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Abstract 

A substring recognizer for a language L determines whether a string s is a substring of a sentence 
in L, i.e., substring-recognize( s) succeeds if and only if 3v, w: vsw E L. The algorithm for substring 
recognition presented here accepts general context-free grammars and uses the same parse tables as 
the parsing algorithm from which it was derived. Substring recognition is useful for noncorrecting 
syntax error recovery and for incremental parsing. By extending the substring recognizer with 
the ability to generate trees for the possible contextual completions of the substring, we obtain a 
substring parser, which can be used in a syntax-directed editor to complete fragments of sentences. 
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1 Introduction 

A recognizer for a language L determines whether a sentence s belongs to L. A substring recognizer 
performs a more complicated job, as it determines whether s can be part of a sentence of L . 

A recently developed substring recognition algorithm [Cor89] uses an ordinary LR parsing algo­
rithm with special parse tables. For ordinary parsing, this parsing algorithm is limited to LR(l) 
grammars, but the more complicated nature of substring recognition limits it to bounded-context 
grammars (see Section 3) . 

In Section 4 we describe a substring recognition algorithm that does not suffer from this drawback . 
It accepts general context-free grammars and uses the same parse tables as the ordinary parser. 
Our algorithm is based on the pseudo-parallel parsing algorithm of Tomita [Tom85), which runs a 
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dynamically varying number of LR parsers in parallel and accepts general context-free grammars. 
In Section 5 we extend the substring recognizer into a substring parser that generates trees for the 
possible completions of the substring. 

2 Applications 

2.1 Syntax error recovery 

In its simplest form, a parser stops at the first syntax error found . If it has to find as many errors in 
the input as possible, it can try to correct the error in order to continue parsing. Spurious errors are 
easily introduced, however, if the parser makes false assumptions about the kind of error encountered. 

Substring parsing can be used to implement noncorrecting syntax error recovery. If an ordinary 
parser detects a syntax error on some symbol, the substring parser can be started on the next symbol 
to discover additional syntax errors. Using this method, it is not necessary to let the parser make any 
assumption about how to correct the error, or to let it skip input until a trusted symbol is found. 

Richter defines noncorrecting syntax error recovery with the aid of substring parsing and interval 
analysis in a formal framework [Ric85]. He proves that his technique does not generate spurious 
errors, but is not explicit about its implementation. He notes, however, that there are difficulties in 
keeping the substring parser deterministic due to a limitation on the class of grammars accepted . Our 
technique could be useful here, as it implements the required substring analysis for general context-free 
grammars. 

2.2 Completion tool 

In Section 5 we will show how the substring recognizer can be extended so that it generates parse 
trees for the possible completions of a substring. As the total number of possible completions will 
often be infinite, only generic completions are generated. A syntax-directed editor could use these to 
complete fragments of sentences in accordance with the grammar used, or to guess the continuation 
of what the user is typing. 

2.3 Incremental parsing 

Another application for substring parsing is in incremental parsing. Incremental parsing can be 
performed by attaching parser states to tokens [Cel78, AD83, Yeh83]. After a modification has been 
made, the parser is restarted in a saved state, at a point in the text just before the modification. 
Parsing stops when the parser reaches a token after the modification in an old configuration (if ever). 
These methods are very good as to minimizing the amount of recomputation after a modification, but 
require a huge amount of memory for storing the states of the parser (parse stacks with partial parse 
trees as elements). 

Ghezzi and Mandrioli [GM79, GM80] present an alternative technique for incremental parsing. If 
the string xxzyy is modified to xxiyy , where x and fl have length k, with k the look-ahead used by the 
parser, then the parse trees previously generated for x and y are still valid after the modification. All 
subtrees previously generated for x and y can thus be abbreviated by their top non-terminals, which 
minimizes the length of the string to be reparsed. This technique is both time and space efficient, but 
is not applicable to general context-free parsing as it requires a fixed look-ahead. In our particular 
case, we need incremental parsing in a syntax-directed editor that uses the Tomita parser. By running 
a varying number of LR-parsers in parallel, the Tomita parser adjusts its look-ahead dynamically to 
the amount needed, and is thus not limited to an a priori known k . 
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Incremental parsing can also be achieved in another manner: after a modification has been made 
in the text, find the substring s' belonging to the smallest subtree that contains the modification in 
the stored parse tree. If the type of this subtree is T and s' can be parsed as a tree of type T, replace 
the old subtree by the new one. Ifs' fails to parse, it may be the case that the modification introduced 
a syntax error, or that the subtree has been chosen too small. These two cases must be distinguished, 
as the incremental parser proceeds in a different way in each case. A substring parser can provide a 
hint as to which of the two possibilities is actually the case. If the substring parser fails on s1

, the 
modification will be syntactically incorrect in any context, and an error message can be given. If the 
substring parser succeeds, a larger subtree is chosen and parsing is retried. This can be more time 
consuming than remembering parser states, but the amount of memory needed is far less. We consider 
using this scheme in the syntax-directed editor GSE [Koo], but it has to be investigated further as a 
lot of work is still performed twice. 

