), A.k is x; and Pk is either Xj or some closed G-term. We reformulate
the properties (v) to (vii) from Section 2.4 for a well-presented PRS with conditional equations.

(v') All defining equations are strictly decreasing in G: in (eq2) the only terms of G that are allowed in 't
or in conditions concerning attributes are the variables x 1, . .. , Xn . If a condition concerns a G-term,
Ak equals x; and Pk is either Xj or some closed G-term. Variables in conditions must have been intro
duced in the left-hand side of the equations (In Section 4.5 we will loosen this restriction). So, A.1:, Pk
and 'tare Sucl>u{x 1, • • • ,xn }u{y i, •.. ,Ym }-terms.

(vi) For any two equations concerning the same function cp with conclusions

cp(p{x1, · · · ,Xn), Y 1, • • • ,Ym) = 't q>(q(u 1, • • • , Un•), Z i, • • • ,Zm) = 't',

the variable lists <y i, . . . ,Ym> and <z 1, .. . , zm> are identical.

(vii') In all occurrences of the form

· · · 'lf(X;, Vi, •.• , Vm) .••

in right-hand sides or conditions of defining equations of the same abstract tree constructor p,
corresponding parameter terms vj are identical.

(viii') If two parameters par('lf, j) and par(l;, k) are represented by the same variable in left-hand sides of
equations over the same constructor p, in all subterms

'lf(X;, Vi, ... , Vm), l;(x;, W1, ... , Wm•)

of right-hand sides or conditions of defining equations eq,pj and eq'i'Ph vj is identical to wk.

14

In Example 4 and Example 5 the dynamic semantics of two different kinds of if statements are described.
The evaluation functions evs, eve, evss are $-functions. In both examples the variable Env represents a
value-environment: a table with identifiers and their values. The result of evaluating a statement is again a
value-environment. In Example 4 the first argument of the if constructor is some integer expression which
may have either value O or value 1. In Example 5 the first argument of the if constructor is either true or
false.

Example4

eve (Exp,Env) = 0 eve (Exp,Env) = 1
evs(if(Exp , Stms 1, Stms 2), Env)=evss (Stms 1, Env) evs(if(Exp, Stms 1, Stms 2), Env)=evss(Stms 2 , Env)

Example 5

Boo/= true Boo/ =false
evs(if(Boo/ , Stms 1, Stms 2), Env)=evss (Stms 1, Env) evs(if(Bool, Stms 1, Stms 2), Env)=evss (Stms 2 , Env)

4.2. Deducing attribute dependencies from a conditional equation

From a conditional equation eq¢,pj two sets of dependencies are deduced: D-Cond¢,pj from the conditions
and D-Rhs¢,pj from the (right-hand side of) the conclusion, the union of the two is D¢,pj · D-Rhs is similar
to the dependencies deduced from non-conditional equations as described in Fig. 5. The deduction of
D-Cond is described in Fig. 12. If a condition A.t-=p.t concerns attributes only, dependencies are deduced
from A.k and Pk as if they were terms in the right-hand side of the conclusion. If a condition concerns a G
term x;, an extra attribute, inc;, is added to this term, and (inc;, q>) is added to D-Cond, as obviously the
value of q> somehow depends on the particular kind of subterm x;. An inc-attribute does not have a value.

MAKEDEP-EQ(eq+,,h) D-Cond+ph andD-Rhs♦i,,, are global
At = Pt , • • · , At= Pt variables indicating the sets of dependencies of

eq +,,h = q,(p(x 1, ..• ,x.),y 1, ... ,y,,.l = 't the conditions and the right hand side of the conclusion.
D-cond+ph :=0
for i=l to k do

MAKEDEP-COND(A;, eq♦ph)
MAKEDEP-COND(p;, eq ♦ph) od

D-Rhs.,,h:=0
MAKEDEP-FUNC('t , eq+,,h)
END

MAKEDEP-COND (condterm, eq ♦ph)
if condterm=xj, je (1, ... ,n} then

add(incj, $) to D-Cond♦i,h
else
MAKEDEP-FUNC(condterm,eq♦ph) fl

END

Fig. 12. Algorithms for deducing attribute dependencies from a conditional equation

