
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

A. Middeldorp

Unique normal forms for disjoint unions of
conditional term rewriting systems

Computer Science/ Department of Software Technology Report CS-R9003

8ib/1t'.>/;'-:e1,~.
centrumvoor w .. " ~ f!11 lof01m.l,~

Am l(t(Gll/TJ

January

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Unique Normal Forms for Disjoint Unions of
Conditional Term Rewriting Systems

Aart Middeldorp

Centre for Mathematics and Computer Science,
Kruislaan 413, 1098 SJ Amsterdam;

Department of Mathematics and Computer Science,

Vrije Universiteit, de Boelelaan 1081, 1081 HV Amsterdam.

email: ami@cwi.nl

ABSTRACT

In [14] we have shown that every term rewriting system with the unique normal form pro
perty can be conservatively extended to a confluent term rewriting system with the same

set of normal forms. This paper gives a simplified construction, which moreover yields a

positive answer to a conjecture in [14] stating that the normal form property is a modular
property of left-linear term rewriting systems. We further show that the main result of

[14]-the modularity of unique normal forms-can be generalized to semi-equational con

ditional term rewriting systems; however, for join and normal conditional term rewriting

systems the method of [14] fails .

1985 Mathematics Subject Classification: 68Q50

1987 CR Categories: F.4.2

Key Words and Phrases: term rewriting systems, confluence, unicity of normal forms.
Note: research partially supported by ESPRIT BRA project nr. 3020, Integration.

Report CS-R9003
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

- 2 -

Introduction

Starting with Toyama [19), several authors studied disjoint unions of term rewriting systems.

The central issue is what properties of term rewriting systems are preserved under disjoint unions.

Such a property is called 'modular'. Toyama [19] showed the modularity of confluence. In [20]

Toyama refuted the modularity of strong normalization. His counterexample inspired Rusinowitch

[18] to the formulation of sufficient conditions for the strong normalization of two strongly normaliz

ing term rewriting systems. Rusinowitch 's results were extended by the present author [15]. Baren

dregt and Klop gave an example showing that completeness (i.e. the combination of confluence and

strong normalization) is not a modular property, see Toyama [20]. The restriction to left-linear term

rewriting systems is sufficient for obtaining the modularity of completeness, as was shown by Toy

ama, Klop and Barendregt [21]. An interesting alternative approach to modularity is explored in

Kurihara and Kaji [12]. Kurihara and Ohuchi [13] recently showed that 'simple termination' is a

modular property. A term rewriting systems is said to be simply terminating if there exists a simplifi

cation ordering showing its strong normalization. In [14] we proved that the property of unique nor

mal forms is a modular property by showing that every term rewriting systems with unique normal

forms can be conservatively extended to a confluent term rewriting systems with the same set of nor

mal forms(*). We also showed that the normal form property is not modular.

In this paper we will give a much simpler proof of(*). The resulting construction enables us to

establish the modularity of the normal form property for left-linear term rewriting systems. It also

facilitates the extension of the modularity of unique normal forms to the so-called semi-equational

conditional term rewriting systems, a particular form of conditional term rewriting system. Condi

tional term rewriting systems are an important extension of term rewriting systems. They arise in the

algebraic specification of abstract data types (Bergstra and Klop [1]. Kaplan [10), Zhang and Remy

[22]). Furthermore, they provide a natural computational mechanism for integrating functional and

logic programming (Dershowitz and Plaisted [5, 6), Fribourg [7]. Goguen and Meseguer [8]). In [16]

we extended Toyama's confluence result for term rewriting systems to conditional term rewriting sys

tems. We continued this line of research in [17] by extending the results of Rusinowitch [18], Middel

dorp [15] and Kurihara and Kaji [12] to conditional term rewriting systems. Both papers clearly

showed that conditional term rewriting can be very tricky. In this paper we will also encounter

several statements that are obviously true for unconditional term rewriting systems, but nevertheless

fail for conditional term rewriting systems. In fact, we will see that(*) is not true for join and normal

systems, two other well-known types of conditional term rewriting systems. We finally show that the

modularity of unique normal forms for semi-equational conditional term rewriting systems can be

obtained by means of(*).

A concise introduction to term rewriting is given in the next section. Extensive surveys are Klop

(11] and Dershowitz and Jouannaud [2]. Section 2 contains the simplified proof of(*). In Section 3

we show how this proof can be used to obtain the modularity of the normal fonn property for left

linear term rewriting systems. Section 4 studies the modularity of unique normal forms with respect

to conditional term rewriting.

1. Preliminaries

Let 1J be a countably infinite set of variables. A term rewriting system (TRS for short) is a pair

(:f, :R). The set :f consists of function symbols; a,;sociated to every fe :f is its arity n ~ 0. Function

symbols of arity O are called constants . The set of terms built from :f and ?J, notation g (:f, 1J), is the

smallest set such that:

1J Cg (:f, 1J),

if feJ< has arity n and t 1, ... , tnE:l(:f, ?J) thenf(t1, .. . , tn)E:l(:f, ?J).

- 3 -

Terms not containing variables are called ground or closed terms. The set of variables occurring in a

term t E 5 (:f, 1J) is denoted by V (t). Identity (syntactic equality) of terms is denoted by =. The set :I?,

consists of pairs(/, r) with 1, re5(:f, V-) subject to two constraints:

(1) the left-hand side I is not a variable,

(2) the variables which occur in the right-hand sider also occur in 1.

Pairs(/, r) are called rewrite rules or reduction rules and will henceforth be written as l ➔ r. We usu

ally present a TRS as a set of rewrite rules, without making explicit the set of function symbols. A

rewrite rule / ➔ r is left-linear if l does not contain multiple occurrences of the same variable. A left

linear TRS only contains left-linear rewrite rules. The rule l ➔ r is collapsing if r is a single variable

and it is duplicating if r contains more occurrences of some variable than / does.

A substitution CJ is a mapping from 1J to 5 (:f, 1J) such that the set {x E 7J I CJ (x) "I= x} is finite.

This set is called the domain of CJ and will be denoted by 2.l(cr). Substitutions are extended to mor

phisms from 5 (:f, 1J) to 5 (:f, 1J), i.e. CJ(/ (t 1, ... , tn)) = f (cr (t 1), . . . , cr Un)) for every n-ary function

symbol f and terms ti, . . . , tn . We call cr (t) an instance of t. An instance of a left-hand side of a

rewrite rule is a redex (reducible expression). Ifs, t 1, . . • , tn are terms and x 1, ... , Xn mutually distinct

variables then s [xi f- ti I 1 ~ i ~ n] denotes the result of simultaneously replacing every occurrence of

xi in s by ti (i = 1, ... , n).

