
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

L. Cherkasova

A fully abstract model for concurrent nondeterministic processes based on posets with non-actions

Computer Science / Department of Software Technology Report CS-R9031 July

B, Y'""'
C_,rrumvoo, l', . ' !m)rf!11<.~P

\•f I 11 f

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Fully Abstract Model for Concurrent
Nondeterministic Processes Based on Posets

with Non-Actions

Ludmila Cherkasova
Institute of Informatics Systems

Siberian Division, Academy of Sciences
630090 Novosibirsk, USSR

Abstract

The aim is to propose a new model based on the posets with non-actions to
describe the concurrent nondeterministic processes and investigate their proper­
ties . ·
The algebra SAFP2 of structured finite processes with three main operations for
specifying sequentiality, concurrency and nondeterminism is introduced. Denota­
tional semantics ba.sP<l on posets with non-actions is constructed for processes of
SAFP2.
Full abstractness of denotational semantics w.r.t. observational equivalence ;::::+
and proposed operational Petri net semantics is established.

1980 Mathematics Subject Classification (Zentralblatt fiir Mathematik): 68B10.
1985 Mathematics Subject Classification (Mathematical Reviews): 68Q55.
1987 CR Classification Scheme (Computing Reviews): F.3.2.
Key Words & Phrases: theory of concurrency, denotational semantics, posets with
non-actions, observational equivalence, full abstractness , Petri nets, occurrence
nets, operational Petri net semantics.

Note: Partial support received from NFI Project "Research and Education in
Concurrent Systems" (REX).

1 Introduction

During the last decade, theory of concurrency has been a subject of intensive research
attempts to develop a correct and adequate model and paradigm for concurrent com­
putations.
Report CS-R9031
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

At the moment, there is no shortage of the models for concurrency based on interleav­
ing semantics [BHR84, Ho85, Mil80, Mil83) or intended to describe, so-called, "true"
concurrency [BouCa87, NPW81, Pet77, Pr87). However, we dare propose a new one:
posets with non-actions. Concurrent process, the elements of which are partially ordered
by precedence relation (reflecting causal dependences) can be explicitly represented by
partially ordered set. Thus the behaviour of concurrent nondeterministic process (or
system) can be described by a set of its "pure" concurrent processes. But in this case,
the information about nondeterminism between the elements of the initial process (or
system) is lost. To represent (implicitly) the nondeterminism on the semantic level, we
introduce some "negative" information about the process actions which have not been
chosen to be performed in process behaviour (the idea, in some sense, is similar to failure
semantics for TCSP). Thus we introduce a dual alphabet of the "negated" symbols for
denoting "non-actions", i.e. the symbols which point to the fact that the correspon­
dent actions do not occur in a process behaviour because among the alternative actions
including these ones the other action occurs.

Algebras proposed for process specification could be (informally) called as: "descriptive"
algebras and "analytical" ones. In the descriptive algebras, process specification provides
a good insight into structural properties of designed concurrent systems. Analytical
algebras contain sufficient support for verification of behavioural properties. The goal
of this paper is to build the next span of the bridge over the gap between descriptive
and analytical theories of concurrent processes. The first steps in this direction were
made in the papers [Ch88, Ch89, ChK90).

In the paper, we propose the algebra SAFP2 for specifying concurrent nondeterministic
processes which can be used as a calculus for subclass of finite Petri nets.

The basic operations of this algebra a.re
"v (alternative) over the set a of atomic actions.
could be defined in quite different ways.

11 (concurrency), (precedence),
The semantics of these operations

If we consider these operations as operations for building the structures of finite Petri
nets, then, the so- called, descriptive algebra A FPO emerges. Thus the structures of finite
Petri nets can be specified using descriptive algebra AFP 0 • However, if we consider the
same formula (specifying structure of Petri net) as a formula supplied by the semantics,
proposed for algebra SAFP2 , then the same formula specifies the behaviour of the net.

Thus, we can use the same formula as for describing structure of Petri net as for specify­
ing and verifying its behaviour. So, the "structure", "descriptive" algebra AFP O can be
provided with the "analytical" abilities of SAFP2 , and the "analytical" algebra SAFP2

can be supplied with "descriptive" abilities of AFP O to specify the process structure as
well as process behaviour.

Semantics of process described by formula of SAFP2 is defined as a set of partial or­
ders extended with some additional "negative" information. We introduce the notion

3

of observational equivalence ~+ for processes of SAFP 2 • Two processes P and Q are
called observationally equivalent if their "positive" parts (i.e. "observable" partially
ordered actions of underlying posets) coincides. Full abstractness of proposed denota­
tional semantics for SAFP2 w.r.t. ~+ is established, i.e. the processes observationally
equivalent in every context (it means that their positive parts can not be distinguished
by observation of partially ordered actions in any context) have the same denotational
semantics.

The last part of the paper proposes operational Petri net semantics for SAFP2 • It
follows closely to works of [DDM86, 0188], but differs in details of transition rules for
operations of SAFP2 • The history preceding the creation of operational net semantics is
quite interesting and amazing. In the paper [Pr87], construction of operational semantics
for true concurrence was supposed as impossible due to interleaving flavour of Plotkin's
style for operational semantics. However, at the same time it has been done in the paper
[DDM86).

Full abstractness of denotational semantics for processes of SAFP2 w.r.t. proposed
operational Petri net semantics is established.

Acknowledgments

I would like to thank .Jaco De Bakker and his group for providing pleasant and productive
scientific atmosphere during my stay at CWI. I'm also indebted to Frits Vaandrager
for his help, friendly support and attention to this work. Alexander Ustimenko (my
former master student of Novosibirsk University) contributed to t his paper by very
helpful discussions, questions and remarks. The final version of the paper has been
accomplished during my lecturing at the Paderborn University (West Germany). So, I
would like to thank also Prof. Lutz Priese for his helpful comments and Petra Scheike
for her expert typing of this manuscript.

2 Denotational semantics

Some additional information about SAFP2 process algebra, its denotational semantics
and axiomatization can be found in [Ch89].

2.1 Syntax of SAFP2

Let a { a, b, c, ... } be a finite alphabet of actions symbols (the action basis of a
process).

4

The actions are combined into a composite process by the operations of
; ("precedence"), 'v ("exclusive" or, "alternative") and II ("concurrency").

Intuitively, the process (a; b), at first, performs the action a and only after that it
performs the action b. The process (avb) consists of two possible behaviours: if it
chooses the performance of the action a then the action b does not occur, and vice
versa. The formula (a II b) specifies the process in which the actions a and b occur
concurrently.

In our approach, we suppose that each action has its own unique name. Thus, if we
have a process P consisting of different subprocesses Pi and A such that an action
symbol c occurs in both Pi and P2 , then the performance of the action c in P should be
synchronized by the performances of c in Pi and P2 simultaneously, i.e. the process P
can perform the action c if and only if both subprocesses Pi and A are ready to perform
the action c. For example, the process formula P = (a; c) II (b; c) specifies the process
in which the actions a and b are performed concurrently and only after that (i.e. after
that both actions a and b have been executed) the action c can be performed.

Thus, if some action x in one process needs the action y in another process for an actual
execution (it is a typical situation for communicating processes) then it can be easily
specified by means of SAFP2 using the same action symbols for actions x and y. Such
an approach allows us do not to restrict the number or communicating processes (in
CCS, the communication operator is binary, i.e. the communication is possible between
two processes only).

So, the set of process terms is defined by the following production system:

where a Ea.

2.2 Denotational semantics for SAFP2

Semantics of a process described by a formula of SAFP2 will be defined as a set of partial
orders. Thus, a process described by the formula (a 'vb) will be characterized by two
partial orders: the first one defines the process behaviour if the action a is chosen to be
performed and the second one defines the process behaviour if the action b is chosen for
execution.

We would like to have a more complete information about nondeterminism in process
structure at a semantic level of partial order representation. We include additionally
a "negative" information in our consideration and reasoning about defined processes.
In particular, we would like to know which actions have not been chosen during the
concrete process behaviour.

5

Thus, to denote the fact that the action a during some process functioning does not
occur (because some alternative action to the action a is performed) we introduce the
negated symbol a and call it the non- action a.