If an inc-attribute occurs in the attribute graph of an abstract syntax tree T, say inc; in the top node of the
subtree T;, all nodes of T; obtain an inc-attribute and the inc-attribute of each node in T; depends on the
inc-attribute of its children. The algorithm EXI'END -INC (Dr), not described here, arranges this in an
obvious manner. Thus a re-evaluation of the q>-attribute that is the successor of inc; is caused, after some
change in T;.

As will be described in the next section, the attribute dependency graph of each abstract syntax tree
is always a subgraph of the pasting of all DP of abstract tree constructors p that occur in the tree, extended
with inc-attributes and inc-dependencies. If we ignore these inc-attributes, we can use the line of reasoning
from Section 3.1 to show that each DP is non-circular and that the pasting of these dependencies in a tree
does not introduce any cycles either. Adding inc-attributes and inc-dependencies can not disturb the non
circularity as inc-attributes do not have incoming edges from other, i.e. non-inc, attributes.

In the construction of the superior characteristic graph of a node, inc-attributes are treated like func
tion attributes: they may have outgoing edges to parameter attributes.

15

4.3. First time evaluation of a term

If we want to reduce a '1>-term cj>(T, t 1, .•• , t,.) using a conditional PRS, we start with a plain abstract syn
tax tree of T. Attributes and attribute dependencies are created dynamically: upon reduction of the '1>-tenn.
Thus, we only get attribute dependencies that occur in the reduction. The advantage of such a dependency
graph is that functions are not re-evaluated after an irrelevant subtree replacement. For instance, using the
equations of Example 4, the evaluation of the term evs(if(a , assign(c,5), assign(c, 7)), env(a:O, b:1, c:3))
would result in a dependency graph as shown in Fig. 13.

Fig. 13. Attribute dependencies for evaluation of an if-statement

Replacement of the subterm assign(c, 7) by some other statement would not cause a re-evaluation of evs(if
(a, assign(c,5), newterm), env(a:O,b:1, c:3)) as the evs attribute has no incoming edges from any attri
bute of stms 2 • We briefly describe the evaluation procedure as presented in the algorithms of Fig. 14 and
Fig. 15.

REDUCE-NEW(term)
term is a closed cl>-term:
q>(p (T t, . .. , Tn),t t, .. . , tm)
let T be the term p (T 1, • •• , Tn), D7 :=0
create attributes for 4> and its parameters at T
for i=l to m do

t;:= normal form oft;
value ofatt(par(q,, i)):=t; od

SELECT-EQ(term,EQ+P• D7)=<match-eq, D >
D7 :=D
if match -eq=eq ♦,,h with right hand side -c then

REDUCE-FUNC(-c, eq+,,h• T,D7)=<value,D'>
value ♦ :=value
D7 :=D'

else
value+:=term fi

END

SELECT-EQ(term,EQ♦p• D)
match-eq:=no-eq,j:=1
while j~ I EQ ♦P I and match-eq=no-eq do
REDUCE-COND(eq ♦,,j • T,D)=<cond,D'>
if cond = succeeded then

match-eq :=eq ♦pj
D :=D'uD-Rhs ♦,,j

else if j< I EQ ♦,, I then
D:=Du{ (att(par(q,, i),4>) I l~i!5arity(q,))

else j:=j+l fi fi od
return <mate h-eq, D >
END

REDUCE-COND(eq+,,h• T,D)
"-1 =Pi,···, "-.t = P.t

let eq♦ph = _
4>(p(x1,. • • ,Xn),y t, • • • ,Ym) - 'C

D-temp:=DuD-Cond+,,h
cond := succeeded
i :=0
while cond "I: failed and iSk do

if A;=Xj then
'J..;:=Tj

else
REDUCE-FUNC(A;, eq+,,h, T,D-temp)=<value,D >
A;:=value
D -temp :=D ti

if p;=xj then
p;:=Tj

else
REDUCE-FUNC(p;, eq+,,h• T,D-temp)=<value',D'>
p;:=value'
D -temp :=D' fi

if 'J..;=p; then
i := i + 1

else
cond :=failed fi od

if cond = succeeded then
D-temp:=EXTEND-INC (D-temp)
return <succeeded, D -temp >