A context C [.. .. ,] is a 'term' which contains at least one occurrence of a special symbol □. If

C [, .. . ,] is a comext with n occurrences of □ and t 1, ... , tn are terms then C [t 1, ... , tn] is the result

of replacing from left to right the occurrences of □ by t 1, .. . , tn . A context containing precisely one

occurrence of □ is denoted by C []. A term s is a subterm of a term t if there exists a context C []

such that t = C [s].
The rewrite relation ➔Ji, is defined as follows: s ➔Ji, t if there exists a rewrite rule l ➔ r in :/?,, a

substitution CJ and a context C [] such that s = C [cr {/)] and t = C [CJ (r)]. The transitive-reflexive clo

sure of ➔:1<, is denoted by -»Ji,; ifs -»Ji, t we say thats reduces to t. We writes f-Ji, t if t ➔il s; like

wise for s <f--:1<, t. The transitive closure of ➔:fl is denoted by ➔:tt and Hil denotes the symmetric clo

sure of ➔:1<, (so H:1<, = ➔il u f-:Jl) , The transitive-reflexive closure of Hil is called conversion and

denoted by =il. Ifs =:11, t then s and t are convertible. Two terms t 1 , t 2 are joinable, notation t 1 J,:11, t 2 ,

if there exists a term t 3 such that t 1 -»Ji, t 3 <f--:11, t 2 . Such a term t 3 is called a common reduct of t 1

and t2 . The relation j,J? is calledjoinability. We often omit the subscript:/?,.

A terms is a normal form if there are no terms t with s ➔ t. The set of normal forms of a TRS

(:f, :/?,) is denoted by NF (:f, :/?,). When no confusion can arise, we simply write NF(:/?,). A TRS :I?, is

strongly normalizing (SN) if there are no infinite reduction sequences t 1 ➔ t 2 ➔ t 3 ➔ In other

words, every reduction sequence eventually ends in a normal form. A TRS :I?, is weakly normalizing

(WN) if every term reduces to a normal form. A TRS :I?, is confluent or has the Church-Rosser pro

perty (CR) if for all terms s, t 1 , t 2 with t 1 <f-- s -» t 2 we have t 1 j, t 2 . A well-known equivalent for

mulation of confluence is that every pair of convertible terms is joinable (1 1 = t 2 ⇒ t I j, t 2). A TRS

:I?, has unique normal forms (UN) if no distinct normal forms are convertible (s = t and s, t E NF(:/?,)

⇒ s = I) . A TRS :I?, has the normal form property (NF) if every term convertible with a normal form,

reduces to that normal form (s = t and t E NF(:/?,) ⇒ s -» t).

The next proposition relates the last three properties. The proof is very simple, see e.g. [14].

PROPOSITION 1.1. Every confluent TRS has the normal form property and every TRS with the nor

mal form property has unique normal forms . The reverse implications are not true in general. □

- 4 -

2. Simple Construction

In this section we prove that every TRS with unique normal forms can be conservatively

extended to a confluent TRS with the same set of normal forms. The construction in this paper is a

considerable simplification of the one in [14]. For instance, we will see that it is sufficient to add at

most one new constant whereas in [14] we employed infinitely many new function symbols.

Let (:J, :R) be a TRS with unique normal forms. First we consider the case that :J contains at

least one constant symbol. We will show that every equivalence class C of convertible terms con

tains a term t which can be used as a 'common reduct' in order to obtain confluence with respect to

C.

DEFINITION 2.1.

(1) The set of equivalence classes of convertible terms is denoted by 'fJ:

'6 = { 0 -:t:- C ~ :l (:J, 1J) I C is closed under =:R} .

(2) The subset of '6 consisting of all equivalence classes without a normal form is denoted by '6_1_.

(3) If CE '6 then v11x(C) denotes the set of variables occurring in every term t EC:

VJix(C) = n V(t) .
t E C

The next two propositions originate from [14]. For the sake of completeness, the proofs are

repeated here.

PROPOSITION 2.2. If t EC E '6 and V (t)- V11xCC) = {x I' .. . ' Xn} then t [Xj ~ Sj 11 $ i $ n] EC for all

terms s 1, ... , Sn E:l (:J, 1.J) .

PROOF. We first prove the statement for all terms s 1 , . . . , sn E :/ (:J, 1J) with V (s1) n {x 1 , ... , Xn} = 0

(i = 1, ... , n). Define a sequence of terms t0 , ... , tn as follows :

t 0 = t ,
t1=t1_i[x1~stl if0<i$n.

We will show that t1 =J<. t by induction on i. The case i = 0 is trivial. Suppose the statement is true for

all i < k (k > 0). Because xk e V1u(C) there exists a term u EC such that xk e V(u). The induction

hypothesis tells us that tk - l =:R t. This implies that

tk = tk - l [xk ~ s,d =:R u [xk ~ sd = u =:R t.

Therefore tn=t[x 1 ~si] ... [xn~sn]=t[x1~s1 I 1in]EC. Now let s 1, ... ,sn be arbitrary

terms of 5(:Y., 1.J). Choose distinct fresh variables y 1 , .. , ,Yn By the above argument we have

t [x1 ~ y1 I 1 $i $n] EC and because

V(t[x;~Yi I lin])-Vfix(C)= {Yi, .. , ,Yn}

we obtain

D

PROPOSITION 2.3. lfC E '€ contains a normal form t then v1ix(C) = V(t).

PROOF. Let s EC. We will show that V (t) ~ V (s) by induction on the length of the conversion

s =:R t. The case of zero length is trivial. Let s H:R s 1 = J?. t. From the induction hypothesis we obtain

V (t) ~ V (s i). Ifs ➔:R s 1 then V (s i) ~ V (s) and we are done. Assume s ~:Rs 1. We have to show

- 5 -

that every variable of t occurs in s. Suppose to the contrary that there is a variable x EV (t) which

does not occur in s. Choose a fresh variable y. Replacing every occurrence of x in the conversion

s 1 =;R t yields a conversion s1 =;R t' . Notice that t' is a normal form of :R different from t. Because

x e V(s) we obtain si ➔;Rs . But now we have the following conversion between t and t':

which is impossible due to the unique normal forms of :R. We conclude that v1u(C) = V (t). □

The following proposition is not true if :J does not contain constant symbols.

PROPOSITION 2.4. /JC E'e_1_ then there exists a term t EC such that Vfix(C) = V(t) .