So, the process (a vb) is characterized by the following behaviours (partial orders): in
the first one, the action a occurs and the non- action b appears; in the second one, the
action b occurs and , additionally, the non- action a appears.

Let a = {a, b, c, ... } be dual to a alphabet of symbols for "non-actions".

Thus, each partial order representing one of the possible process behaviours has an
"observable" part and a "unobservable" one. The "observable" part consists of the
process actions which have been performed during this process run. The "unobservable"
part consists of the non- actions which have not been executed (have not been chosen)
during this process functioning.

However, there exists another reason why some actions could not be performed during
some process functioning.

Let us consider a process defined by the following formula

P=(allb)ll(avb).

This process specification consists of two subspecifications Pi
A= (avb).

(a II b) and

The formula Pi = (a II b) specifies a process in which both actions a and b should be
performed and performed concurrently.

The formula P2 = (a 'vb) defines two possible process functionings: either

1) the a.ct ion a occurs and b does not occur (i.e. the non- action b takes place), or
2) the action bis executed and a does not occur (i.e. a takes place).

If we try to define a process P as a common behaviour of Pi and A, then we discover
that there exists no common possible behaviour, that each combination of requirements
of Pi and A is contradictory. In the first case, it is required that, on the one hand,
the actions a and b should occur, on the other hand, the action b can not occur (if the
alternative action a is chosen to be performed). In the second case, the similar situation
occurs concerning the occurrence of the action a. In such situations we will say that the
action b (or, correspondingly, the action a) is deadlocked.

To denote the deadlocked actions we use the alphabet

~a = { 80 , 8b, be, . . •} •

The process defined by the SAFP2 formula will be characterized by a set of partial
orders in the alphabet a U o: U ~ 0 •

6

A partially ordered set (poset) is a pair p = (V, <) consisting of

(i) a vertex set V, typically modeling process actions, non- actions and deadlocked
actions, i.e. V ~ a U a U .6. 0 ;

(ii) a partial order < over V, with a < b typically interpreted as the action a neces­
sarily preceding the action b in process.

Let us denote by v+ = { x E VI x E a} - the action subset of V,

v- = { x E VI x E a} - non- action subset of V,

Remark.

and .6.v = { x E VI x E .6. 0 } - deadlocked action subset of V,

i.e. V = v+ U v- u .6.v.

In fact, we will consider posets (V, <) of two types only: either V = v+ U v- or
V = v+u.6.v, because if there is some deadlocked actions in the poset (V, <) then we will
not distinguish between non-actions and deadlocked actions any more, and announce
all "actions" in the "negative" part as deadlocked ones.

In this section we will consider posets, which satisfy the following conditions:

1) action v, non- action v and deadlocked action bv do not occur in poset p together,
i.e. the action v occurs in p (and exactly once), or non- actions v occurs in p, or
deadlocked action bv takes place in p;

2) partial order relation < over V is irreflexive:
3) V x, y E v- U .6.v : (x f. y) & (y f. x), i.e. all elements of v- (subset of

non- actions) and .6.v (subset of deadlocked actions) are incomparable;
4) V x E v+, 1 :3 y E v- U .6.v : (x < y) V (y < x), i.e. the elements of action subset

v+ and elements of v- U .6.v are also incomparable.
5) if there exists some deadlocked action ba such that ba E V, then v- = 0, i.e.

V=V+u.6.v.

Now, we give some informal comments concerning the conditions defined above.

In our approach, each action in a process formula has its own unique name. Three
different situations (excluding each other) can arise during process functioning:

1) either the action a occurs (and exactly once)

or the action a does not occur and we distinguish two different reasons for arising
such situation:

7

2) the non- action a takes place if some alternative action to the action a occurs, or

3) the deadlocked action lia takes place if the action a can't occur as a result of some
mistake in a process specification.

We consider a process behaviour as a partially ordered set of actions added by some
information about the actions which do not occur in this concrete process behaviour
but which have been specified in a process formula.

All of the non- actions and deadlocked actions a.re incomparable, because for our pur­
poses it does not matter: in which "order" two actions do not occur.

Thus, poset p = (V, <) consists of two parts:

1) "rcaf' (main) pa.rt, containing the actions of v+ and defining, in fact, process
behaviour, and

2) "imaginary" one, containing either non- actions of v- or deadlocked actions of
6-v.

Moreover, < n(v+ x v+) =<, and < n(v- x v-) = 0, and < n(6.v x 6-v) 0.
Thus, p = (V, <) = (V+, <) U (V-, 0) U (6.v, 0).

To define the denotational semantics of the basic process operation we will introduce
the similar poset operations:; (precedence), II (concurrency), 'v (alternative).

If the poset p, constructed by means of these operations does not satisfy the conditions
1)- 5) mentioned above we "correct" it using new auxiliary regularization operation [p].

This operation singles out the maximal preLx of p, satisfying the conditions 1)-5) "be­
fore" some contradictions in process specification arise. All the actions specified in this
process behaviour occurring "after" these happened contradictions, are announced as
the deadlocked actions.

At first, we distinguish the actions which are directly do not satisfy the requirements
1)- 5) in such a new constructed poset p = (V, <) and the actions which have been
announced earlier (by similar reasons) as the deadlocked ones (i.e. 6-v ~ V). We will
call these actions as the primary deadlocked actions:

D1 = {livl(v E V)&((v, v) E<)} U {livl(v E V)&(vE V)}U
{livl(vEV)&(8vEV)} U {8vl(vEV)&(8vEV)}u 6-v.

All of the actions included in the set D1 can not occur as a result of contradictory
requirements for their occurrence in a process functioning.

At the second step, we find all the actions which have been specified in a process to occur
"after" the actions of D1 , and hence they also can not occur during process functioning.

8

So, they should be also announced as deadlocked actions:

Dz = { tlw I (W E V) & ((tlv, W) E <) & (tlv E flt)} •

If Dt U D2 -=/ 0 then we will not distinguish non-actions and deadlocked actions in this
process any more, because, in fact, there is no big difference between non-actions and
deadlocked actions in this process any more. If even there is only one deadlocked action
in the process P, nevertheless in the sequential composition (P; Q) all the actions of Q
will never occur and will be announced as deadlocked ones, and if we consider concurrent
composition (PIIQ) and there is some action a specified in Q to occur, then it does not
matter by which reason in the process P the action a can't occur (i.e. if it is a or ba),
the result will be the same: the action a becomes deadlocked one (i.e. ba) in the process
(PIIQ).
Thus, if Dt U D2 -=/ 0 then we add to the set of deadlocked actions the non-actions as
well:

D = Dt U D 2 U { bJv E V}

Let us now define formally the regularization operation [] on the wrong-constructed
posets:

[p] = (D, 0) u (V\a(D), < n ((V\a(D)) x (V\a(D))).

It easy to verify, that if the poset satisfies the conditions 1)- 5) mentioned above, then
[p] = p.

Now, we define the poset operations in the following way.

Precedence. The precedence operation (Pt ; p2) of two posets is defined as:

i.e. in a new poset p each action of Pt precedes each actions of p2 ; or if the constructed
object does not satisfy the 1)- 5) conditions then we "correct" it using regularization
operator.

Example. Let Pt= ({a},0) and pz = ({b}, 0) , then

But

9

because we have contradictory requirements for the occurrence of the action b, and as
result, the action b is deadlocked.

Concurrency. The concurrency operation (p1 II p2) of two posets is defined as:

where (< 1 U <2)* is a transitive closure of relation (<1 U <2).

Example. Let p1 = ({a, c}, <i), where a < 1 c, and p2 = ({b, c},<2), where b <2 c.
Then p3 = (P1 IIP2) = ({a, b, c},<3), where a <3 c and b <3 c.

Let us consider additionally: p4 = ({a, c}, <4), where c <4 a. Then

Ps = (p3 llp4) = [({a, b, c},(a, c) U (b, c) U (c, a))*)]
= [({a, b, c}, ((a, c) U (b, c) U (c, a) U (a, c) U (c, c))]
= ({b, ba, be}, 0).

To define the next operations we introduce two new notions.