else
return <failed,D >

END

Fig. 14. Algorithms for reducing a '1>-term using a conditional PRS

After the parameter terms t 1, ••• , t,, of cj>(T, t 1, • •• , t,.) have been normalized and stored in the appropriate
attributes, the term matches the left-hand side of some equation. The conditions of this equation are
checked one by one, during which a temporary dependency graph D-Temp is constructed A condition
succeeds if the normal form of the left-hand side equals the normal form of the right-hand side. If all con
ditions of an equation succeed the temporary dependencies are extended with inc-graphs and form the new
DT. Then the dependencies of the conclusion of the matching equation, D-Rhs, are added to DT and the

16

right-hand side of the conclusion is reduced. If a condition fails, the temporary dependencies are removed
and another equation is tried. If no matching equation is found whose conditions succeed, the reduction
stops and the unreduced q>-term is stored in its attribute. Dependencies from all parameter attributes of cj> to
the cj> attribute are added to Dr.

REDUCE-FUNC(functerm, eqw,h• T , D)
functerm is a subterm of the right hand side of eq +Ph
or of a condition of eq w,h
case functerm = parameter of cp with attribute a in T

return <value0 , D >
case functerm = f (s 1, ••• , St), f IE <l>

for j=l to k do
REDUCE-FUNC(sj, eqw,h• T,D)=<value , D'>
Sf=value, D :=D' od

return <normal form of functerm,D >
case functerm = 'lf(X;. v 1 , ••. , Vt)

ifvalue,v = "unknown" atT;
X;:=T;
for j=l to k do

let b be att(par('lf,j)) at T;
if valueb = "unknown"

REDUCE-PAR(vj, 'If, j, eq+,»,, T,D)=
<value,D'>

valueb:=value, D:=D' fi
Vf=valueb od

SELECT-EQ(functerm, EQvq• D)=<match-eq, D'>
D :=D'
if match-eq=eq Vqh with right hand side 't then

REDUCE-FUNC('t, eqvqh• T;,D)=<value,D'>
value...,:=value, D:=D'

else (match-eq=no-eq)
value...,:=functerm fi fi

return <value v, D >
END

REDUCE-PAR(parterm,c,,, m, eqw,h• T, D)
parterm is (a subterm of) the term at them-th parameter
position of 'I' in the right hand side of eq +Ph
or in a condition of eq w,h
case parterm = parameter of cp with attribute a in T

return <value0 , D>
case parterm = f (s 1 , •• • , St), f IE <l>

for j=l to k do
REDUCE-PAR(sj, c,,, m , eq.,_h , T,D)=<value,D'>
Sf=value, D:=D' od

return < normal form of parterm,D >
case parterm = 'lf(X; , v 1, ••. , Vt)

if value,.,= "unknown" at T;
X;:=T;
for j=l to k do

let b be att(par('lf, j)) at T;
if valueb = "unknown"

REDUCE-PAR(vj.'I'• j,eqw,h• T,D)=
<value,D'>

valueb:=value, D:=D' fi
Vf=valueb od

SELECT-EQ(parterm, EQvq• D)=<match-eq, D'>
D:=D'
if match -eq=eq Wh with right hand side 't then

REDUCE-FUNC('t, eqvqh• T;, newD)=<value,D'>
value..., :=value

else (match-eq=no-eq)
value v :=parterm fi fl

return <value...,, D >
END

Fig. 15. Algorithms for reducing a function- and parameter-terms using a conditional PRS

4.4. Incremental evaluation with conditional equations

To illustrate the incremental construction and the updating of the dependency graph we return to the exam
ple in Fig. 13. When the expression a is changed into b the re-evaluation of the eve attributes yields a new
value, 1, its successor, the evs attribute at the if-node, has to be re-evaluated. First, the incoming edges of
the evs attribute are removed from Dr, then the term evs(ifl.exp', stms 1,stms2)env) is reduced using the
second equation. During this reduction new dependencies are created for evs at the if-node, namely the
dependencies of the second equation. This results in the dependency graph shown in Fig. 16.