PROOF. Take an arbitrary term sEC and suppose that V(s)-Vfix(C)= {x 1, .•. ,xnl- Let

t = s [xi f- c I 1 ~ i ~ n] where c is any closed term. Proposition 2.2 yields t EC and we have

Vru(C) = V(t) by construction. □

According to the previous results we can define a mapping 1t: 'e ➔ :I (:f, 1J) with the following

properties:

(1) 7t (C) EC,

(2) if CE 'e contains the normal form t then 7t (C) = t,
(3) Vru(C) = V (1t (C)).

The term 7t (C) will serve as a common reduct for C.

DEFINITION 2.5. The TRS (Y., :.R,') is defined by

:R' =:Ru { t ➔ 1t (C) I t EC E 'e and t ~ 1t (C)} .

Due to the third property of 7t and the observation that every variable is a normal form, :R' only con

tains legal rewrite rules.

PROPOSITION 2.6.

(1) For all terms s, t E :/(Y., 7J) we haves =;Rt if and only ifs =;R' t.
(2) NF (:R) = NF (:R').
(3) :R' is confluent.

PROOF. The first two properties are an immediate consequence of our construction . Suppose s =:Jl' t.

According to (1), sand t belong to the same class C of convertible terms. By definition, both terms

rewrite in zero or one step to their common reduct 7t (C). □

LEMMA 2.7. Every TRS (Y., :R) with unique normal forms can be extended to a confluent TRS

(:J, ', :R') such that:

(1) for all terms s, t E :/ (Y. ' , 1J) we haves =;R t if and only ifs =;R' t,
(2) NF (:f, :R) = NF (Y. ', :.R,').

PROOF. If Y. contains a constant symbol then the preceding definitions and propositions yield the

desired result. So assume that :J only contains function symbols with arity 2'. 1. Let .1 be a fresh (i.e .

.1 e Y.) constant symbol and define Y. 1 = Y. u { .1} and :R1 =:Ru { .1 ➔ .1}. The normal forms of (:J, :R)

and (Y. 1, :R 1) clearly coincide. The equivalence of =;R and =:Jl , with respect to :I (Y. 1, 1J) is also easily

proved. Hence (:f 1, :R 1) has unique normal forms. Because :J 1 contains a constant symbol, we know

already the existence of a confluent TRS (.'li 1, :RD such that the relations =;R, and =:Jl; coincide and

NF(:R1) = NF(:Rt). Therefore, s =J?. t if and only if s =;R ; t for all terms s, t E3(:J1, 1J) and

- 6 -

3. NF is a Modular Property of Left-Linear Term Rewriting Systems

Before proving the main result of this paper, we introduce several notations and definitions for

handling disjoint unions of TRS 's. Most of them originate from Toyama [19].

DEFINITION 3.1. Let (9'1.5?1) and (9'2,5?2) be TRS's with disjoint alphabets (i.e. 9'1 n9'2=0). The

disjoint union 5? 1 EB 5?2 of (9' 1 , 9?. 1) and (9'2, 9?.2) is the TRS (9'1 u 9'2, 9?.1 u 9?.2).

DEFINITION 3.2. A property :JJ of TRS's is called modular if for all disjoint TRS's :R1, 9?.2 the follow

ing equivalence holds :

9?.1 EB 9?.2 has the property :JJ <=> both 9?. 1 and 9?.2 have the property :JJ .

Confluence was the first property for which the modularity has been established.

THEOREM 3.3 (Toyama [19]). Confluence is a modular property ofTRS's. □

In [14] we gave the following example, showing that NF is not a modular property.

EXAMPLE 3.4. Let 9?. 1 = {F(x, x) ➔ C} and 9?.2 = {a ➔ b, a ➔ c, b ➔ b, c ➔ c}. Both TRS's have

the property NF. The following conversion shows that F (b, c) is 5?1 EB 5?2 -convertible to the normal

form C:

F(b, c) f- F(a, c) f- F(a, a) ➔ C.

However, it is clear that F (b, c) does not reduce to C. So 9?. 1 EB 9?.2 is not NF.

Let (9' 1,9?. 1) and (9'2, 9?.2) be disjoint TRS's. Every term t E:7(9' 1 u9'2, ?J) can be viewed as an

alternation of 9'1 -parts and 9i2-parts. This structure is formalized in Definition 3.5 and illustrated in

Figure 1.

NOTATION . We write 5 instead of 5 (9' 1 u 9'2, 1J) and we abbreviate 5 (9ii, 1J) to :Ji (i = 1, 2) .

DEFINITION 3.5.

(1) The root symbol of a term t E 5, notation root (t), is defined by

{

F if t = F (t 1, ... , tn),

root (t) = t

otherwise.

(2) Let t=C[t1 ,---, tn] with C[, . .. ,]-/=. □ . We write t=C[t1, ... , tn] if C[, ... ,] is a 9'a

context and root (ti) E 9ib with a -:t- b for i = 1, ... , n (a, b E { 1, 2 }). The ti's are the principal sub

terms oft.

(3) The rank of a term t E 5 is defined by

rank(/)= {

1

1 + max {rank(ti) J 1 ~i ~n}

- 7 -

(4) The set S (t) of special subterms of a term t E 5 is inductively defined by

ifrank(t)=l,
S(t) = { {!}

{t}uS(t1)u ... uS(tn) ift=C[t1, .. . ,tn].

special
subterms

t 2 principal subterms
.;..-----

rank(t) = 5

FIGURE 1.

To achieve better readability we will call the function symbols of .'}1 black and those of .'}2

white. Variables have no colour. A black (white) term does not contain white (black) function sym

bols, but may contain variables. In examples, black symbols will be printed as capitals and white

symbols in lower case.

DEFINITION3.6 . Let s 1, . • • ,sn , t 1, ... ,tnE5. We write <s 1, .. . ,sn>oc<t 1, ••• ,tn> ift;=tj when

ever Sj=Sj , for all 15'i<j5'n. The combination of <s 1, . . . ,sn>oc<t 1, • • • ,tn> and

<t1, . .. ,tn>oc <Si, ... ,Sn> is abbreviated to <s1, ... ,Sn> 00 <t1,-• · •tn>- This notation is used to
code principal subtenns by variables.

PROPOSITION 3.7. Ifs~ t then rank (s) ~ rank (t).

PROOF. Straightforward. o

DEFINITION 3.8. Lets ➔ t by application of a rewrite ruler. We writes ➔it ifs = C[s 1, •. • , snD and

r is being applied in one of the sj 's and we write s ➔0 t otherwise. The relation ➔i is called inner

reduction and ➔0 is called outer reduction.