Let P1 = (½, < 1) and P2 = (Vi, <2) be the posets.

The poset P1 is a prefix of poset P2 (P1 C P2) iff

and
'tf XE V/, Vy E v.t : y <2 X ==}YE i,;+,

~ The modified union U is defined as follows:

P2 ~ PI
P1 ~ P2
otherwise.

In the last case, when p1 and p2 are not prefixes of each other and they are not equal
we have a set consisting of the posets p1 and P2•

The modified union for posets absorbs the computations, which can be continued by
another one. Some examples will be given later.

Alternative. The alternative (p1 vp2) of two posets is define as follows:

where

It should be noted that (Pt vp2) is not a partial order, but a set of two partial orders,
describing possible alternative computations (process behaviours), namely: if Pt occurs,
then the actions of p2 do not occur, and vice versa.

Example. Let Pt= ({a},0), P2 = ({b},0), then

(Pt VP2) = {({a, b}, 0) U {({a, b}, 0)}.

We extend the operation introduced above for sets of partial orders in the natural way.

n . k ·
Let Pt = _U {p~} and P2 = .U {JJii} be the sets of partial orders, then

i=t J=l

n k

AoA = .U (U {p~op~}),
i=l J=l

where o E {; , II, v}.

Nondeterministic concurrent process is characterized by the set of partial orders, asso­
ciated with all possihle (alternative) process behaviours.

Let us denote by V2 [P] the set of partial orders associated with a process P.

Denotational semantics of SAFP2 formulae is defined as follows:

1) 'D2 [a] = ({a}, 0).

2) 'D2[PJJQ] = 'D2[P]JJV2[Q]

3) 'D2[P; Q] = 'D2[P]; 'D2[Q]

4) 'D2[PvQ] = 'D2[P]9V2[Q]

~
Now, we can explain the necessity and meaning of the modified union U defined above.

Example. Let us consider the following process specification:

P = (avb) II (bvc).

11

It consists of two concurrently combining subprocesses: A = (a-vb) and A= (b9c).

If we try to imagine the corresponding net representation for the process P then it will
be the following:

a

C

The process A specified by the formula (a9b) consists of two different behaviours: if
the action a occurs, then the action b does not occur and vice versa. The process P2

has a similar semantics. Let us denote:

p~ = ({a, b},0), Pi= ({b, a},0),

and
p~ = ({b, c},0), p~ = ({c, b},0).

In our approach, we suppose that each action has its own unique name. So, in a process
P = (a-vb) II (b9c), the action b can occur iff it occurs in both subprocesses: A = (avb)
and A= (b9c). Thus, the behaviour p} of the subprocess A takes place (occurs) in the
compound process P iff the behaviour p~ of the subprocess P2 occurs. Correspondingly,
the behaviour Pi of the subprocess P1 occurs in the composite process P iff the behaviour
p~ of the subprocess P2 occurs.

However, if we define the semantics of the process formula P = (a-vb) II (b9c) by the
formal rules, we should combine each possible process behaviour of A = (a-vb) (namely:
PL pi) with each possible process behaviour of A= (b-vc) (namely: Pt Pn, even if their
combination can not be chosen during the composite process functioning.

Thus,

V2[P] = V2[P1] IIV2[P2] = (p{ 11P~) u (p{ IIPD u (Pi 11P~) u (Pi IIPD
= [({a, b, b, c},0)] u ({b, a, c},0) u
({a, c, b}, 0) u [({b, c, a, b}, 0)].

The first and fourth posets do not satisfy condition 1), which we claim for posets,
underlying in our semantical domain, and by this reason, they should be regularized.
At the next step, we obtain the following four posets:

12

It is easy to note, that in spite of the fact that the first and fourth posets contain dead­
locked actions, they do not reflect some mistake in the initial process specification. They
were obtained as a result of syntactically "wrong" (practically impossible) combining
some processes behaviours of P1 and P2 . In such a case, there exist the other "correct"
process behaviours which "continue" these syntactically "wrong" ones.

To eliminate such "wrong- constructed" behaviours we use the operation of modified
union. The modified union U for posets absorbs the posets which are prefixes of some
another one.

In our example, the posets ({ a, De, ob}, 0) and ({ c, Oa, ob}, 0) are prefixes of the poset
({a, c, b},0).

Therefore:

Thus,

{({a, be, bb},0)} U {({b, a, c},0)} U
{({a, c, b}, 0)} u {({c, ba, ob}, 0)}
{({b, a, c},0)} u {({a, c, b},0)}.

V2[p] = {({b, a, c},0),({a, c, b},0)}.

It should be noted, that if some process behaviour contains "real" deadlock, then there
is no another process behaviour which continues this one.

2.3 Full abstractness

One of the purposes of a concurrency theory is to analyze and verify statements about
processes, in particular, to determine whether two processes specified by different alge­
braic formulas can be identified.

One of the natural ways of reasoning is to identify two processes if they generate the
same sets of possible behaviours. Each behaviour in such a set is a result of some
nondeterministic choice among the alternative actions during a run of the initial process.
Thus, really, each process behaviour can be considered as a poset consisting of the
process actions.

So, if p = (V, <) is a poset and V ~ a U a U ~a, then let p+ = (V+, <) denote its
"real", "observable", part over the action subset.

Correspondingly, if process P is characterized by the set of partial orders {pi}f=1 (i.e.
V2 [P] = {pi}f=1) then let Vf [P] = {p;}i=1 denote its "observable" part over the
action subset.

Two processes P and Q are observationally equivalent, written P ~+ Q, iff

13

Df [P] = Df [Q].

By this definition, the following two processes P = (avb) and Q = (allb)ll(avb) are
observationally equivalent (because 'D2[P] = {({a, b} , 0),({b,a},0)} and
'D2[Q] = {({a, 8b}, 0), ({b, 8a}, 0)}, hence Df [P] = Df[Q] and can not be distinguished
by any observations of partially ordered actions).

However, if we consider processes (P; c) and (Q; c) then we obtain behaviourally different
processes:

'D2[(avb);c] = {({a,c,b,<1), ({h,c,a},<2)}, where a < 1 c and b < 2 c.
'D2[((allb)ll(avb));c] = {({a,8b,8c},0),({b,8a,8c},0)}.
Df [P; c] # Df [Q; c]

Thus , observationally equivalent processes can become non- equivalent if they are placed
in the same process context (or process environment), i.e. ~+ is not a congruence.

So, if we would like to consider the equivalent processes as modules that can be mutually
exchanged in any context without affecting the observable behaviour of the latter, we
need both a "positive", "observable" information about the actions which a process can
perform (during its possible behaviour) and a "negative", "unobservable" information
concerning the actions which can not occur in this process behaviour.

A context C[] is an expression with zero or more "holes" to be filled by an expressions.
We write C(P] for the result of placing P in each "hole".

Lemma 2.1
Let P and Q be a processes from SAFP2 •

If VC(]: C[P] ~+ C[Q] then a(P) = a(Q),

i.e. if the processes P and Q are observationally equivalent for any context C(], then
they have the same action alphabet.

Proof.
Let us suppose the contrary, that a(P) # a(Q), i.e. there exists such an action a that
a E o(P) but a r/. a(Q).

If a E a(P) then for any partial order Pi = (l-'t <f) such that Pi E 'D2 [P] the following
assertion is valid:

However, P ~+ Q. It means that, at least, "positive" parts of processes P and Q are

14

the same. Since a E a(P) and a (j. a(Q) we have Vp; E V2 [P]:

Let us consider the following processes: (PIia) and (Qlla). By the lemma condition it
has to be: (PIia) :=::::+ (Qlla).

However,

Vpi E 'D2[Plla] : Da E i/11°,

Vqi E 'D2[Qlla] : a E V;Qlla_

Hence, Vt[Plla]-/- Vt [QJJa] and (PIJa) ~+ (QJJa).

Thus, our initial proposition was wrong and a(P) = a(Q).

Theorem 2.1
Denotational semantics V2 for processes of SAFP2 is fully abstract w.r.t. :=::::+, i.e.

Proof.
::::}

Let us suppose the contrary, that there are such processes P and Q, that VC[] :
C[P] :=::::+ C[Q] but V2 [P] -/- V2 [Q].