Fig. 16. Attribute dependencies after re-evaluation of an if-statement

The evss 1 attribute of stms 1 (assign(c, 5)) has been disconnected from its successor, so changes in this
subterm will not cause a re-evaluation of the evs-attribute. Yet, the incoming edge to the parameter attri
bute env of evss I has not been removed, nor has any other attribute dependency in stms 1• Thus, it remains
possible to communicate changes in the env attribute of the if-node to successor attributes of stms 1• If the
value of the env attribute at the if-node changes, the index of its successors is set to "TE", and so is the
index of all other attributes of stms 1 that depend on env. The effect of this "greedy" way of propagating

17

''TE' ' is twofold. Firstly, after a subtree replacement in strns 1 re-evaluations of attributes that may have an
incorrect value are prevented. When a subtree of strns 1 is replaced and all successors of the env-attribute
at the top of stms 1 have index "TE", none of these attributes will be re-evaluated because the
UPDATE(Newsub,T) algorithm takes care only of re-evaluating all "TE" function attributes of which the
parameter attributes have index " UC". In the non-conditional case all attributes were somehow connected
to a function attribute of the top node, and therefore would be re-evaluated eventually. When the evss 1-

attribute at the top of stms 1 has been disconnected from its successor it will not be re-evaluated, nor will its
parameter attribute. Secondly, when the value of the eve attribute at exp becomes O again the connection
between evss 1 attribute and the evs attribute will be restored. If the evss 1 -attribute at strns 1 has index
''UC'' at that moment, we can savely reuse its value to find the value of the evs-attribute. If the index of
evss 1-attribute is "TE" , it will be re-evaluated meanwhile also re-evaluating all its "TE" predecessors in
stms 1 . After a re-evaluation all attributes that played a role in this re-evaluation have a correct value, other
attributes either have a correct value or have index "TE" .

The algorithm used for incremental evaluation with a dynamically created dependency graph is very
similar to the update algorithms of Fig. 9 and Fig. 10. Adaptations are:

• Before a function attribute is re-evaluated its incoming edges are removed from Dr.

• For re-evaluation of a function attribute the algorithm SELECI' -EQ of Fig. 14 is used to find a match
ing equation. The dependencies of this equation are used to create new incoming edges for the function
attribute.

• The PROP-TobeEVAL-DOWN is replaced by a more greedy one. The indices of all direct and transi
tive successors of a changed parameter attribute in an underlying subtree are set to "TE".

• When a subtree is replaced, the index of its inc attribute is set to "C". PROP-TobeEVAL-UP and
PROP-TobeEVAL-SUP are adapted so that the indices of inc attributes with changed or "TE" prede
cessor are set to "C" as well.

• The check on "TE"-attributes of the Current-Node in UPDATE(Newsub,T) must be extended with a
check on the existence of an inc-attribute with index "C". In both cases attributes of the parent node
must be re-evaluated.

The adapted algorithm is not optimal time: The number of steps in the greedy PROP-TobeEVAL-DOWN
algorithm does not depend on the number of affected attributes nor is it bound by a constant, it is only
bound by the number of attributes in a tree. However, simply switching an index is not a costly operation.