DEFINITION 3. 9. Lett E 5. The topmost homogeneous part oft, notation top (t), is the result of replac

ing all principal subterms oft by □, i.e.

ifrank(t) = l ,

top(t) = { t
C[, ... ,] ift=C[t1 , .. . ,tn].

D EFINITION 3.10. We say that a rewrite step s ➔ t is destructive at level 1 if the root symbols of s

and t have different colours. The rewrite step s ➔ t is destructive at level n + 1 if

s = C[s 1, ... , s1 • .. . , s,iD ➔i C [s 1, ... , t1, .. . , sn] = t with s1 ➔ t1 destructive at level n.

- 8 -

Notice thats ➔ tis destructive at level 1 if and only ifs ➔0 t and either t EV (top (s)) or tis a

principal subterm of s. The next definition introduces special notations for ' degenerate' cases of

" t = C[t 1, . .. , tn]". Although it might give the impression of making mountains of molehills, it actu

ally is very useful for cutting down the number of cases to consider in some of the following proofs.

DEFINITION 3.11 . First we extend the notion of context a'i defined in Section 1. We write C(, .. . ,)

for a 'term' containing zero or more occurrences of □ and C { , ... , } denotes a 'term' different from

□ itself, containing zero or more occurrences of □ . If t E 5 and t 1, ••• , tn are the (possibly zero) prin

cipal subterms of t (from left to right), then we write t = C {{ t 1, .. . , tn}} provided t = C { t 1, ... , tn}.

We write t = C((t 1, .. . , tn)) if t = C(t 1, .. . , tn) and either C(, .. . ,) i= □ and t1, . .. , tn are the princi

pal subterms oft or C (, ... ,) = □ and t E { t 1, .•• , tn}.

The next two propositions are very intuitive. Their straightforward proofs are left to the reader.

PROPOSITION 3.12. If (S1, :R1) and (S2,:R2) are disjoint TRS ' s then

NF(:R1 EB:R2)=NF(S1 uS2,:R1)nNF(S1 uS2,:R2). □

PROPOSITION 3.13. Let (S1, :R1) and (S2, :R2) be TRS' s such that NF(S1, :R1) = NF(S2, :R2). If S' is

a set of fresh/unction symbols, i.e. S' n (S1 u S 2) = 0, then NF (S1 u S ', :Ri) = NF (S2 uS ', :R2). □

PROPOSITION 3.14. Let (S1, :R1) and (S2, :R2) be disjoint TRS's. l/(9"[,:R[) is an extension of

(S;,:R;) with NF(S;,:R;)=NF(S[, :R[) (i = 1, 2) such that S 1 nS2 = 0, then

NF(:R1 EB:R2) = NF(:R1 EB:Rz).

PROOF. Because :R1 u:R2 ~ :R1 u:R2 , we clearly have NF(:R1 EB:Rz) ~ NF(S1 USz, :R1 U:Rz). It is

not difficult to see that NF(S 1 uS 2, :R1 u:R2) = NF(:R1 EB:R2). For the other inclusion we assume

that tENF(:R1 EB:R2). In particular, tENF(9"1 uS2,:R1) and tENF(9"1 u9"2,:R2). From Proposition

3.13 we obtain t E NF (9" 1 u S 2, :RD and hence t E NF (9" 1 u S 2, :RD- Likewise we obtain

t E NF (9" i u 9"2 , :Rz). Proposition 3.12 yields t E NF (:RI EB :Rz). □

THEOREM 3.15 (Middeldorp [14]). UN is a modular property ofTRS' s.

PROOF. Let (9" 1, :R1) and (9"2, :R2) be disjoint TRS ' s. We have to show that :R1 EB :R2 has the property

UN if and only if both (S1, :R1) and (S2, :R2) are UN.

⇒ Trivial.

(:=: According to Lemma 2.7 we can extend (S;, :Rj) to a confluent TRS (S [, :R[) with the same set

of normal forms (i = 1, 2). Without loss of generality we assume that 9" 1 n 9"2 = 0. Let

s =~, EB ~ , t be a conversion between normal forms of :R 1 EE) :R2. Clearly s = Sl ; El' .~; t. Because s

and tare normal forms with respect to :R 1 EB:R2 (Proposition 3.14), we can use Theorem 3.3 in

order to obtain the desired s = t.

□

We will now show that NF is a modular property of left-linear TRS's. To this end, we assume

that (S1,:R1) and (S2,:R2) are disjoint left-linear TRS's with the property NF. By Proposition 1.1,

(S 1, :R 1) and (S2, :R2) also have the property UN. So, like in the proof of the modularity of UN, we

may extend (9";, :R;) to a confluent TRS (S [, :R;') with the same set of normal forms (i = 1, 2). Accord

ing to Lemma 2.7 we may further assume that s =~. t if and only if s =:R ; t for all terms

s, t E 5 (S ;, V) (i = 1, 2). Without loss of generality we finally assume that S 1 n S 2 = 0.

- 9 -

NOTATION . We abbreviate :J(:J, 1 u:J,2, V-) to:!' and we use :if as a shorthand for :J(:J,f, V-) (i = 1, 2).

Consider a conversion s =:R,, EB.9e-i t between terms s, t E :/ with t E NF (Ji'. 1 EB .?i'.2) . Just as in the

proof of Theorem 3.15 we obtain s =:R, ;EB :R, ; t and tENF(.?i'. 1EB.?i'.2). Theorem 3.3 yields

s ~:R, ; EB:R,i t. The question now arises how to transform this reduction into a .?i'. 1 EB .?i'.2 -reduction from

s tot. Our solution consists of restricting the rewrite relation ~ :R,, EB .9e-i in such a way that the result

ing relation ➔ is weakly normalizing and has the nice property that t is the only ➔-normal form of s.

The reader familiar with the work of Kurihara and Kaji [12) will notice the resemblance of-+ with

their ' modular reduction '.

In the following we assume that all terms belong to:!', unless stated otherwise.

DEFINITION 3.16. We write s ➔ t if there exists a context C [] and terms s 1 , t 1 such that s = C [s 1],

t = C[ti] , s 1 ES(s) , s 1 ➔~7 t 1 and t 1 ENF(➔~) for some i E {1, 2} . We writes ➔0 t ifs-+ t with

C [] = □ .

PROPOSITION 3.17. The relation ➔ is weakly normalizing.

