
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

Computer Science/Department of Interactive Systems

Bibl:ot'1cek
Centrum voor ~Vis,. 1, idn .;:n lnformatic&

,·n<:tn,rt.:.1,n

M. Bakker

At last an ISO C binding of GKS

Report CS-R9022 June

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

M. Bakker I GKS in Cat last Standard 1

At Last an ISO C Binding of G KS

Miente Bakker

Centre for Mathematics and Computer Science
Sector for Technical Support

Kruislaan 413
1098 SJ Amsterdam

The Netherlands
miente@cwi.nl

ABSTRACT

The C4 bindings of GKS 1 and other semantic computer graphics standards are long
overdue. While GKS was completed in 1985 and GKS-3D2 (and PHIGS3) became inter­
national standard in 1988, none of their C bindings could be standardized, for the simple
reason that the C language itself was not a standard. Instead, a host of de facto GKS/C
bindings appeared.
This paper will give the flavour of the ISO C binding of GKS; the main features will be
outlined.
1983 CR Categories: D.3.0, 1.3.0, 1.3.4.
Keywords & Phrases: computer graphics standardization, GKS, GKS-3D, PRIGS,
language binding.
Note: the present text will be submitted to Computer Graphics Forum .

1. Introduction

When GKS was completed in 1985, its bindings
in Fortran 77, Pascal and Ada were reasonably
stable. Not so with GKS/C. Because the C
language was only a de facto standard 8, which
was slowly being standardized within ANSI and
ISO, the designers of GKS/C and other C bind­
ings of computer graphics standards could only
patiently wait until C had reached another mile­
stone, before they could make another step with
their binding. The predictable result was a host of
mutually incompatible de facto C bindings of
GKS (see 9) . Applications running on such a C
implementation could not run on other C imple­
mentations.

This unacceptable situation started to come to an
end in December 1989, when C became Draft
International Standard (DIS), the next-to-last ver­
sion before International Standard. Within
months, GKS/C and GKS-3D/C also became DIS.
Completion of these bindings is expected in the
end of 1991.

The following aspects of GKS/C are highlighted:

• The data types used;

Report CS-R9022
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

• The use of macros;

• The function interface;

• The #include file gks.h;

• Memory management;

• User error handling;

• Compatibility with PHIGS/C and other GKS
bindings.

2. Mapping of GKS Entities to C Data Types

C is a rich programming language, which is very
suitable for the implementation of GKS. Some
main reasons for implementing GKS in C are:

• The allocation and deallocation capabilities;

• The capability of defining structured data
types;

• The #include mechanism.

Hence it seemed obvious that the designers of
GKS/C within ISO (henceforth called the binders)
would use the richness of C to the full for their
project. That this did not happen had a number of
reasons:

• The possibility of simulating other GKS

Version 1.5

2 M. Bakker I GKS in Cat l.Ast Standard

1985

1986
1988

1989

1990

1st Working Draft (WD) of GKS/C5

GKS International Standard
2nd WD of GKS/C
Third WD of GKS/C
1st WD of GKS-3D/C'6
1st Draft Proposal (DP) of C
1st DP of PlllGS/C7

GKS-3D International Standard
DPs of GKS/C and GKS-3D/C
C Draft International Standard (DIS)
2nd DP of PIDGS/C
DISs of GKS/C and GKS-3D/C

Table 1. Chronology of GKS/C

bindings by putting cross-language interfaces
on top of GKS/C required the use of simple C
data types;

• Part of the C programming community pre­
ferred simple data types in GKS/C;

• The use of deeply nested data types would
decrease the performance of GKS/C.

As a result of these trade-offs, a moderate use of
the C structuring capabilities was made for the
design of GKS/C. The following conventions
were made:

• GKS data types are mapped directly to similar
C data types (see table 2);

• GKS data that are related are packed into
some structured data type (see table 3);

• As much as possible, generic types are used;
for instance, for the clipping rectangle , the
workstation window, the viewport, etc., the
same data type Glimit is used and for points in
WC space, NDC space and DC space, the
data type Gpoint is used;

• Structures should not become too long and not
too deeply nested;

• Name convention: all structure names start
with a capital G and are further in lower case;
all fields of enumeration types are in upper
case and start with capital G; in order to avoid
syntactical problems, each enumeration field
is given a prefix.