■

Using Lemma 2.1, we have that a(P) = a(Q), and also by theorem condition: P :=::::+ Q.
It means that at least "positive" parts of P and Q are the same: Vt [P] = Vt [Q].
But we assumed that V 2 [P] -/- V 2 [Q], hence the possible "difference" has to be in
the "negative" parts of P and Q. It means, that there exist such p;

0
E V2 [P] (where

Pio = (V;: <[)) and qj0 E V2[Q] (where qj0 = (½,~, <l)) that Pt = qJo, but their
"negative" parts are different.

As it has been noticed earlier each partial order considered as a semantics for SAFP2

processes has negative part consisting of either non-actions only or deadlocked actions
only,

and ~t = 0 in this case,
and (V;~t = 0 in this case.

Exactly the same is true for the vertex set of qi
0

= (½,~, <l). If Pio and qi
0

are different
in their negative parts, then we can distinguish two cases:

15

(i) if (V;~t =/- 0 then ~i;
0

=/- 0

And it also has to be mentioned that there are no others different partial orders Pi E

'D2[P] and qj E 'D2[Q] which have the same "positive" parts as Pio and qi
0

(by definition
of 0, which absorbs all prefixes).

Now, let us consider the processes (P; c) and (Q; c), where c r/. aP U aQ.

'D2[P; c] = {(pi; ({c}, 0))1Pi E 'D2[P]},
'D2[Q; c] = {(qi; ({ c}, 0))lqi E 'D2[P]}.

If the situation (i) has place, i.e.

then

Pi0 i({c},0)) = (V;~U {c},<fo U(V;~)+ X {c}),
qj0 i ({c}, 0)) = (l/i~ U {he}, <l).

So, Vf [P;c] =/-'Df[Q;c] and (P;c) ~+ (Q;c)

The con sideration of the case (ii) is similar.

It means, that with the conjecture that 'D2[P] =/- 'D2[Q] we found such a context C[) for
the processes P and Q that we can distinguish them, i.e. that C[P] ~+ C[Q). But it is
contradiction with the theorem condition.

Hence our conjecture was wrong and 'D2[P] = 'D2[Q].

~

It is sufficient to prove that if 'D2[P] = 'D2[Q] then for any SAFP2 process R the
following statements are valid;

'D2[P; R] = 'D2[Q; R],
V2[PIIR] = 'D2[QIIR],
V2[P~R] = 'D2[Q~R],

However, it is immediately follows from the definition of the semantics 1)2 for SAFP2

processes:

16

3 Net algebra AFP 0

To answer the question: What class of nets could be specified by formulae of SAFP2 we
introduce the algebra AFP O for the description of finite net structures.

3.1 The descriptive algebra AFPo for building finite nets

Three basic operations of the algebra SAFP2, namely: II-concurrency, ;-precedence and
v7-alternative, can also be used as a basis for a net constructor. We will denote this
descriptive algebra by AFP 0 •

The proposed algebra AFP O is generated by the class of atomic nets using the set of the
net operations.

An atomic net is a net of the following form:

a

o~----1--•o
fad {g}

where a is a transition symbol, {~} is a head net place, {~} is its tail
place.

The concurrency operation (denoted"II") is defined as a common graph union: it super­
poses one net on another (see Fig. la).

If N1 = (P1, T1 F1) and N2 = (P2, T2, F2) then

N = (N1 II N2) = (Pi LJ P2, T2 LJ T2, F1 LJ F2)

Let H(N) denote the set of head places of a net N and G(N) be the set of
tail places of N. By definition, H(N) = H(N1) U H(N2) and G(N) = G(N1) U G(N2).

Remark 1.
Here and further we will assume that any constructed net has a token in its each head
place.

a) Concurrency

M

b) l\lerging

o-+-o
{4} d {g}

C

d

Figure 1: Net Operations

17

' { {~, g} ® { {g}' {4}}

18

a C {£,d

0 ·I ·O
{g.} {g}

. . {f}
b d

' 0 · I -0 .
{Q} {g} {4} {i,d

a C fr,d

fa}

c) Precedence

a

{gj a {g}

0 ·I ·O C

b

0--1---o
{k} {£}

d) Alternative

Figure 1: Net Operations (continued)

19

Other net operations can be defined via concurrency operation and the auxiliary merging
operation. The latter merges two sets of places in a specific way. This involves two
suboperations: 1) the formation of the set of merged places, 2) the replacement of the
two existing sets by a new set.

Given two sets of places X and Y the forming operation "®" results in the set Z of
merged places:

Z = X ® Y = {x Uy Ix EX, y E Y}.

The merging operation M merges two sets of places, X and Y, m a net
N = (P, T, F) and generates a new net

N' = M(N, X ® Y) = (P' ,T', F'),

where

P' = P\(X U Y) u (X ® Y), T' = T,
V p(p E P'& p (/: X ® Y) : F'(p) = F(p),
V p EX ® Y : F'(p) = F(x) U F(y), where p = x U y, x EX, y E Y.

An example of the merging operation is shown in Fig. 1 b.

Remark 2.
To define below the operations of precedence ; and alternative 'v, we assume that for­
mulae (A; B) and (AvB) do not contain the same symbols in both A and B. In the
general case, if formulae A and B have the common symbols, we rename these symbols
(for example, in B) and, at first, construct the net (A; B') or (AvB'), where B' is a
result of renaming B in such a way, that A and B' do not contain the same symbols.
After that, in a new constructed net, the transitions, which have had the same names
in the initial nets A and B, are identified (are superposed).

The precedence operation ";" joins two nets by merging the set of tail places of the first
net with the set of head places of the second (see Fig. le).

By definition,

The alternative operation "v" unites two nets by merging their sets of head places and
separately their sets of tail places (see Fig. ld).

20

where

By definition,

Let a be a class of atomic nets, i.e. a class of transition symbols.

A net formula in the algebra AFP O over basis a is defined as follows:

1) each symbols of a is a formula;
2) if A and B are formulae, then (A II B), (A; B) and (AvB) are formulae.

Remark 3.
To be more precise we should distinguish the denotation of SAFP2 and AFP o operation.
If it is necessary, we will write: ll2, ;2, v2 for operations of SAFP2 and Jlo, ;o, 'vo for
operations of AFP 0 •

It is easy to note, that the nets described by AFP O formulae form a subclass of elementary
net systems [Th87]. The nets of this subclass generate only finite behaviours.

3.2 Occurrence nets as the net-processes

The net behaviour can be characterized by the set of occurrence nets [Pet77], represent­
ing concurrent processes.

Occurrence nets (or 0-nets) are acyclic nets with a unique token in each of their head
places, which additionally satisfy the following restriction:

i.e. every internal net place has only one input and output transition.

Let us consider a net N = (P, T, F) specified by AFP O formula.

A net N' = (P', T', F') is called a subnet of the net N = (P, T, F)(N' ~ N)
iff

P' ~ P, T' ~ T, F' ~ F n (P' x T' U T' x P')

The net N' is called an O-subnet of the net N, if

1) N' is a subnet of N,

2) N' is O-net,

3) Vt ET': {p E PlpFt} ~ P' and Vp E P': F'(p, t) = F(p, t),

21

i.e. transition t in the O-subnet N' has the same set of input places and the same set
of arcs connecting t with its input places as in the net N.

We will call an O-subnet N' of the net N maximal iff

1) there is no O-su bnet N" of the net N such that N' ~ N" and N' =/= N";

2) all the head places of N are head places of N', i.e. H(N') = H(N).

Remark.
The maximal O-subnet N' = (P', T', F') may have in the structure some absolutely
isolated places (i.e. places {pl p· = ·p = 0}), because of the requirement 2) in the
definition of maximal O-subnet.

If the tail places of the maximal O-subnet N' are not among the tail places of the initial
net N then we supply (label) them by special failure symbol b, stressing by this the
unsuccessful (failure) termination of the net N functioning.

The set of all maximal O-subnets of net N forms the set of all possible concurrent
processes generated by this net.

Examples.