3 Related work 

Cormack [Cor89] describes a substring parse technique for Floyd's class of bounded context or BC(l,1) 
grammars [Flo64], and implements the substring parser Richter mentions [Ric85]. A grammar is 
BC(l,1) if for every rule A ::= a:, if some sentential form contains ao:b where a: is derived from A then 
a: is derived from A in all sentential forms containing ao:b. This class is smaller than LR(l). The 
solution of Cormack consists in using an ordinary LR automaton, but a special parse table constructor. 
The sets of items generated do not only contain items of the form A ::= 0:./3 but also "suffix items" 
of the form A ::= · · · .(3. These suffix items denote partial handles whose origins occur before the 
beginning of the input. The generated parse tables are deterministic, provided that the grammar is 
BC(l,1) . This substring parser is used for noncorrecting error recovery in a parser for Pascal. The 
BC(l,1) limitation on the grammar caused problems in the definition of Pascal, which where alleviated 
by permitting the parse table generator to rewrite the grammar if necessary. 

Lang describes a method for parsing sentences containing an arbitrary number of unknown parts 
of unknown length [Lan88]. The parser produces a finite representation of all possible parses (often 
infinite in number) that could account for the missing parts. The implementation of this method 
is based on Earley parsing [Ear70], as is the Tomita algorithm we use in our own substring parser. 
The basic idea of Lang's method is that "in the precence of the unknown subsequence *, scanning 
transitions may be applied any number of times to the same computation thread, without shifting the 
input stream." This process terminates, as parsers in the same state are joined and the number of 
states is finite . This method is very elegant and powerful, and can be used as a substring parser (by 
providing it with the string "*s*"). We will not use it, however, as it is more general than what we 
need and it seems too inefficient for interactive purposes. 

Snelting presents a technique to complete the right-hand side of unfinished sentences [Sne90] (also 
see Section 5.2). 

4 Substring recognition 

4.1 Tomita parsing 

We base the implementation of our substring parser on Tomita's algorithm. This algorithm runs 
several simple LR parsers in parallel. It starts as a single LR parser, but, if it encounters a conflict in 
the parse table, it splits in as many parsers as there are conflicting possibilities. These independently 
running simple parsers are fully determined by their parse stack. When two parsers have the same 
state on top of their stack, they are joined in a single parser with a forked stack. A reduce action 
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which goes back over a fork in a parse stack, splits the corresponding parser again into two separate 
parsers. If a parser hits an error entry in the parse table, it is killed by removing it from the set of 
active parsers. The possibility to run several parsers in parallel makes the Tomita algorithm very well 
suited for substring parsing. 

For a full description of the Tomita parsing algorithm we refer to Tomita [Tom85], to Nozohoor­
Farshi who corrected an error in the algorithm concerning 1:-productions [NF89], or to Rekers who 
extended the algorithm to the full class of context-free grammars by including cyclic grammars [Rek] . 
For a detailed explanation of LR parsing (ASU86, ch. 4.7] is recommended. 

4.2 The grammar 

The grammar for which our substring recognition algorithm works should be reduced in such a way 
that it does not contain non-terminals that cannot produce any terminal string or f . These non­
terminals can be identified easily, and all rules in which they appear should be removed from the 
grammar. This clean-up operation does not affect the language recognized. [Har78, p . 73-76] 

Useless symbols and unreachable rules do not influence substring parsing as these are ignored 
by the parse table generator. This is due to the fact that LR parse tables are generated top-down, 
starting with the start symbol of the grammar, and that useless symbols and unreachable rules are, 
by definition, unreachable from the start symbol. 

4.3 The algorithm 

If we have to determine whether a string s0 · ··Sn is a substring of a sentence in a language L, we start 
the substring recognition process by generating, for each state directly reachable under s0 , a parser 
with this state on its stack. These parsers will process s1 ···Sn. 

We will show how an individual parser processes an action, but we will not discuss the management 
of the different parsers, as this is done in the same way as in ordinary Tomita parsing. The parser 
obtains an action from the parse table with the state on top of its stack and with input symbol Sk­

This can be a shift, error or reduce-action, and is processed in the following manner: 

• A (shift state')-action is processed as in normal parsing: state' is pushed on the stack and the 
parser is ready to process Sk+l · 

• An ( error )-action removes the parser from the set of active parsers. 

