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A Cluster Algorithm for Graphs

Stijn van Dongen

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

A cluster algorithm for graphs called the Markov Cluster algorithm (MCL algorithm) is introduced. The

algorithm provides basically an interface to an algebraic process de�ned on stochastic matrices, called the

MCL process. The graphs may be both weighted (with nonnegative weight) and directed. Let G be such

a graph. The MCL algorithm simulates ow in G by �rst identifying G in a canonical way with a Markov

graph G1. Flow is then alternatingly expanded and contracted, leading to a row of Markov Graphs G(i). Flow

expansion corresponds with taking the kth power of a stochastic matrix, where k 2 IN . Flow contraction

corresponds with a parametrized operator �r, r � 0, which maps the set of (column) stochastic matrices onto

itself. The image �rM is obtained by raising each entry in M to the rth power and rescaling each column to

have sum 1 again. The heuristic underlying this approach is the expectation that ow between dense regions

which are sparsely connected will evaporate. The invariant limits of the process are easily derived and in practice

the process converges very fast to such a limit, the structure of which has a generic interpretation as an over-

lapping clustering of the graph G. Overlap is limited to cases where the input graph has a symmetric structure

inducing it. The contraction and expansion parameters of the MCL process inuence the granularity of the

output. The algorithm is space and time e�cient and lends itself to drastic scaling. This report describes the

MCL algorithm and process, convergence towards equilibrium states, interpretation of the states as clusterings,

and implementation and scalability. The algorithm is introduced by �rst considering several related proposals

towards graph clustering, of both combinatorial and probabilistic nature.

2000 Mathematics Subject Classi�cation: 05B20, 15A48, 15A51, 62H30, 68R10, 68T10, 90C35.

Keywords and Phrases: Clustering, graph clustering, graph partitioning, random walk, Markov matrix, ow

simulation.

Note: Revised version of the report [8]. A more mathematically oriented account on the MCL process is

given in [11], establishing that under certain weak conditions the iterands of the MCL process posses structure

admitting a cluster interpretation. Various experiments conducted on a wide range of test{graphs are described

in [10]. The latter report also describes a generic graph clustering performance measure and a distance de�ned

on the space of partitions. The work was carried out under project INS{3.2, Concept Building from Key{Phrases

in Scienti�c Documents and Bottom Up Classi�cation Methods in Mathematics.

1. Introduction

In this report the Markov Cluster (MCL) algorithm is introduced, a cluster algorithm for graphs which is

based on simulation of ow expansion and ow contraction in graphs. The algorithm is speci�cally suited to

sparse graphs, i.e. graphs for which the average node degree is an order of magnitude smaller than the number

of nodes in the graph. The algorithm is motivated by considering how the concept of `cluster' in the setting of

sparse graphs can be formalized to some extent. The report is a revised version of [8], and corresponds with

chapters 5, 6, and 11 in the PhD thesis [9].
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The idea that clustering in the setting of sparse graphs may very well merit from a separate approach, as

opposed to viewing this problem as a minor variant of clustering in a more abstract setting, does not seem to

be widespread in the cluster analysis and pattern recognition communities. In graph partitioning clustering

is sometimes used as a preprocessing step, and in this area of research there exist publications that deal

speci�cally with clustering in the setting of graphs | see [6, 7, 15, 24, 43] and the survey article [3].

The classic setting in cluster analysis is one where entities are represented by vectors of numerical scores

(here termed the vector model). The (dis)similarity between two elements is in this case de�ned in terms of

a measure on the di�erence between the vectors associated with the elements. In the setting of graphs, the

relationship between two elements is of the kind `share a property or not' or `one refers to the other' (here

termed the graph model). In graph clustering, the goal is to �nd a clustering of the node set of a graph

such that there are few edges in between di�erent clusters, and many edges within each cluster on its own.

The fundamental di�erence between the graph model and the vector model is that in the latter model the

(dis)similarities between elements are immediately available, and that the model inspires geometric notions

such as convex hull, geometric mean, separating hyperplanes, et cetera. The notion of a cluster is closely related

to the density of the distribution of the vectors over the vector space. Clusters should induce regions of the

vector space where the density is relatively high, and they should generally be separated by regions of the

vector space where the density is relatively low. On the other hand, a graph is nothing more than a set of

nodes with a notion of connectivity attached to it. Clusters can not be measured in terms of the location of

the nodes, they can only be measured in terms of the incidence relation de�ned on the cartesian product of

the node set.