1) Let us consider net N1 = (avb) II (bvc) in Fig. 2a.

a) b)

C

Pt~Qp3

P2~Qp4

Figure 2.

c)

The set of its maximal subnets is shown in Fig. 2b,c

a

Pl 0--+--0 p3

P2 0---+-0 P4

C

22

2) Let us consider the net N2 = (av(b; e))ll(dv(c; e)) shown in Fig. 3.

a

b Ps

~
P2 0 -c 1'

4 d

Figure 3.

Its set of maximal O-subnets is shown in Fig. 4a, b, c, d.

a) b) c) d)

P1 a Ps

o-1-6
Ps

P1 b p3 : S)
0---1-0 el

~~~ p, 
C 

P2 Figure 4. 

P1 a Ps 

o-f-o 
o-1--o 
P2 C p4 

P1 b p3 

o-f--o 
o+o 
P2 d P6 

3) For the net N = ajj(avb)llb shown in the Fig. 5a the set of i ts maximal O-subnets 
is represented in the Fig. 5b,c. 

a) b) c) 

a a 

P1~ p4 P1 0--;1-o p4 P10 

N3: ::QP, P, ✓ "-op, P2 0 b QPs ~,/ 
p3 0 p3 0/ "'0 P6 b P6 

Figure 5. 

Thus, in occurrence nets, we have, sometimes, isolated places, which have neither input 
transitions, nor output transitions. 



23 

3.3 Semantics for AFP O nets: algebraic approach 

Since we consider the nets defined by the AFP 0 -formulae, the set of concurrent processes 
(i.e. the set of maximal O- subnets) can be also defined by means of AFP O operations. 

Let us denote by 'D0 [N] the set of concurrent processes (i.e. the set of maximal O­
subnets) associated with the defined by AFP O formula N. 

The semantics D 0 [N] is defined as follows: 

1. 'D0 [a] = a, 
i.e. the set of maximal O-subnets associated with the net defined by the AFP 0 

formula a coincides with the initial A-net a. 

To define a semantics of next operations, we introduce the following notions. 

Let N1 = (A, T1, F1) be O-net. The O-net N2 = (A, T2, F2) is called a prefix 
of N1(N2 = pref (Ni)) iff 

1) A ~ A, T2 ~ T1, F2 ~ Fi and Fi n ( A x T2 U T2 x P2) = F2 

2) VxEAUT2VyEAUT1: (y,x)EF1===}yEP2UT2and(y,x)EF2. 

3) H(Ni) = H(N2 ), i.e. the sets of the head places {pj·p = 0} for N, and N2 
are the same. 

In addition, if N2 is a proper prefix of N1 (i.e. N1 =J N2) then the tail places 
of N2 i.e. the places {pjp· = 0} are supplied by special label 8 specifying failure 
(noncomplete) termination of initial O-net N1. 

Let N1, ... , Nn be the O-nets. 

Then 

n 
~ 
U {Ni} = {Ni }?=1 IV j1,h(l ~ j1 =J h ~ n) : Ni1 <le Ni1 and Ni2 <le NiJ. 

i=l 

i.e. the modified union U absorbs among the set of O-nets such O-nets which 

are prefixes of the others ones. 

We will call two nets N1 = (A, T1, Fi) and N2 = (P2, T2, F2) ) are coherent iff 



24 

We will call two nets N 1 = (Pi, T1 , Fi) and N2 = (Pi, T2 , F 2 ) ) are coherent iff 

2. Let TAB be a set of transition symbols which is common for the formulae A and 
B (i.e. TAB = a(A) n a(B)). Then 

'.Do[A II BD = 0. { < (A; II Bj) > I A; E '.Do[A], Bj E '.Do[B]}, 
s,J 

where 

< (Ai II BJ>= {(Ai II Bi) I Ai= pref (Ai), Bi= pref (Bj), and 
a(AD n TAB = a(B;) n TAB, and 
Ai and Bj are maximal coherent prefixes with such a 
property }, 

i.e. composite process (A II B) consists of 

(i) either completely independent subprocesses Ai and Bi (if a(A;) n TAB = 
a(Bi) n TAB = 0) 

(ii) or correctly "synchronized" parts of the subprocesses A; and Bi (if a(A;) n 
TAB -:f 0 and a(Bi) n TAB -/- 0). 

If a(Ai)nTAB = a(Bj)nTAB i 0, then< (Ai II Bi)>= (Ai II Bi) and it means that 
Ai and Bi can successfully terminate their executions, synchronizing executions 
of common transitions in Ai and Bi. 

If a(Ai) n TAB -:f o:(Bj) n TAB, it means that there exists a tr ansition t, for 
example in O-net Ai, which have to be synchronized by its common execution in 
A; and Bj (in according with requirement: t E TAB), but it is impossible, because 
t rf:. ( a( Bi) n TAB). Therefore, in this case to terminate execution of Ai successfully 
is also impossible, and only (noncontradictory) prefix of Ai can be executed. 

if the tail places of Ai have a 
special label 8 of failure termination 
otherwise. 

1.e. composite process (A; B) consists of 

(i) either successfully terminated subprocess A; after which Bi is executed 
(ii) or only subprocess A; if it has a special label of failure termination, which, 

in other words, means that some tokens stuck in internal places of A and, 
in this case, an execution of B is impossible. 



25 

4. Do[AvB] = Do[A] U Do[B], 
i.e. the set of maximal O-subnets associated with the net (AvB) consists of the 
maximal O-subnets defined by the formulae A and B. 

Remark. 
As it has been defined earlier, (A; B) and (AvB) are AFP 0 -formulae under the condi­
tion that formulae A and B do not contain the same transition symbols in both A and 
B (i.e. a(A) n a(B) = 0). 

By definition an O- subnet can contain several different places incident to the same set 
of transitions. For example, the O-subnet shown in Fig. 5b contains two different places 
p1 and P2 incident to the same transition a. 

~ Let N be an O-subnet. Let us denote by N a modified O-subnet constructed from N 
by means of the following rule: 

V Pi, P2 E p : (Pi = P2 /\" PI =· P2 ===} PI = P2), 

i.e. the places incident to the same set of transitions are identified. 

Lemma 3.1 [Ch89] 

Let us consider A-net defined by AFP 0 -formula N. 

Let {Ni}f=1 be the set of all maximal O- subnets of N. Then 

Vo [ N] = { Ni 11 ::; i ::; n} . 

3.4 Interrelation between algebras SAFP2 and AFPo 

Now , we will establish that, in fact, it does not matter, if we consider the formula A 
as the AFPo formula, or if we consider the same formula A as the SAFP2 formula, it 
defines just the same process. 

Let AFPo and SAFP2 be the algebras over the same action basis a. 

Let us consider the mapping W of the AFPo formulae into the SAFP2 formulae which is 
defined in the following way: 

w(a) = a, where a Ea, 
w(A ;o B) = w(A) ;2 w(B), 
w(AvoB) = w(A)v2 w(B), 
w(A llo B) = w(A) 112 w(B). 



26 

As it has been noted earlier the net representation of a concurrent process practically 
coincides with its partial order representation. If N is an O- net then the associated 
partial order PN can be constructed in the following way. Let TN be a transition set 
of N, and <N be a basic order (precedence) relation (based on FN) over TN. Then 
PN = (TN, <N) -

An O- net N are po-equivalent to partial order p( N ~po p )if the associated partial order 
Pn constructed by the O- net N coincides with p (i.e. p = PN ) . 

We can extend the notion of po- equivalence to the set of O-nets and partial orders in 
the natural way. 

Let p+ = (V+, <) denote the restriction (projection) of partial order p = (V, <) on the 
action set a (i.e. p+ = (V+, <) is a so- called "real" part or partial order p = (V, <)). 

n 
Let us consider a formula P of SAFP2 and suppose that 1'2 [P] = _U {p;}. 

t=l 

Let also vt[P] =.U {pt}. 
t=l 

Theorem 3.1 [Ch89] 
Let us consider a Petri net described by the AFP0 formula N and let \Jl(N) = P be the 
corresponding (just the same) SAFP2 formula. 

Then 

We will say that the O-nets N, and N2 are a-equivalent (occurrence-equivalent) and 
denote it: N1 ~o N2 iff 

(i) N1 ~po N2 , i.e. associated partial orders PN1 and PN2 constructed by O-nets N, 
and N2 are the same: PN1 = PN2 