PROOF. We will show by induction on rank (t) that every term t E :!' has a normal form with respect

to-+. If rank(t)=l then tE:/1 or tE:/2. We consider without loss of generality only the former.

Clearly t E NF (➔f.R.,) . If t E NF (➔:R, ,) or if t does not have a normal form with respect to ➔:R, , , then

t E NF (➔) . Otherwise t -+ t' for some t' E NF (➔:R, ,) and because t' E NF (➔9e-i) we obtain t' E NF (-+).

Let t = C [t 1 , . . . , tn]. Applying the induction hypothesis to t 1, .. . , tn yields -+-normal forms

t1, ... , t~ such that ti-+ ... ➔ t1 for i = 1, .. . , n. We clearly can write C [t1, ... , t~] = C'{{s 1, . .. , sm}}

for some ➔-normal forms s 1, •.. , sm (m ~ 0) and 'context' C' { , . ..• } . Choose fresh variables

X 1 ,Xm such that< s 1 • ••. • Sm> 00 <X 1, .. . , Xm> · Because rank(C'{X 1, Xm})= 1 we obtain a

➔-normal form C * (Xi , Xi) of C' { X 1 X m} from the induction hypothesis. Now we have the
I p

following ➔-reduction sequence:

t = C[t 1, .. . , t,,] ➔ .. . ➔ C [t1, ... , t~] = C' {{s 1, .. . , Sm}}

➔ .. . ➔ C *((si , .. . , Si)).
I P

It is not difficult to see that C * ((s1 , .. . , si)) is a normal form with respect to -+. □
I p

The other property of ➔ is a bit harder to prove. We start with some technical propositions.

PROPOSITION 3.18. Ifs=~. tand tENF(➔~) thens~~. t.

PROOF. We use induction on the length of the conversion s =~. t. The case of zero length is trivial.

Let s H ~. s 1 =~. t. From the induction hypothesis we obtain s 1 ~~. t. If s ➔~. s I then we are

done. Suppose s f--- ~, s 1• It is easy to see that we may write

S = CJ ((u1- , .. . , u1·)) f- ~ S 1 = C {{ U I, .. . , Un}} ---» ~ t = C 2 ((Uk , .. . , Uk))
I 111 A i I I p

for some terms u 1, ... , un and 'contexts' C { , }, C 1 (, . .. ,) and C 2(,) . Choose fresh vari

ables X 1 , ... , Xn such that< u 1, ... , Un> 00 < X 1, ... , Xn> - We have

C 1 (X1- , ... , X1-) f- :R, C {X 1, ... , Xn} ~:'R C 2(Xk , Xk)
! '" j I l p

assumption that Ji'.i has the normal fonn property . Instantiating this reduction yields

s = C 1((u1-, ... , u1-)) ~~ C 2((uk, ... , uk)) = !. D
l m I l p

- IO -

PROPOSITION 3. 19. Ifs ➔~'. t thens =~ t.
' '

PROOF. Just as in the previous proof we may write s=Cd{u 1, • . . ,unH ➔~; C2((u1 , , ... ,u1 .. »=t.

Choosing fresh variables X1,••·•Xn with <u1,- -- ,Un> 00 <X1, ••·,Xn> yields

C 1 {X 1, . .• , Xn} ➔Jl ; C 2(X11, .. . , X1). Because C 1 {X 1, . .. , Xn} and C 2(X11 , ... , X1) belong to 5[,

we have C 1 {X 1, . .. , Xn} =Jl, C 2(X1,, ... , X1) from which we immediately obtain

s =Cd{u1, ••·•un}} =~. C2((u1 1 , •• • ,u1 .. »=t. □

NOTATION . We writes :::::0 t if top(s) = top(t).

The left-linearity of ~ 1 and ~ 2 is only (explicitly) used in the proof of the next proposition.

PROPOSITION 3.20. Ifs ➔~. t ands :::::0 s' then there exists a term t' such thats' ➔~. t' . Furthermore,

ifs ➔~. tis not destructive then we also have t :::::0 t' .

PROOF. We have s = C 1 {{u 1, ... , un}} ➔~. C 2((u1,, ... , u1)) = t for some terms u 1 , ... , un and 'con

texts' C 1 { , . . . , } and C 2(, . . . ,). Ifs :::::0 s' thens'= C 1 {{ui, . .. , u~}} for some terms ui, ... , u~ and

because ~i is left-linear we can apply the same rewrite rule as in s ➔~. t to the terms'. This gives us

s' ➔~. C 2((u1,, ... ,u1)) and we define t'=C 2((u1,, ... ,u1 .. ». Ifs ➔~. tis not destructive then

C 2(, ... ,) -I= □ and hence top (t) = C 2(, . . . ,) = top (t'). Sot :::::0 t' by definition. □

PROPOSITION 3.21. If t E NF (➔~) and t :::::0 t' then t' E NF (➔~).

PROOF. Immediate consequence of the previous proposition. □

PROPOSITION 3.22. Ifs ➔~; tis destructive then t E NF (➔~.) ands ➔0 t.

PROOF. The root symbol of s belongs to :} ; and, by Definition 3.10, root (t) e:} ; . Therefore, t is not

reducible with respect to ➔~ •. Combining Propositions 3.18 and 3. I 9 yields s ~~. t and since s -I= t

we obtain s ➔0 t. □

PROPOSITION 3.23. Ifs ➔0 t ands :::::0 s' then there exists a term t' such thats' ➔0 t'.

PROOF. We have s ➔~; t with t E NF (➔~.) for some i E {I, 2}. We will show by induction on the

length of s ➔~ + t the existence of a term t' E NF (➔~) such thats' ➔'.~t t' . If the length of s ➔~ + t
I I I I

equals one, we apply Proposition 3.20 in order to obtain a term t' with s' ➔~, t'. Ifs' ➔Jl, t' is des

tructive then t' E NF (➔Sl) by Proposition 3.22. Otherwise t :::::0 t' by Proposition 3.20 and hence

t' E NF (➔Sl) by Proposition 3.2 I. Next we assume thats ➔~, s 1 ➔~; t. Proposition 3.22 shows that

s ➔~, s 1 is not destructive. Proposition 3.20 yields a term s1 with s' ➔~, s1 and s 1 :::::0 s1. From the

induction hypothesis we obtain a term t' E NF (➔~.)with si ➔~; t' . We conclude thats' ➔0 t'. □

PROPOSITION 3.24. Ifs ➔Jl ; EB~; tis destructive thens e NF(➔) .

PROOF. Easy consequence of Proposition 3.22. □

PROPOSITION 3.25. Ifs ➔Jl; EBJei t ands E NF(➔) then t E NF(➔) .