4.5. Allowing new variables in conditions.

The term rewriting engine in the ASF+SDF-system can handle a limited class of conditional equations
[Hen88]. The limitations concern the use of "new" variables in conditions, that is variables that have not
been introduced in the left hand side of the conclusion of the equation. New variables may be introduced
in one side of each condition, moreover the term in which a new variable occurs must be in normal from.
When the condition is checked all known variables are instantiated, hence a closed term and an open term
are obtained. The condition succeeds if the normal form of the closed term matches the (unreduced) open
term at the other side of the condition. Then an instantiation of the new variable is found and the new vari
able is added to the list of known variables that can be used for the instantiation of the terms in subsequent
conditions and in the right-hand side of the equation. If we would allow introduction of new variables
within these limitations no problems would arise for conditions concerning attributes, e.g. the following
two equations would give the same dependency graphs

'lf(x1) = newvar, X(X2)=h(newvar) X(X2) = h ('lf(X1))

q>(p(x 1, x2),y) = true q>(p(x 1, x 2),y) = true

The algorithm for deducing a dependency graph from an equation only needs little adaptation to handle
these conditions. But when new variables concerning a G-term are introduced in a condition, dependencies
may be introduced between attributes of nodes that do not belong to one constructor. e.g:

18

x 1 = q(newvar 1, newvar 2))

q>(p(x 1, x2),y) = 'lf(newvar2, y)

would cause a dependency between the attributes at the top node of newvar 2 and the attributes at the
"grandparent" node p. Generally spoken, by allowing new variables concerning G-terms in conditions
dependencies may be constructed between attributes of any pair of nodes in a tree. On the one hand,
allowing the use of new variables of a sort of G in conditions would considerably complicate our algo
rithm. On the other hand it is not very likely to occur in language definitions and can easily be avoided by
adding an extra function for the sort of X 1, so for the moment we have chosen not to adapt our algorithm to
this situation.

4.6. Relaxing the disjointness requirement

So far, we assumed that the sorts of Sand Gin a PRS <G,S, <l>> were disjoint. Yet, in existing typecheck
specifications many sorts used in the specification of the syntax of a language are also used in the descrip
tion of its semantics, especially trivial sorts like Booleans, natural numbers and identifiers. For instance, in
the ASPLE typecheck specification a declaration, consisting of a type followed by a list of identifiers,
brings forth a table (type-environment) of identifiers together with their types. Hence, the sorts Identifiers
and Types of the syntax of ASPLE are needed to describe these type-environments. Equations (eqS) and
(eq6) are the common way to define typechecking of a declaration.

tcdec/ (decl(Type, Id/ist),Env) = tclist(Idlist, Type, Env) (eqS)

tclist(list(Id, /dlist),Type,Env) = tclist(/dlist, Type, add(pair(ld, Type),Env)) (eq6)

The problem arises that the argument Type in the right hand sides of these equations refers to a subtree
instead of a function attribute, so does the argument Id in the right hand side of (eq6). The trick with the
inc attribute solves the problem as is shown in Fig. 17.

/' '"'~
type· · inc · · ·ust_. ~

. -- ~ j ·· ·

. id _ .. · inc pe n~·- list @!I!)

Fig. 17. Attributed subtree for typechecking declarations in ASPLE

When the disjointness requirement is relaxed, the elements of <I> should be indicated explicitly, and the
strictly decreasing property as formulated in (v) and (v') should be rephrased as

(v") the first argument of a <l>-term in the right hand side of an equation or in conditions of a defining
equation should be a direct subterm of the first argument of the left hand side of that equation.

Note, that we still hold on to the requirement that no equations exist over sorts of G.

Now, the specifications of the typechecking of ASPLE and mini-ML as described in
[Meu88, Hen89, Hen9 l] fall within the class of specifications for which an incremental implementation can
be made. The specification of the static semantics of Pascal as described in [Deu91] needs some minor
changes to make it fit into this class.

5. Related Work

As far as we know, the only paper in which some kind of incremental term rewriting is mentioned is
[FGJM85]. In that paper the term rewriting engine of OBJ2 is briefly described. OBJ2 is a functional pro
gramming language based upon equational logic and implemented as a term rewriting system. The compu
tation of terms with a top symbol that has the "saveruns" annotation (set by the user) are stored in a hash-

19

table. Before a term is computed this table is checked.