(ii) {pip· = 0 and p has a special label 8 of failure termination } =J 0 for N1 {:::> 

{pip· = 0 and p has a special label 8 of failure termination } =/ 0 for N2, 
i.e. if in the O-net N1 has unsuccessful termination then the O-net N2 terminates 
unsuccessfully as well, and vice versa. 

We extend the notion of o-equivalence to the set of O-nets in natural way. 

We will call two AFP O nets N1 and N2 are o-equivalent ( N1 ~ 0 N2) iff their corresponding 
sets of maximal O-subnets are a-equivalent, i.e. V 0 [N1] ~o Vo[N2]. 



27 

Examples 

The following pairs of nets are a-equivalent. 
We give also semantics based on posets with non-actions for the same process formulae 
to compare their "net" and "poset" representation. 

1) 

a a 

0 

Pi = (all(avb)llb) P2 = ((allb); c)ll(avb) 
'D2[Pi] = {({a,8b},0),({b,8a},0)} 'D2[P2] = {({a,8b,8c},0),({b,8a,8c},0: 

2) 

N3: 
a N4: a 

< 
✓~ 

< 
P3 = ((av(b; c))llb) P4 = ((av(b; c))llc) 
'D2[P3] = {({a,8b,8c},0),({b,c,a},<3)} 'D2[P4] = {({a,8b,8c},0),({b,c,a},<4) 
where b <3 c where b <4 c 



28 

3) 

a 

b 
Ns: 

C 

d 

Ps = (a;b;c;d)ll(b;d) 
V2[Ps] = ({a,b,c,d},<s) 
where a <s b <s c <s d 

a 

N6: b 

C 

d 

P6 = ( a; b; c; d) 
V2 [P6] = ({a,b,c,d},<6) 
where a <6 b <6 c <6 d 

Please, notice that the net Ni is not o-equivalent to the net N 7 below. The nets Ni and 
N 7 are po-equivalent (i.e. their sets of maximal O-subnets define the same set of partial 
orders on the actions, extracted from the occurrence nets), but maximal O-subnets of 
Ni have the places labelled by b (symbol of unsuccessful termination), in contrast of 
maximal O-subnets of N 7 , terminated successfully. 

a 

P1 = (avb) 
V2[P1] = {({a,b},0),({b,a},0)} 

Let us consider two Petri nets described by AFP O formulae Pi and P2 , such that 
a(Pi) = a(A), i.e. the nets Pi and A are defined over the same sets of actions for 



29 

elementary nets, (since the function \ll is identical we will not distinguish Pi as formula 
of AFP2 and A as formula of SAFP2). 

The following theorem is a corollary of Theorem 3.1 and definition of net equivalence. 

Theorem 3.2 

4 Operational semantics 

4.1 Preliminary remarks 

Denotational semantics for SAFP2 considered above is based on the principle: to corre­
spond for each operator op of SAFP2 some its semantic equivalent opv defined on the 
semantic domain and satisfying the following equation: 

Operational semantics is based on the principle: to define only the states and transi­
tions of some abstract machine, functioning by similar rules as the described objects. 
The interleaving operational semantics of some process algebra takes as machine a non­
deterministic automaton or labelled transition system [Ke76]. In our case, we replace 
the automaton by Petri net and the question is how to do this in the Plotkin's style of 
operational semantics [Pl81] where the distributed states and transitions of Petri nets 
have to be specified by some syntactic rules. 

4.2 Different representation for subclass of Petri nets 

In this section, for describing operational net semantics we will use the following ( slightly 
different) definition for Petri nets [Cz85]: 

Definition. A Petri net is a structure 

where 



30 

(i) S is a set of places or local states; 

(ii) --+ ~ P + ( S) x a x P + ( S) is the transition relation, 

(iii) M 0 ~ P+(S) is the initial marking. 

Here, P+(S) denotes the set of non-empty subsets of a set S. An element (P, a, Q) E--+ 

is called a (local) transition (labelled by a) and will be also written as P ~ Q. For a 
transition t = P ~ Q, its preset is defined by pre(t) = P, its postsets by post(t) = Q 
and its action by a(t) = a. 

The graphical representation of Petri nets is as usual. Local states s E S are represented 
as circles with the name "S" outside and local transition t = ( {S1 , ... , Sm}, a, {S~, ... S~}) 
as bars, labelled by "a" and connected via directed arcs to the local st~tes in pre(t) and 
post(t)': 

s~ o S' n 

The initial marking M 0 is represented by putting a token into the circle of each s E M 0 . 

\Ve consider h ,,re only acyclic nets. To this end we require that pre(t) and post(t) are 
disjoint. 

The execution of the transition a transforms a marking Minto a new marking M': 

M ~ M' iff pre(a) ~Mand M' = (M - pre(a)) U post(a). 

A reachable marking of net N is a marking M such that: 

Mo~ M1 ~ ... ~Mn= M 

for some transitions a1 , ... , an and markings M1 , ... , Mn, where M 0 is the initial marking 
of N. 

Let mark (N) denote the set of all reachable marking of N . 

The reachable local states of N are defined by the set: 

loc(N) = {s E Sl:lM E mark(N): s EM} 



31 

Further, we will identify the Petri nets which differ only by a one-one renaming of their 
reachable local states, i.e. we will identify the nets N; = (S;, ---+;, M;), i = 1, 2 

Ni= N2 

if there exists a bijection f : loc(Ni) ---+ loc(N2 ) such that VM E mark(Ni) and all 
local transitions P ~i Q of Ni with P ~ M : P ~i Q iff J(P) ~2 J(Q), and vice 
versa where f(P) and J(Q) are understood elementwise. 

By an abstract Petri net we mean the equivalence class N / = of some "concrete" nets 
N. The graphic representation for abstract net is the same as for concrete ones, except 
that places appear only for reachable local states and they have no any names s E S. 

We will characterize the semantics (behaviour) of the nets ( abstract nets) by the set 
of pure concurrent processes generated by the net and specified by the set of maximal 
O-subnets (see definition in Section 3.2) and we will consider two nets Ni and N2 as 
equivalent (i.e. generating or describing the same behaviour) iff they are o-equivalent, 
i.e. if Ni ~ 0 N2 (see definition in Section 3.4). 

4.3 Decomposition of concurrent processes 

Except the differences for the treatment of net equivalence and the transition rules for 
operations of SAFP2 , we use the same idea [DDM86, 0188] of decomposing a process P 
into a set 

of sequential components which can be thought of as running concurrently. For exam­
ple, we can split the concurrent process (PIIQ) into the two sequential components­
subprocesses P and Q (in the condition here, that P and Q themselves do not contain 
other concurrency operator II inside), but supplied, in the addition, with some infor­
mation about their communication interface, i.e. the set of actions which have to be 
synchronized to be performed in P and Q : A = aP n aQ. 
So, we will split (PIIQ) into the 

where A= aP n aQ. 

Sequential components will denote the local states of Petri nets, and the local transitions 
will have a form 

where a is an action and Pi, ... , Pm, Qi, ... , Qn are sequential components. 

The graphical representation is following: 



32 

a 

The set Seq of sequential components is defined by the following rules: 

P := v I a I (P)AIP; QIPvQ 

Where v is a special symbol of empty process, which does nothing and successfully 
terminates, a is an elementary action, i.e. a E a, and the index A is of the following 
type: 