PROOF. We haves= C [si], t = C [ti] and s 1 ➔~• t I for some context C [],terms s I E S (s), t 1 and
'

index i E {I, 2}. The previous proposition shows that s 1 ➔~ : t 1 is not destructive. Hence

root (t 1) E :f; and t I ES (t). It is not difficult to see that for every special subterm t' -I= t I of t we can

- 11 -

find a special subterm s' of s with s' ==0 t'. Suppose t e NF(➔). Then there exists a t' ES (t) such that

t' ➔0 t" for some term t" . Because s E NF (➔), the previous proposition and the above remark show

that this is only possible in case t' = t 1• Since root (t 1) E :f ;, t 1 ➔
0 t" implies t 1 ➔t t" with

t" E NF (➔jl.). Therefore s 1 ➔il; t 1 ➔t t". Proposition 3.19 yields s 1 =jl, t" and we obtain

SJ ➔il, t" from Proposition 3.18. Clearly s 1 i= t". Hence SJ ➔0 t", contradicting the assumption of s

being in ➔-normal form . □

PROPOSITION 3.26. Ifs ➔~;a:i Sl ; t, s ENF(➔) and t ENF(Jt'. 1 ffiJ?,2) thens= t.

PROOF. We use induction on the length of s ➔~ ; 63 ~ ; t. The case of zero length is trivial. Let

s ➔~ ;EB ~i s 1 ➔Sl; EB~i t. From Proposition 3.25 we obtain SJ ENF(➔) and hence we can apply the

induction hypothesis to the sequence s 1 ➔Sl; EB~i t. This yields s J = t. We clearly have s = C [s'],

t = C [t'] and s' ➔jl ; t' for some context C [], terms s' ES (s), t' and index i E { 1, 2}. Proposition

3.19 yields s' =~. t' and because t' E NF (➔il) we have s' ➔~. t' by Proposition 3.18. Ifs' ➔~t t'

thens' ➔0 t', contradicting the assumption s E NF(➔) . Therefore s' = t' ands = t. □

THEOREM 3.27. NF is a modular property of left-linear TRS' s.

PROOF. Let (:JJ, Ji'. 1) and (:f<i, Ji'.2) be disjoint left-linear TRS's. We have to show that Ji'.J EBJi'.2 has

the property NF if and only if both (:JJ, Ji'.J) and (:J2 , Ji'.2) have the property NF.

⇒ Trivial.

<= Let (:J1,Ji'.j) and (:J2,Ji'.2) be TRS's satisfying the requirements made after Theorem 3.3 and

consider a conversion s =~, 63 ~
2

t between terms s, t E 5 with t E NF (Ji'. 1 EB 5i'.z). We clearly have

s=Sl ;EB ~;t and we obtain tENF(Ji'. 1EBJi'.2) from Proposition 3.14. Theorem 3.3 yields

s ➔~ ; EB ~ i t. By Proposition 3.17, s has a normal form with respect to ➔, say t' . In particular we

haves ➔Sl ;EB ~ i t'. The confluence of Ji'. 1 EBJi'.2 (Theorem 3.3) implies t' ➔~;ffi~i t and hence

t' = t by Proposition 3.26. So s ➔ . . . ➔ t and because ➔ is a restriction of ➔~, ffi~
2

, we obtain

s ➔~, ® ~
2

t. We conclude that Ji'. 1 EB Ji'.2 has the property NF.

D

4. Conditional Term Rewriting Systems

The rewrite rules of a conditional term rewriting system (CTRS) have the form

l ➔ r <=SI = t 1, ... , Sn= ln

with s 1 , .. . , Sn, t 1 , .. . , tn, 1, r E 5 (:f, 1J). The equations s 1 = t 1, .. . , Sn= tn are the conditions of the

rewrite rule. Depending on the interpretation of the =-sign in the conditions, different rewrite rela

tions can be associated to a given CTRS. In this paper we restrict ourselves to the three most common

interpretations.

(1) Join systems.

In a join CTRS the =-sign in the conditions is interpreted as joinability. Formally: s ➔ t if there

exists a conditional rewrite rule l ➔ r <= s 1 = t 1 , . .. , Sn= tn, a substitution cr and a context C []

such thats= C [cr(l)], t = C [cr(r)] and cr(si) J, cr(ti) for all i E {l, ... , n } . Rewrite rules of a join

CTRS will henceforth be written as

(2) Semi-equational systems.

Semi-equational CTRS's are obtained by interpreting the =-sign in the conditions as conversion.

- 12 -

(3) Normal systems.

In a normal CTRS the rewrite rules are subject to the constraint that every ti is a ground normal

form with respect to the rewrite relation obtained by interpreting the =-sign in the conditions as

reduction (~). Rewrite rules of a normal CTRS will be presented as

This classification originates essentially from Bergstra and Klop [1]. The nomenclature stems from

Dershowitz, Okada and Sivakumar [4].

The restrictions we impose on CTRS 's ;fl in any of the three formulations are the same as for

unconditional TRS 's: if/ ➔ r ¢= s 1 = t 1 , ... , sn = tn is a rewrite rule of ;fl then I is not a single vari

able and variables occurring in r also occur in /.

Conditional term rewriting is inherently more complicated than ordinary term rewriting, see

Bergstra and Klop [1] and Kaplan [10]. Several well-known results for TRS's have been shown not

to hold for CTRS's. Sufficient conditions for confluence and strong normalization of CTRS's can be
found in [1], [3], [4], [9] and [10]. In two recent papers ([16] and [17]) we studied CTRS's from the
modularization point of view. In [16] we extended Toyama's confluence result for disjoint unions of

TRS's to CTRS's.

THEOREM 4.1 (Middeldorp [16]). Confluence is a modular property of join, semi-equational and nor

mal CTRS' s. □

Strong and weak normalization were the theme of [17]. In this section we are concerned with

the modularity of unique normal forms. We first observe that the proof of Theorem 3.15 does not

extend to join CTRS's because not every join CTRS with unique normal forms can be extended to a
confluent join CTRS with the same set of normal forms.

EXAMPLE 4.2. Let

A ➔ B

A ➔ C
;fl= B ➔ B

D ➔ E ¢= B -1,C
D ➔ F.

Clearly ;Jc has the property UN. However, there does not exist a confluent CTRS ;Jc' such that ;Jc~ ;Jc'

and the normal forms of ;Jc and ;Jc' coincide: if such a ;Jc' were to exist then B -l-:R' C and therefore

D ➔:R.' E which contradicts either the confluence of ;R' or the equality of NF (:R) and NF (:R').