There are many papers dealing with the relation between attribute grammars and other formalisms.
Most of these have different purposes from ours, however, like solving the space problem attribute gram
mars usually cause. The results of Courcelle and Franchi-Zannettacci are used in papers by Attali and
Franchi-Zannettacci and Jourdan [AF88,Att88,Jou84]

Jourdan starts with a strongly non-circular attribute grammar and compiles it to a primitive recursive
scheme. He does not store inherited attributes thus trading time for space.

Attali and Franchi-Zannettacci translate TYPOL programs to attribute grammars. TYPOL is a for
malism for specifying the semantics of programming languages [DT89, CDDHK85] and is closely related
to PROLOG. Its original implementation has accordingly been in that language. In order to avoid the
unification of PROLOG and make incremental and partial evaluation of TYPOL programs possible,
TYPOL programs that are pseudo-circular and strictly decreasing are completely translated to (strongly
non-circular) attribute grammars, in either the Synthesizer Specification Language, SSL [RT89b, RT89a]
or Olga, the input formalism for the FNC-2 system [JLP90,JP88].

Katayama [Kat84] describes how strongly non-circular attribute grammars can be translated to pro
cedures, considering non-terminals as functions that map inherited attributes to synthesized attributes. He
extends his method to general non-circular attribute grammars.

6. Conclusion and further research.

We have described how incremental evaluation of terms can be derived from well-presented primitive
recursive schemes and from the larger class of conditional well-presented primitive recursive schemes.
The derivation is based on the isomorphism between well-presented primitive recursive schemes and
strongly non-circular attribute grammars.

The class of well-presented primitive recursive schemes is a very natural one for specifying the static
semantics of languages. The class of conditional well-presented primitive recursive schemes provides
more flexibility and many aspects of the dynamic semantics of languages can be described in this context.
Further research will concern extending our method to a superclass of primitive recursive schemes in
which also the evaluation of the while statement can be described, e.g.

eve (Exp, Env) = true
evs(while(Exp,Stms 1, Stms 2), Env) = evs(while(Exp,Stms 1 , Stms 2),evs(Stms 1, Env))

This means an extension to conditional primitive recursive schemes that are not necessarily well-presented,
possibly cyclic, and decreasing instead of strictly decreasing.

The incremental evaluation method described in this paper will be implemented in the term rewriting
system for algebraic specifications of the ASF+SDF-system. In order to be able to mix incremental evalua
tion of terms with normal evaluation the incremental strategy is an adaptation of the leftmost innermost
reduction strategy used in this system. The implementation will be written in LeLisp [LeLisp87].

Acknowledgements

I would like to thank Jan Heering and Paul Klint for many discussions on incremental evaluation. Arie van
Deursen, Jan Heering, Paul Hendriks and Paul Klint made helpful comments on previous versions of this
paper.

References

[Att88]

[AF88]

I. Attali, ''Compiling TYPOL with attribute grammars,'' in: Proceedings of the International
Workshop on Programming Language Implementation and Logic Programming '88, ed. P.
Deransart, B. Lorho, and J. Maluszynski, Lecture Notes in Computer Science 348, Springer
Verlag, pp. 252-272 (1988).

I. Attali and P. Franchi-Zannettacci, ''Unification-free execution of TYPOL programs by
semantic attribute evaluation," in: Proceedings of the Fifth International Conference and
Symposium on Logic Programming, ed. R. Kowalski and K. Bowen, Logic Programming

20

Series, MIT Press, pp. 160-177 (1988).
[JLP90] M. Jourdan, C. Le Bellec, and D. Parigot, "The Olga attribute grammar description language:

design, implementation and evaluation,'' in: Attribute grammars and their applications -
Proceedings of the WAGA conference, ed. P.Deransart M. Jourdan, Lecture Notes in Com
puter Science 461, Springer-Verlag, pp. 222-237 (1990).

[BHK89] J.A. Bergstra, J. Heering, and P. Klint (eds.), Algebraic Specification, ACM Press Frontier
Series, The ACM Press in co-operation with Addison-Wesley (1989).