• A (reduce A ::= a,B)-action is processed as follows: 

- If there are at least lo:,BI + 1 entries on the parse stack the reduce action is performed as 
in normal parsing: la.Bl entries are popped off the stack, and the parse table is consulted, 
with the state remaining on top of the stack and A, to obtain a state to push on the stack 
again. The parser is now ready to continue the processing of Sk-

If there are only I.Bl entries on the stack, only ,B has been recognized of A ::= o:,B; o: lies 
before so and should produce (a part of) a prefix of so. This is possible, as all non-terminals 
in a can produce some terminal string, and all terminals in a trivially do. So the reduction 
A ::= a,B may be performed . The states which can be reached directly by a transition 
under A are the states where parsing may continue. For each of these valid states a new 
parser is started with that state on the stack. These parsers all proceed to process Sk. 

If there are exactly la.Bl entries on the stack, s 0 · · · sk-l reduces to a,B, but the context in 
which A is to be used is unknown. This is handled in the same way as the previous case. 
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START: := Stat 
START::= Exp 
Stat : := if Exp then Stat 
Stat ::= if Exp then Stat else Stat 
Stat ::=Id := Exp 
Exp ::= Id 
Exp :: = Int 
Exp ::= Exp+ Exp 
Exp ::=Exp* Exp 
Exp ::= (Exp) 

Figure 1: A grammar 

START 

I 
Stat 
/I~ 

if Exp then Stat 

/I~ /1~ 
Exp ± Exp if Exp then Stat 

/I~ I 
( Exp 2 Int(5) 

Figure 2: A completion of ") + 5 then if" 

If there are no parsers left alive after the processing of Sn, the substring parser fails . If there are parsers 
left, these are currently recognizing rules A ::= a.{3, of which (a part of) a. has been recognized. As 
every f3 can produce some terminal string, these rules can all be finished. This means that the substring 
parser succeeds if there are parsers remaining after the processing of Sn . 

4.4 The parse table generator 

The substring parser is controlled by the same parse table as our ordinary parser. To generate this 
parse table we use an extended version of the lazy and incremental parser generator IPG [HKR89). 
The extension concerns the need of the substring parser to know all states which can be reached by a 
transition under a given symbol. This function needs global information about the parse table, which 
means that the whole parse table must be known. As a consequence, the lazy aspect of IPG cannot 
be exploited here and the parse table is always fully expanded. The expanded parse table can also be 
used by the ordinary parser, of course. 

5 Substring parsing 

We extend the substring recognizer into a substring parser by generating parse trees for substrings. 
The possible parse trees for a substring s are the parse trees of all sentences vsw for which vsw E L 
holds. To limit the number of completions we allow v and w to consist both of terminals and non­
terminals, and we generate a parse tree, corresponding to a sentential form a1 sa2, only when the 
frontier of each of its subtrees contains at least one symbol of s; i.e., we do not generate subtrees 
whose frontier lies entirely within a1 or a2 . The trees that we generate are the most general trees, as 
it is not possible to replace any of their subtrees by a non-terminal such that the frontier still contains 
s as a substring. Even so, the number of completions can still be infinite. In Section 5.2 we will 
discuss how to limit this number still further. 

For the grammar of Figure 1 and the string ") + 5 then if", a possible completion is the sen­
tential form 

if ( Exp ) + 5 then if Exp then Stat ...___, 
s 

whose parse tree is given in Figure 2. To distinguish the leaves of s from those of a 1 and a 2 , the 
former are underlined . 
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START 

I 
Stat 

/I~ 
if Exp then Stat 

/I~ /I~ 
Exp + Exp if Exp then Stat 

/I~ I 
Exp + Exp Int(5) 

/1""--
( Exp ) 

Figure 3: Another possible completion of ") + 5 then if" 

5.1 Generating the completions of a substring 

LR parsers generate parts of parse trees during a reduction step. On reducing A ::= a, the parse stack 
contains the subtrees created for a. These are assembled in a new node of type A and the subtree 
created in this way is pushed on the stack . In the substring parser ordinary reductions are treated in 
the same way. 

If the rule A ::= a/3 is reduced with only nodes for /3 on the stack, however, additional nodes are 
created for a. In this way, the parse trees for the possible prefixes of s are created. 

Parse trees for postfixes of s are created in the same way: after processing s the parser has to 
finish all rules which are in the process of being recognized. These are the rules in the kernel of the 
current state of the parser. If only a has been seen from a rule A ::= o./3, the rule is reduced and 
additional nodes are created for /3. It can even be the case that only /3 has been recognized from a 
rule A ::= a/31 , and that nodes must be created for both a and 1 . 