The same remark holds for normal CTRS's, as can be seen by replacing the fourth rule of ;Jc in

the previous example by the rule D ➔ E ¢= B ~ C. In the remainder of this section we will show that

the method for proving the modularity of UN for TRS's does extend to semi-equational CTRS's.

A careful inspection of the proofs in Section 2 reveals that Lemma 2.7 is also true for semi

equational CTRS's. Only part (1) and (2) of Proposition 2.6 need some further elaboration. As a

matter of fact, this is precisely the place were join and normal CTRS's fail. The following definition

is fundamental for establishing properties of (semi-equational) CTRS's.

DEFINITION 4.3. Let :R be a semi-equational CTRS. We inductively define TRS's ;Jci for i ~ 0 as fol

lows:

- 13 -

:Ro = {s ➔ t I s = C [cr (/)] and t = C [cr (r)] for some context C [], substitution cr

and unconditional rewrite rule I ➔ r E :R],

:Ri+I = {s ➔ t I s = C [cr (/)] and t = C [cr (r)] for some context C [], substitution cr

and rewrite rule I ➔ r ~ s 1 = t 1 , . • . , Sn= tn E:R such that

cr(s1) =:R, a(t1) for J= 1, ... , n].

We haves ➔:R t if and only ifs ➔:R., t for some i ~ 0. The depth of s ➔:R. tis defined as the minimum

i such thats ➔:R, t. Depths of conversions s =:R t are similarly defined.

Proposition 4.4 is the analogue of the first two parts of Proposition 2.6 for semi-equational

CTRS's. The reader is invited to check that the proof fails for join and normal CTRS's.

PROPOSITION 4.4.

(1) For all terms s, t E 5 (:J, 1J) we haves =:R t if and only ifs =:R' t.

(2) NF (:R) = NF (:R').

PROOF.

(1) If s =:R t then s =:R.' t since :R' is an extension of :R. For the other direction it is sufficient to prove

that s ➔:R' t implies s =:R t. This will be done by induction on the depth of s ➔:R' t. If the depth

equals zero then there exists a context C [], an unconditional rewrite rule I ➔ r E :R' and a substi

tution cr such that s = C [cr (/)] and t = C [cr (r)]. If I ➔ r E :R then we clearly have s ➔:R t.

Otherwise r = 1t (C) with IE CE 'f5 and we obtain I =:R rand hence s =:R t. If the depth of s ➔:R' t

equals n + 1 (n ~ 0), then there exists a context C [], a conditional rewrite rule

I ➔ r ~ s 1 = t 1, ... , Sm= tm E ;R, and a substitution cr such that s = C [cr (/)], t = C [cr (r)] and

cr (si) =:R' cr (ti) for i = 1, ... , m with depth less than or equal to n. Notice that ;R' - :R only contains

unconditional rewrite rules. A straightforward induction on the length of the conversion

cr (sj) =:R' cr (ti) yields cr (sj) =:R a (ti) (i = 1. ... , m). Therefore cr (/) ➔:R cr (r) ands ➔:R t.

(2) The inclusion NF (:R') ~ NF (:R) is evident. Suppose there exists a term t E 5 (:J, 1J) such that

t E NF (:R) and t r/:. NF (:R') . One easily shows that t cannot be reducible with respect to a rewrite

□

rule of :R' - :R. Hence there exists a context C [], a rewrite rule I ➔ r ~ s 1 = t 1 , ... , Sn= tn E :R

(n ~ 0) and a substitution cr such that t = C [cr (/)] and cr (si) =:R' cr (lj) for i = 1, ... , n. Part (1)

shows that cr (sj) =:R cr (ti) (i = 1, .. . , n) which implies t ➔:R. C [cr (r)], contradicting the assump

tion t E NF (:R). We conclude that NF (:R) = NF (:R').

We obtain the following result.

LEMMA 4.5 . Every semi-equational CTRS (:J, :R) with unique normal forms can be extended to a

confluent semi-equational CTRS (:J ', :R') such that:

(1) for all terms s, t E 5 (:J ', 1J) we haves =:R t if and only ifs =,r t,

(2) NF(:.f,:R)=NF(.9-',:R') .

□

The other key result used in the proof of Theorem 3.15, that is to say Proposition 3.14, is not

true in its full generality for semi-equational CTRS's. Fortunately, we will see that it is sufficient to

prove this result only for confluent extensions. The complicated proof of the next proposition, which

is evidently true for unconditional TRS 's (even without the confluence requirement, see Proposition

- 14 -

3.12), is almost identical to the proof of Lemma 4.27 in (17], where the same result is shown to hold

for join CTRS's. In order not to disrupt the discussion, we refrain from repeating the proof.

PROPOSITION 4.6. If (Si1, R 1) and (Si2, R2) are disjoint confluent semi-equational CTRS' s then

NF (R1 EBR2) = NF(Si1 uSi2, R1) n NF (Si1 uSi2, R2), D

Proposition 3.13 is not true for semi-equational CTRS's, as is shown in the next example.

EXAMPLE 4.7. Consider the semi-equational CTRS's

R1 = {; : ~
F (x, y) ➔ D ¢:::: x = y

and

A ➔ B

A ➔ C

F(x,x) ➔ D

F(A,x) ➔ D ¢:::: A =x
R2 = F(B,x) ➔ D ¢:::: B =x

F(C, x) ➔ D ¢:::: C =x

F(D, x) ➔ D ¢:::: D =x

F(F(x, y), z) ➔ D ¢:::: F(x, y) = z

with Si 1 =Si2 ={A,B,C,D,F}. It is not difficult to show that NF(91,R1)=NF(Si2,R2). Take

Si'={g} with g a unary function symbol and let t=F(g(B),g(C)). Clearly tENF(Si2 uSi',9l2).

However, t ➔5e1 D since g (B) =5e, g (C). Notice that both systems are not confluent.

The following restricted version of Proposition 3.13 for semi-equational CTRS 's can be
obtained using similar techniques as in the proof of Lemma 4.27 from (17].

PROPOSITION 4.8. Let (91, :Ri) and (Si2, R2) be semi-equational CTRS' s such that

NF(91, R1) = NF(Si2, R2) and (Si2, R2) is confluent. If Si' is a set of fresh function symbols then

NF (Si1 u Si', R1) ~ NF (Si2 u Si', R2) . o

PROPOSITION 4.9. Let (51, R 1) and (:-Ji, :h:2) be disjoint semi-equational CTRS' s. If (Si[, Jl[) is a

confluent extension of(:Jii,R;) with NF(:Jii,RJ=NF(:fi[,R[) (i=l,2) such that :Ji 1 n:Ji2=0, then

NF(R1 EBR2) = NF(Jli EBR2) .