This means for instance that all the components
of the POLYLINE FACILITIES (the available
linetypes, linewidths and predefined line colours)
are packed into the structure Gline_facs but the
LOCATOR DEVICE STATE is not wrapped into
some structure, because the components are not
related and because that structure would become

Version 1.5

GKS C binding

I integer Gint
R real Gfloat

Gdouble
s string char•
p 2D point Gpoint
P3 3D point Gpoint3
L list of 2D points Gpoint_list
L3 list of 3D points Gpoint_list3
V 2D vector Gvec
V3 3D vector Gvec3
N name Gint

char•
E enumeration type typedef enum
CLR colour bundle Gcolr rep

Table 2. Mapping of GKS data types

too complex.

3. Use of macros

The C language provides the possibility of mac­
ros. For the C binding of GKS, these macros are
used for constants like:

• Error numbers;

• Function names for the error handler;

• GKS Metafile Item types;

• Registered graphical items, like linetypes,
prompt and echo types.

4. The G KS/C Function Interface

In the C binding of GKS almost each GKS func­
tion has been mapped to a C function of type
void. The name of this C function is some
abbreviation of the GKS function with blanks
replaced by underscores. It is written in lower
case and it always has the sentinel g. For
instance, INQUIRE MAXIMUM NORMALI­
ZATION TRANSFORMATION NUMBER is
represented by the C function
ginq_ max_ norm_ tran _num.

The parameters of the GKS/C functions obey the
following rules:

• They are prototyped;

• Output parameters are of pointer type;

• Structured input parameters are of type const
Gtype *, hence they cannot be changed by
GKS/C.

For instance, the C binding for SET COLOUR
REPRESENTATION would be

M. Bakker I GKS in Cat last Standard 3

Basic Types

typedef int Gint;
typedef float Gfloat;
typedef dou~le Gdouble;
typedef void *Gstore;

Enumeration Types
typedef enum {

Aspect Source ~ ASF _ BUNDLED,
Flag GASF INDIV

} Gasf; .
typedef enum {
GSTYLE _ HOLLOW,

Fill Area Interi- GSTYLE _ SOLID,
or Style GSTYLE _PAT,

GSTYLE HATCH
} Gfill int style;

Structured Types
typedef struct {

PoiQt Gfloat x, y;
} Gpoint;

typedef struct {
Gint type;

Polyline Bundle Gdouble width;
Gint colr _ ind;

} Gline _ bundle;
typedef struct (

Pattern Bundle
Gint_size dims;
Gint *colr_array;
} Gpat_rep;

Implementation Dependent Types
typedef union {
struct {

impl. dep.

Choice Data
} pet_rl;

Record
...

struct {
impl. dep.

} pet_r4;
} Gchoice data;
typedef struct {
Gint type;

GKSM Item
Gint lengtl);

Data Record
union {
impl. dep.

}
} Gitem data;

Table 3. Examples of GKS/C data types

Version 1.5

void gset_colr_rep(
Gint ws_id,

colr_ind,
*colr_rep

Gint
const Gcolr_rep

);

5. The #include file gks.h

Each GKS/C application program must include
the file gks.h. This fil~ contains the following
information:

• All GKS/C data types;

• All GKS/C macros;

• All GKS/C functions defined as extern void;

• Implementation dependent information, for
instance macros for the available workstation
types, available text fonts, prompt and echo
types, etc.

#include II gks.h"
#define MY_ WS (1)
main◊
{

}

gopen_gks(GKS _ ERR _FILE,
(size_t)(-1));

gopen _ ws(MY _ WS, WS _CONN_ 1,
WS_TYPE_l);

gactivate ws(MY WS); - -
gdeactivate _ ws(MY _ WS);
gclose _ ws(MY _ WS);
gclose _gks();

Table 4. Simple program example

6. Memory Management

Several GKS inquire functions (and also the
ESCAPE function) return information of a priori
unknown length to the application. The crucial
question for the binders was: who allocates the
workspace for the information, the application or
GKS? The answer was: the application, but this
still left some problems unsolved, for instance:

• How is the application notified, if too little
workspace has been allocated?;

• Should GKS/C support the facility to return
only slices of information to the application?