5.2 Further reduction of the number of possible completions 

By producing only parse trees that are most general, the number of possible completions is reduced, 
but it is often still too large and not even always finite. We propose the following rules to limit this 
number still further: 

1. The parse trees generated are kept as compact as possible by disallowing derivations of the form 

A/4aA, A/40.A/3, and A/4Af3, where only A has actually been recognized and all elements 
of a and /3 would produce elements in u 1 or u 2 . Clearly, such derivations can be repeated 
infinitely often. They are undesirable as they only enlarge u 1 or u 2 . 

For example, the substring ") + 5 then if" also has a possible completion 

if Exp + ( Exp ) + 5 then if Exp then Stat 

Ut s 

whose parse tree is given in Figure 3. In this tree a subtree for the rule Exp::= Exp+ Exp has 
been inserted in the prefix. 

2. The number of possible sentential forms for which parse trees are generated is now finite, but 
these can still have infinitely many parse trees as the grammar may be cyclic. Rekers describes 
how to parse and generate parse graphs for cyclic grammars (Rek]. The cycles generated in this 
graph can be removed by his routine remove-cycles. This results in a finite number of most 
general completions. 
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0.4 
substring recognizer 0 

o: 0 

•: recognizer 0 

0.3 0 • 
0 • oO • • 

time 
0.2 0 0 • 

(in seconds) 0 • • 
0 • • 0 • 

0.1 • 
0 00 • • • • 0.0 

0 100 200 300 400 500 

number of tokens 

Figure 4: Comparison of the substring recognizer with an ordinary one 

3. In the generation of the postfixes of s a choice can be made for the "simplest" completion. That 
is, if a substring can be completed according to both A ::= a./3 and A ::= a,, and l/31 < 1,I, 
we prefer A ::= a./3. In the example of Figure 2 this rule forbids the choice of the "if-then-else" 
rule, as the "if-then" rule already applies. Snelting's rule "prefer reduce items over shift items" 
[Sne90] is similar to ours. It can also be formulated as: if completion according to both A ::= a 
and B ::= a.1 (, =p f) is possible, then prefer A ::= a. We consider our rule more appropriate, 
as we take the case of /3 being non-empty but shorter than I into account as well, and we only 
make the choice if the two rules reduce to the same non-terminal. Otherwise, the rule A ::= a 
might be preferred over B ::= a.1 , whereas the environment in which the substring is completed 
needs a tree of type B. 

6 Measurements 

Our first measurement compares the substring recognizer with the Tomita recognizer from which it 
was derived to learn the additional costs of substring parsing. 1 

We have taken a grammar of about twenty rules and sentences of increasing length . These were 
parsed by the Tomita recognizer first. The resulting parse times are indicated in Figure 4 with a 
"•" . Next, the same strings minus a randomly chosen prefix was given to the substring parser. The 
required times are indicated in Figure 4 with a "o". 

It turns out that the substring parser has a moderate overhead with respect to the normal parser. 
This overhead can be interpreted as the time needed for the substring parser to get on the "right 
track". As Figure 5 shows, the variations in this overhead are caused by the random cutting of the 
string. For some strings it takes longer than for others to determine of which language construct it 
can be a substring. The larger the grammar is, the more alternatives are available and therefore the 
higher the variation . 

In Figure 5 we compared the time taken by the substring parser on 30 randomly chosen parts of 
Pascal sentences of 100 tokens. The dots indicate the amount of time needed and they are attributed 
with the first symbol of the substring. These measurements show that sentences starting with a 
token that can appear in many differents contexts, like "Id" or ")", take more time to recognize than 
sentences starting with a disambiguating token like ": =" or "else" . 

1 The measurements were performed on a SUN Spare station . The programs were written in Lisp. The time used by 
the lexical scanner has not been taken into account . 
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1.5 eld eld •) eld 
eld eld •Int 

•) •Id 
•Int •Int eld 

•Int •( •Int •Int 
1.0 •Int 

time .. 
•[ •l •[ J 

(in seconds) •end •< 

0.5 ··- ··-•if •if •begin •else •else 

0. 
0 5 10 15 20 25 30 

randomly selected substring 

Figure 5: Time needed by the substring parser on Pascal sentences of 100 tokens 

7 Conclusions 

The adaptation of the Tomita algorithm to substring parsing results in a very elegant and powerful 
algorithm . The main advantage of the fact that it accepts general context-free grammars and uses 
ordinary LR parse tables is that substring parsing can now be applied in a very general manner, 
instead of only to carefully written grammars and at the cost of an extra generation phase. 

Substring parsing is slower than ordinary parsing, but this will not be a serious drawback for its 
application as an error recovery technique or as a completion tool. The use of the substring parser in 
incremental parsing, however , has to be investigated further . 
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