PROOF. Similar to the proof of Proposition 3.14. The application of Proposition 4.7 and 4.8 (instead

of Proposition 3.12 and 3.13) is justified by the confluence of (5 1, RD and (5 2, R 2). □

The next example shows why confluence is required in Proposition 4.9.

EXAMPLE4.10. Let :fi1 =:J- 1 = {F, C}, :Ji2 =:fi2 = {a, b, c}, R 1 =R1 = {F(x,y) ➔ C <=x=y},

R2 = {a ➔b} and R 2 = R2 u {a ➔ c }. The term F (b, c) belongs to NF(R1 EBR2) because band c

are not convertible with respect to R 1 EBR2. However, F(b, c) ➔5e;EBS{i C since b ~5½ a ➔S{; c.

- 15 -

Putting all pieces together, we obtain the modularity of UN for semi-equational CTRS's.

THEOREM 4.11 UN is a modular property of semi-equational CTRS 's.

PROOF. The proof is the same as the proof of Theorem 3.15, apart from using Lemma 4.5, Proposi

tion 4.9 and Theorem 4.1 instead of Lemma 2.7, Proposition 3.14 and Theorem 3.3. □

Acknowledgements. The author is grateful to Jan Willem Klop and Vincent van Oostrom for useful

comments .

References

1. J.A. Bergstra and J.W. Klop, Conditional Rewrite Rules: Confluence and Termination, Journal

of Computer and System Sciences 32(3), pp. 323-362, 1986.

2. N. Dershowitz and J.-P. Jouannaud, Rewrite Systems, Rapport de Recherche 478, LRI, Orsay,

1989. (To appear in: Handbook of Theoretical Computer Science, Vol. B (ed. J. van Leeuwen),

North-Holland, 1989.)

3. N. Dershowitz, M. Okada and G. Sivakumar, Confluence of Conditional Rewrite Systems,

Proceedings of the 1st International Workshop on Conditional Term Rewriting Systems, Orsay,

Lecture Notes in Computer Science 308, pp. 31-44, 1987.

4. N. Dershowitz, M. Okada and G. Sivakumar, Canonical Conditional Rewrite Systems, Proceed

ings of the 9th Conference on Automated Deduction, Argonne. Lecture Notes in Computer Sci

ence 310, pp. 538-549, 1988.

5. N. Dershowitz and D.A. Plaisted, logic Programming cum Applicative Programming, Proceed

ings of the IEEE Symposium on Logic Programming, Boston, pp. 54-66, 1985.

6. N. Dershowitz and D.A. Plaisted, Equational Programming, in: Machine Intelligence 11 (eds.

J.E. Hayes, D. Michie and J. Richards), Oxford University Press, pp. 21-56, 1987.

7. L. Fribourg, SLOG : A logic Programming language Interpreter Based on Clausal Superposi

tion 1.111d Rewriting, Proceedings of the 2nd IEEE Symposium on Logic Programming, Boston,

pp. 172-184, 1985.

8. J.A. Goguen and J. Meseguer, EQLOG: Equality, Types and Generic Modules for logic Pro

gramming, in: Logic Programming: Functions, Relations and Equations (eds. D. DeGroot and

G. Lindstrom), Prentice-Hall, pp. 295-363, 1986.

9. J.-P. Jouannaud and B. Waldmann, Reductive Conditional Term Rewriting Systems, Proceed

ings of the 3rd IFIP Working Conference on Formal Description of Programming Concepts,

Ebberup. pp. 223-244, 1986.

10. S. Kaplan . Fair Conditional Term Rewriting Systems: Unification, Termination and Conflu

ence, Report de Recherche 194, LRI , Orsay, 1984.

11. J.W. Klop, Term Rewriting Systems, to appear in: Handbook of Logic in Computer Science,

Vol. I (eds. S. Abrarnsky, D. Gabbay and T. Maibaum), Oxford University Press, 1989.

12. M. Kurihara and I. Kaji, Modular Term Rewriting Systems: Termination, Confluence and Stra

tegies, Report, Hokkaido University, Sapporo, 1988.

13. M . Kurihara and A. Ohuchi, Modularity of Simple Termination of Term Rewriting Systems,

Report 89-SF-31, Hokkaido University, Sapporo, 1989.

- 16 -

14. A. Middeldorp, Modular Aspects of Properties of Term Rewriting Systems Related to Normal
Forms, Proceedings of the 3rd International Conference on Rewriting Techniques and Applica

tions, Chapel Hill, Lecture Notes in Computer Science 355, pp. 263-277, 1989. (Full version:

Report IR-164, Vrije Universiteit, Amsterdam, 1988.)

15 . A. Middeldorp, A Sufficient Condition for the Termination of the Direct Sum of Term Rewriting
Systems, Proceedings of the 4th IEEE Symposium on Logic in Computer Science, Pacific

Grove, pp. 396-401, 1989.

16. A. Middeldorp, Confluence of the Disjoint Union of Conditional Term Rewriting Systems,

Report CS-R8944, Centre for Mathematics and Computer Science, Amsterdam, 1989.

17. A. Middeldorp, Termination of Disjoint Unions of Conditional Term Rewriting Systems, Report

CS-R8959, Centre for Mathematics and Computer Science, Amsterdam, 1989.

18. M. Rusinowitch, On Termination of the Direct Sum of Term Rewriting Systems, Information

Processing Letters 26, pp. 65-70. 1987.

19. Y. Toyama, On the Church-Rosser Property for the Direct Sum of Term Rewriting Systems,

Journal ufthe ACM 34(1), pp. 128-143, 1987.

20. Y. Toyama, Counterexamples to Termination for the Direct Sum of Term Rewriting Systems,

Information Processing Letters 25, pp. 141-143, 1987.

21. Y. Toyama, J.W. Klop and H.P. Barendregt, Termination for the Direct Sum of Left-Linear

Term Rewriting Systems (preliminary draft), Proceedings of the 3rd International Conference

on Rewriting Techniques and Applications, Chapel Hill, Lecture Notes in Computer Science

355,pp.477-491, 1989.

22. H. Zhang and J.L. Remy, Contextual Rewriting, Proceedings of the 1st International Confer

ence on Rewriting Techniques and Applications, Dijon, Lecture Notes in Computer Science

202, pp. 46-62, 1985.