This issue was resolved the following way:

• GKS inquire functions that return simple lists
(lists of segment names, polyline indices,
workstation types) to the application are

4 M. Bakker I GKS in Cat Last Standard

bound in GKS/C to functions that return slices
of fixed length to the application; In the fol­
lowing sample progarm, INQUIRE LIST OF
POLYLINE INDICES is returning the 3nd-
12th defined polyline index from the worksta­
tion state list:

Gint_list line_inds;
Gint length;
line_inds.num_ints = 10;
line_inds.ints =

(Gint *)callac(I 0,
sizeof(Gint));

ginq_list_line_inds(... ,
2, 10, ... ,
&line_inds, &length);

The output parameter length denotes the
actual number of defined polyline indices;

• For GKS functions which return more com­
plex data of unknown length to the applica­
tion, storage is allocated and deallocated by
two special utility functions : CREA TE
STORE and DELETE STORE. CREATE
STORE allocates a pointer to workspace
which can be further filled by the GKS/C
function. DELETE STORE deallocates all the
allocated workspace.
A typical sample program would be

Gstore
Gpat_rep

store;
*pat_rep;

gcreate_store(&err_ind, &store);
ginq_pat_rep(ws_id, ... , &store,

&err_ind, &pat_rep);

gdel_store(store);

7. User Error Handling

GKS defines the facility for the application pro­
grammer to use his own error handler, which
replaces the GKS error handler. In practice,
inconvenient linking problems occur, when a
user-written error handler has to replace the
implementation's error handler of the same name.
Therefore GKS/C has introduced the utility func­
tion

void gset_err_hand(

Version 1.5

const void (*new_hand),
void (**old_hand));

which transfers the error handling from the error
handler old_hand() to the customer's error
handler new _hand(). As a service, the pointer to
the previous error handler is returned to the appli­
cation for future use.

8. Compatibility with PHIGS/C and other
G KS bindings

A crucial issue in the design of GKS/C was the
compatibility with other GKS bindings and the
compatibility with PHIGS/C.

The compatibility with e.g. GKS Fortran was
motivated by the wish to build Fortran shells on
top of GKS/C and vice versa (see e.g. 10) . As a
result of this compatibility issue, only modest use
was made of the structuring capabilities of C.
Other features of GKS/C that result from the
compatibility with GKS/Fortran are the numeric
values of the enumeration types in GKS/Fortran
and the separation of the mandatory part and the
optional part of input data records in some inquire
functions.

The compatibility with PHIGS/C was a logical
consequence of the compatibility of GKS-3D and
PHIGS, which was expressed by a GKS-3D shell
on top of PHI GS (see 11) . The main results of
this compatibility were :

• Data types which stem from similar GKS and
PHIGS data (e.q. enumerations, rectangles ,
point lists) are identical in GKS/C and
PHIGS/C, except for the sentinels.

• Functions with identical name in GKS and
PHIGS are identical in GKS/C and PHIGS/C,
except for the sentinels.

References

1. ISO 7942 1985(E) - Graphical Kernel System
(GKS) - functional description.

2. ISO 8805 1988(E) - Graphical Kernel System
for Three Dimensions (GKS-3D) - functional
description.

3. ISO/IEC 9592-1 1989(E) - The Programmer's
Hierarchical Interactive Graphics System
(PHIGS)
- Part 1: functional description.

4. 1SO/IEC 9899 l 99x(E), Programming
Languages - C;
Draft International Standard, December 1989.

5. ISO/IEC 8651-4 - 199x(E) - Graphical Kernel

M. Bakker I GKS in Cat last Standard

System (GKS) - language bindings - part 4: C;
Draft Proposal, April 1989;
Draft International Standard, to appear in
August 1990.

6. ISO/IEC 8806-4 l 99x(E) - Graphical Kernel
System for Three Dimensions (GKS-3D) -
language bindings - part 4: C;
Draft Proposal, April 1989;
Draft International Standard, to appear in
August 1990.

7. ISO/IEC 9593-4 199x(E) - The Programmer's
Hierarchical Interactive Graphics System
(PIIlGS) - language bindings - part 4: C;
Second Draft Proposal, November 1989.

8. B.W. Kernighan, D.M. Ritchie, The C pro­
gramming Language, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey 07632, 1978.

9. K.M. Wyrwas, W.T. Hewitt, A Survey of GKS
and PHIGS Implementations October 1988,
Computer Graphics Forum, 8 (l), pp. 49-59,
March 1989.

10. SJ. Feldman, P.J. Weinberger, A Portable
Fortran 77 Compiler , UNIX Programmer's
Supplementary Documents Volume l (PS 1),
4.3 Berkeley Software Distribution, Virtual
V AX-11 Version, 1986.

11. P.J.W. ten Hagen, L.R.H. Kessener, B.P.
Rouwhorst, A GKS Shell f or PHIGS Imple­
mentations, ISO TC 97 SC 21 WG 2 N541 ,
March 1987.

Version 1.5

5