(*) where A ~ a 

and describes some additional information about communication interfaces between the 
processes. \Ve will call it communication information. 

Please, notice that in the expression (P; Q) the symbol Q represents process of SAFP2. 
However, we announce each process (P; Q) as a sequential component regardless whether 
Q contains any concurrency operator II- Thus, sequentiality refers only to the first 
process in the sequential composition and require that it does not contain two actions 
that might occur concurrently. 

Further, the following denotations w11l be used: 

a, b, c, .. . 

A,B,C, .. . 
A,B,C, .. . 
P,Q,R, .. . 
P,Q ,R, .. . 

Remark. 

for elementary actions from a 
for sets of actions from a 
for information about process communication interfaces of type (*) 
for processes of SAFP2 
for set of sequential components 

Before decomposing process to the set of sequential components, we are doing some 
additional syntactical analysis. Iffor processes (P; Q) and (PvQ) the following is valid: 
a(P) n a(Q) =f. 0, then the actions from a(P) n a(Q) can't occur, and such a process 
specification contains "syntactical" mistake. To recognize it and to show it explicitly, all 
the actions from a(P)na(Q) in the process formulae (P; Q) and (PvQ) are substituted 
by special deadlocked action symbol 8. The intuitive meaning of 8 is that 8 can't occur 
(be performed) in the process and cancel the performance of process actions specified 
to occur "after" it. 



33 

Decomposition of a process P into a set of sequential components is defined by the 
following decomposition function dee( P): 

1) dee( a) = {a} 

2) dec(P; Q) = dec(P); Q 

3) dec(PIIQ) = (dec(P))AII U (dec(Q))11A, where A= a(P) n a(Q) 

4) dec(PvQ) = dec(P)vdec( Q) 

(Remember, that if a(P) n a( Q) = A -/= 0 in the processes (P; Q) or (PvQ), then all 
the action from A are substituted in subprocesses P and Q by 8). 

In the clauses 2) - 4) the operations ; All , IIA, and 'v applied to the sets of sequential 
components are understood elementwise, i.e. for example 
(dec(P))AII = {(P)A11IP E dec(P)}. 

We will use for the sequential components of decomposed process the following regular­
ization rules. 

In these rules 1-3 below we will use the operations of union U and intersection n extended 
in the following way: 

(All) 0 B = (AO B)II 
(IIA) 0 B = ll(A OB) 
(A1,A2) o B = (A1 o B,A2 o B) 

where B ~ a, A 1 and A 2 - communication information of type(*), and o E {n, U}. 

For example, (A2II, IIA2) U B = ((A1 U B)II, ll(A2 U B)) 

So, the regularization rules are the following: 

1. 

2. 

n n 

((i~l (P;).A.).A =i~l (P;).A;,.Ana(P;) 

We apply this rule when there are several occurrences of concurrency operator in 
the decomposed process. 

For example, let us consider the process P = ((allb)IJ(a; c)). Then dec(P) 
((a)011){a}II U ((b)110){a}II U (a; c)ll{a} = (a)011,{a}II U (b)IJ0,011 U (a; c)ll{a}• 

(P).A; Q = (P; Q).Aua(Q) 

For example, let us consider the process P = (allb); c. 
Then dec(P) = (a011; c) U (b110; c) 



34 

3. 

Using the rule 2, we have 
a011; c = (a; c){c}II 
b110; C = (b; c)ll{c} 

Thus, dec(P) = (a; c){c}II U (b; c)ll{c} 
Note, that the set of sequential components for processes ((allb); c) and ((a; c)ll(b; c)) 
are the same, i.e. 
dec((allb); c) = dec((a; c)ll(b; c)), 
and that it is in correspondence with intuitive understanding their behaviours. 

For example, let us consider the process P = (allb)vc. 
Then dec(P) = (a011vc) U (b110vc). 
Using the rule 3, we have 

a011vc = (avc){c}II 
b110vc = (bvc)11{c} 

Here we also used the obvious simplification rule: (P)A,0 = (P)A­
Thus, dec(P) = (avc){c}II U (bvc)11{c}· 
Note that the set of sequential components for processes ((allb)vc) and (avc)ll(bvc) are 
the same, i.e. 
dec(allb)vc) = dec((avc)ll(bvc), 
and it meets intuitive understanding the behaviours of these processes. 

Before defining operational Petri net semantics for SAFP2 , we need some more additional 
notions and definitions. 

(i) Let A be a communication information of type (*). Then we denote by a(A) the 
set of actions occurring in A, defined by the following induction rules: 
a(0) = 0; 
a(BII) = a(IIB) = B 
a(A1, A2) = a(A1) u a(A2) 

(ii) Let us denote by A t{a} the projection (restriction) of communication information 
A onto the action a, defined by the following rules: 

(A1, A2) t {a}= (A1 t {a}, A2 t {a}) 

(IIA) t{a}= { 
0
il{a} , if a EA 

, otherwise 

(All) t{a}= { 
0
{a}II , if a EA 

, otherwise 



35 

In such a way, we extract from the whole communication information A the subpart 
which describes the synchronization structure for the action a. 

(iii) A set of communication informations {A1 , ... An} is called a complete system for 
action a, iff 

In such a way, we distinguish all the sequential components which are required to be 
synchronized by execution of action a. 

4.4 Operational Petri net semantics for SAFP2 

The operational Petri net semantics is a mapping which assigns to each process P of 
SAFP2 the abstract Petri net: 

O[P] = (Seq, -t, dec(P))/ ~ 0 

Following Plotkin's structural approach to operational semantics [Pl], the underlying 
concrete Petri net takes Seq as a set of local states and the initial marking is given by 
dec(P), and transition relation---+ is defined by structural induction on process formulae. 

Thus for set of sequential components 'P, Q and action a we state the transitions: 

either explicitly or inductively by rules of the form: 

TI,···,Tm 
where ... 

T{, ... ,T~ 

stating that if T, ... , Tm are transitions satisfying the condition " ... " then T{, ... T~ are 
also transitions. 

Now, we present the transition relation ---+ of O[P] with its inductive definition of local 
transitions. 



36 

l. Sequential composition 

(i) {a}~ {11}, where a-/= 8, 

i.e. a process consisting of elementary action a after accomplishing the action 
a successfully terminates. 

. . P ~ P' , . _ { dee( Q), if P' = 11 
(ll) P Q a P' Q , where< P, Q >- P' Q th • 

; -t < ; > ; , o erw1se, 

i.e. if in sequential composition, the first "decomposed" process part termi­
nates successfully then the decomposition of the second process part takes 
place. 

2. Concurrency 

(i) Synchrony 

P1 ~ P{, ... Pn ~ P~ h {A A } · 1 f ----..:.-~----'-'---, w ere 1 ,. . . n 1s a comp ete system or ac-
U~1 (Pi).A; ~ Uf=l (PI).A; 

tion a 

The requirements of "completeness" guarantees that the action a will be 
accomplished on ly in the case when all the sequential components containing 
this action are re ,\ dy to perform it. 

(ii) Asynchrony 

P~P' 
(P).A ~ (P').A , where a (/ a(A) 

3. Alternative 

P~P' 



4.5 Examples 

1.) Pi = ((a; b)JJ(a; c)); d) 
dec(Pi) = (a; b; d){a,d}II U (a; c; d)ll{a,d} 

2.) A = (aJJc)vb 

(a; b; d){a,d}il 

(b; d){a,d}\I 

b 

( d) { a,d}\\ 

(v){a,d}II 

dec(A) = (avb){b}\\ U (cvb)ll{b} 

(avb){b}\I 

(v){b}\\ 

3.) A= ((aJJ(avb))llb) 

( a; c; d)\\{a,d} 

a 

O ( c; d)\\{a,d} 

C 

( V )\\{a ,d} 

0 

dec(A) = (a){a}\\,01\ U (avb)11{a},{b}\\ U (b)1\{b} 