[CDDHK85] D. Clement, J. Despeyroux, T. Despeyroux, L. Hascoet, and G. Kahn, ''Natural semantics on
the computer," Rapports de Recherche 416, INRIA, Sophia Antipolis (1985).

[CF82a] B. Courcelle and P. Franchi-Zannettacci, "Attribute grammars and recursive program
schemes I," Theoretical Computer Science 17, pp. 163-191 (1982).

[CF82b] B. Courcelle and P. Franchi-Zannettacci, "Attribute grammars and recursive program
schemes II," Theoretical Computer Science 17, pp. 235-257 (1982).

[DJL88] P. Deransart, M. Jourdan, and B. Lorho, Attribute Grammars - Definitions, Systems and
Bibliography, Lecture Notes in Computer Science 323, Springer-Verlag (1988).

[DT89] T. Despeyroux and L. Thery, TYPOL - User's guide and manual, The CENTAUR Documen
tation - Version 0.9, Volume I - User's Guide, INRIA, Sophia-Antipolis (1989).

[Deu91] A. van Deursen, "An algebraic specification for the static semantics of Pascal," Report CS-
R91??, Centrum voor Wisk:unde en Informatica (CWI), Amsterdam (1991), to appear.

[FGJM85] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer, "Principles of OBJ2," in:
Conference Record of the Twelfth Annual ACM Symposium on Principles of Programming
Languages, ed. B. Reid, ACM, pp. 52-66 (1985).

[Hen88] P.R.H. Hendriks, "ASF system user's guide," Report CS-R8823, Centrum voor Wisk:unde
en Informatica (CWI), Amsterdam (1988), Extended abstract in: Conference Proceedings of
Computing Science in the Netherlands, CSN' 88 1, pp. 83-94, SION (1988).

[Hen89] P.R.H. Hendriks, "Typechecking Mini-ML," in: Algebraic Specification, ACM Press Fron
tier Series, The ACM Press in co-operation with Addison-Wesley, pp. 299-337 (1989),
Chapter?.

[Hen91] P.R.H. Hendriks, Implementation of Modular Algebraic Specifications, University of Amster
dam (1991), Chapter 4, to appear.

[Jou84]

[JP88]

[Kas84]

[Kat84]

[KP90]
[LeLisp87]
[Meu88]

[RT89a]

[RT89b]

[RTD83]

M. Jourdan, "Strongly non-circular attribute grammars and their recursive evaluation," in:
Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction, ACM, pp.
81-93 (1984), Appeared as SIGPLAN Notices 19(6).
M. Jourdan and D. Parigot, "The FNC-2 system: advances in attribute grammar technol
ogy," Rapports de Recherche 834, INRIA, Rocquencourt (1988).
U. Kastens, "The GAG-System - A tool for compiler construction," in: Methods and Tools
for Compiler Construction, ed. B. Lorho, Cambridge University Press, pp. 165-181 (1984).
T. Katayama, "Translation of attribute grammars into procedures," ACM Transactions on
Programming Languages and Systems 6(3), pp. 345-369 (1984).
K. Koskimies and J. Paa.kki, Automating Language Implementation, Ellis Horwood (1990).
LeLisp, Version 15.21, le manuel de reference, INRIA, Rocquencourt (1987).
E.A. van der Meulen, "Algebraic specification of a compiler for a language with pointers,"
Report CS-R8848, Centrum voor Wisk:unde en Informatica (CWI), Amsterdam (1988).
T. Reps and T. Teitelbaum, The Synthesizer Generator Reference Manual - Third edition,
Springer-Verlag (1989).

T. Reps and T. Teitelbaum, The Synthesizer Generator: a System for Constructing
Language-Based Editors, Springer-Verlag (1989).
T. Reps, T. Teitelbaum, and A. Demers, "Incremental context-dependent analysis for
language-based editors,'' ACM Transactions on Programming Languages and Systems 5(3),
pp. 449-477 (1983).