(a){a}\J,011 (a V b)JJ{a},{b}\I (b)ll{b} 

(v){a}\\,0\I (v)11{a},{b}\I 

37 

C 



38 

4.) P4 = (((allb)ll(avb)); c) 
dec(P4) = (a; c){c}IJ,{a,c}il U (b; c)ll{c},{b,c}II U ((avb); c)ll{a,b,c} 

(a; c){c}ll,{a,c}II ((a 'vb); c)ll{a,b,c} (b; c)11{c},{b,c}II 

a b 

( c){c}ll,{a,c}II ( c)IJ{c},{b,c}II 

0 0 
( V ){c}ll,{a,c}II ( V )11{a,b,c} 

Please, notice that the "concrete" Petri nets for processes P3 and P4 above are o­
equivalent and can be represented by the following "abstract" Petri net: 

a 

4.5 Full abstractness of denotational semantics for SAFP2 

w.r.t. operational net semantics 

In this section, the interrelation between denotational semantics for SAFP2 based on 
posets with non-actions and operational Petri net semantics are established, using the 
result about interrelation between processes of SAFP2 and Petri nets specified by AFP 0 

formulae. 

Lemma 4.1 
Let P and Q be processes of SAFP2 and C (] be a context. 



39 

If VC[]: O[C[P]] = O[C[Q]] then a(P) = a(Q), 

i.e. if operational net semantics does not distinguish the processes P and Q in any 
context C[), then processes P and Q have the same action basis. 

Proof. 
Let a E a(P). there are two possibilities: 

(i) either the action a occurs in the net O[P] as a transition (and it means that a 
can fire in the net O[N]) 

(ii) or the action a does not occur in the net O[P] (because of some contradiction in 
process formula which leads to impossibility to accomplish the action a for any 
possible process runs). 

In the case (i), by lemma condition we have O[P] = O[Q], and have the action a occurs 
in the net O[Q] as well. 

Therefore, a E a(Q). 

In the case (ii), let us consider the processes (PIia) and (Qlla). 
It is clear, that the action a can not occur (can not be performed) in the O[Plla] by the 
same reason why it can't occur in the net O[P]. 
However, if a(/. a(Q), then the action a can be successfully performed in the net O[Qlla], 
but by lemma condition O[Plla] = O[QIJa]. 
Hence a E a(Q). ■ 

Lemma 4.2 
Let P be a process of SAFP2 and let N 
definition of 1/J. 
Then N :=:::! 0 O[P] 

Proof. 

1/J(P) be AFP O net (see section 3.4 for 

The net N built by means of AFP O operations and the net O[P], in fact, have the same 
structure, excepting some redundant places and not reachable places and transitions. 
We will prove the lemma by induction on the net structure. 

(i) For P = a and N = a the lemma holds trivially. 

(ii) Let P = (Pi; A) and correspondingly N = (N1 ; N 2 ), and by induction conjecture 
N1 :=:::!o O[Pi] and N2 :=:::!o O[A]. 
We have to show that (N1 ; N2) :=:::!o O[Pi; P2]. 



40 

By definition of operational net semantics (transition rule for sequential composi­
tion) if there exist a run (maximal O-subnet) which successfully terminates then 
O[A; A]= O[A]; O[P2] and since N1 ~ 0 O[A] and N2 ~a O[A]: 

(N1; N2) ~ a O[A]; O[A] = O[A; A]. 

If all runs (in fact, maximal O-subnets) of O[A] terminate unsuccessfully then 
O[A; P2] = O[A], but in this case all maximal O-subnets of N1 have unsuccess­
fully termination (by definition of ~ 0 and conjecture that O[A] ~ 0 Ni), and the 
set of maximal O-subnets of (N1 ; N2) consists of maximal O-subnets of Ni. 

Thus (Ni; N2) ~o N1 ~o O[A] ~o O[A; A] 

(iii) Let P = (PivP2 ) and N = (N1vN2) correspondingly, and by induction conjecture 
Ni ~ o O[A], N2 ~o O[A]. 

Using the definition of transition rule for alternative v' in operational net seman­
tics, we have O[AvA] = O[A]vO[P2]-

Hence, NivN2 ~a O[A]vO[A] = O[AvA]. 

(iv) Let P = (AIIP2) and N = (NillN2) correspondingly, and by induction conjecture 
N1 ~ o O[A], N2 ~ o O[A]. 

By definition of operational net semantics ( transition rules for concurrency), if 
a(Pi) n a(A) = 0 then 

If a(Pi)na(A) =/- 0 and in the united superposed net O[Pi]IIO[A], all the transi ­
tions (actions) from a(Pi) n a(P2) are reachable then (N1 IIN2) ~a O[Pi]JIO[A] = 
O[AIIP2]. 

If a(Pi) n a(A) =/- 0 and there exists transition t E a(Pi) n a(A) which never 
can fire in the net O[Pi]JJO[P2] (it means that t does not occur in any maximal 
O-subnet of O[Pi]IJO[P2] as well) then O[PilJA] ~ a O[A]JJO[A] and the net 
structure does not contain (in comparing with the net in right side) the places and 
transitions which are not reachable. 

■ 

The following lemma is corollary of Lemma 4.2. 

Lemma 4.3 

1\[P] ~o 'Da[Q] {:} O[P] = O[Q] 



41 

Theorem 4.1 
Denotational semantics 'D2 for process of SAFP2 is fully abstract w.r.t. operational Petri 
net semantics, i.e. 

Proof. 

'D2[P] = 'D2[Q]::::} VC(] : 'D2[C(P]] = 'D2[C[Q]]::::} 
by Theorem 3.2 VC(]: 'D0 [C[P]] ~o 'D0 [C[Q]]::::} 
by Lemma 4.3 VC[] : O[C[P]] = O[C[Q]]. 

VC[]: O[C[P]] = O[C[Q]]::::} by Lemma 4.1 a(P) = a(Q) 
-¢::: by Lemma 4.3 V0 [P] ~o V0 [Q] and a(P) = a(Q) 
-¢::: by Theorem 3.2 'D2[P] = 'D2[Q] ■ 

References 

LNCS = Lecture Notes in Computer Science, Springer Verlag 

[BHR84] Brookes, S.D.; Hoare, C.A.R.; Roscoe, A.D.: A Theory of Comminicating 
Sequential Processes. Journal of ACM, Vol. 31, No 3, pp. 560-599, 1984 

[BouCa87] Boudol, G.; Castellani, I.: On the semantics of Concurrency: Partial Or­
ders and Transition System. LNCS, Vol. 249, p. 123-137, 1987. 

[Ch88] Cherkasova, L.A.: On Models and Algebras for Concurrent Processes. LNCS, 
Vol. 324, p. 27- 43. 

(Ch89] Cherkasova, L.A.: Posets with Non-Actions: A Model for Concurrent Nonde­
terministic Processes. Arbeitspapiere der GMD, N403, 1989. 

[ChK90] Cherkasova, L.; Kotov, V.: Descriptive and Analytical Process Algebras. 
LNCS, Vol. 424, 1990 

[Cz85] Czaja, L.: Making Nets Structured and Abstracts. LNCS, Vol. 222, p. 181- 202, 
1985. 



42 

[DDM86] Degano, P.; DeNicola, R., Montanari, U.: A New Operational Semantics 
for CCS Based on Condition/Event Systems. Nota Interna B4-42, Dept. of 
Computer Sciences, Univ. Pisa, 1986 

[Ho85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, London, 
1985. 

[Ke76] Keller, R.M.: Formal Verification of Parallel Programs. Comm. ACM, p. 
371- 384, 1976. 

[Kot78] Kotov, V.E.: An Algebra for Parallelism Based on Petri Nets. LNCS, Vol. 
64, p. 39- 55, 1978. 

[Mil80] Milner, R.: Calculus of Communicating Systems. LNCS, Vol. 92, 1980 

[Mil83] Milner, R.: Calculi for Synchrony and Asynchrony. J. Theoretical. Computer 
Science, Vol. 25, p. 267-310, North Holland, 1983. 

[NPW81] Nielsen, M.; Plotkin, G.; Winskel, G.: Petri Nets, Event Structures and 
Domains. J. Theoretical Computer Science, Vol. 13, p. 85-108, 1981. 

[0188] Olderog, E.R.: Operational Petri Net Semantics for CCSP. LNCS, Vol. 266, 
p. 196- 223, 1988. 

[Pet77] Petri, C.A.: Non-Sequential Processes. GMD- ISF, Rep. 77-05, 1977. 

[Pl81] Plotkin, G.D.: Structured Approach to Operational Semantics. Tech. Report 
DAIMI FN-19, Comp. Science Dept., Aarhus Univ., 1981 

[Pr87] Pratt, V.R.: Modelling Concurrency with Partial Orders. International Journal 
of Parallel Programming, Vol. 15, No 1, p. 33- 71, 1987. 

[Th87] Thiagarajan, P.S.: Elementary Net Systems. LNCS, Vol. 254, p. 26- 59. 