There seem to be few publications linking (graph clustering in the setting of) graph partitioning with cluster

analysis or pattern recognition. Several reasons account for this. Cluster analysis can be seen as a unifying

framework where exploratory techniques are gathered from di�erent application areas such as biology, chem-

istry, market research, medicine, and psychology. In this framework the methods are studied in abstracto,

separated from application, data, and implementation. The predominant data model in each of these applica-

tion areas is the vector model described above. The graph model is relatively young in comparison, and does

not get much attention in the cluster analysis monographs [4, 12, 13, 16, 22, 23, 25, 29, 34, 38, 42]. Another

aspect worth mentioning is that classic methods such as the linkage{based methods (c.q. single link and com-

plete link clustering) are often formulated in terms of threshold graphs derived from dissimilarity spaces (see

Section 4), and these methods are consequently easy to apply to graphs per se. However, threshold graphs are

merely a means of notation, and this approach does not seem particularly suited for �nding cluster structure

in graphs in general. It fails entirely with respect to the basic challenge of �nding cluster structure in simple

graphs. A neighbourhood graph is another type of graph which is sometimes derived from metric dissimilarity

data [22]. This corresponds again with a particular manner of selection and representation, where the trans-

formation step is speci�cally motivated by the geometric nature of the original data. The clustering methods

(c.q. heuristics) applied to neighbourhood graphs depend critically on properties of this transformation step,

so they are not suited for graphs in general.

In graph partitioning (i.e. partitioning the node set of a graph into subsets with prescribed sizes such that the

total weight of the edges between di�erent subsets is minimal) clustering is sometimes used as an intermediate

processing step [3]. Graph partitioning is a well{de�ned optimization problem due to the fact that the

partition sizes are prescribed. The research in this area is characterized by its cohesive nature, a tradition of

benchmarking, and demand from industry. There is a set of established (e.g. spectral, move-based, multi-level)

techniques, that are continually being re�ned, extended, and combined in novel ways. The application areas

(some of which fall under the common denominator of VLSI design, see also [3]) generate problems with sizes

obeying some variant of Moore's law (e.g. doubling every three year or so). The contrast with the exploratory

nature of classic applications in cluster analysis is quite clear. The issue is discussed in more detail in [9]. This

report deals exclusively with clustering in the setting of (sparse) graphs.
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2. Introductory description of the MCL algorithm

The basic idea underlying the MCL algorithm and process is that dense regions in sparse graphs correspond

with regions in which the number of k{length paths is relatively large, for small k 2 IN . Random walks of

length k thus have higher probability for paths with beginning and ending in the same dense region than for

other paths. This is especially true if one looks at the subset of all random walks departing from a speci�c

node. If this node is situated in a dense region, random walks departing from it will in general have a tendency

to stay in the same region. The crucial element in the MCL algorithm is that this e�ect is deliberately boosted

by an iterative procedure. First, an input graph G is mapped in a generic way onto a Markov matrix M1.

Then the set of transition probabilities is iteratively recomputed via expansion and ination. The expansion

step corresponds with normal matrix multiplication (on stochastic matrices), the contraction step corresponds

with a parametrized operator �r, called the ination operator, which acts column{wise on (column) stochastic

matrices. Henceforth, the term ination will be used rather than contraction. Via expansion, nodes are able

to see new neighbours; via ination, favoured neighbours are further promoted, and less favoured neighbours

are further demoted. For nearly all undirected graphs G, this process triggered by G converges very fast.

The structural characteristics of the matrix limit of the process may be very di�erent from the initial Markov

matrix M1. The associated graph of the matrix limit can have a larger number of connected components

than the original input graph. This is in fact what makes the algorithm work, since the strongly connected

components of the limit, joined with the respective node{sets that reach them, are interpreted as an overlapping

clustering of the original graph. As in the usual Markov process, the `nice' limits are idempotent matrices.

An in�nite sequence consisting of repeated alternation of expansion and ination constitutes a new algebraic

process called the Markov Cluster (MCL) process. If the ination operator �r is parametrized such that all

ination steps correspond with the identity operator, a normal Markov process results. Interpretation of the

limit then yields a clustering which corresponds with the set of connected components of the original graph.

The ination operator does not distribute over the normal matrix product, as � acts on matrices column{wise.

For a normal Markov process, the columns of any iterand lie within the convex hull of the columns of any

previous iterand. This is not true for the MCL process, which is due to � again. However, the MCL process

has remarkable convergence properties. The `nice' equilibrium states of the process are easily derived, and in

practice the algorithm converges nearly always to such a limit. Exceptions to this rule are quite rare. The

only ones found so far were made by construction, and agree with heuristic considerations.

For all testcases described in [10], the correlation between input graph, algorithm parameters, and output

clustering is in line with heuristic considerations. The examples in [10] show surprising strengths of the

algorithm. Most notable among these are separating power and the absence of chaining. All clusterings that

are found have the property that the clusters correspond with regions in which there are relatively many k{

length paths within. In this sense, it is impossible to �nd bad clusterings. The number of clusters is inuenced

by the ow characteristics of the MCL process. The cluster granularity can be a�ected by varying the ow

parameters, but the number of clusters need not (and can not) be speci�ed explicitly. The parametrizations

of the MCL process which are useful for clustering purposes, generally lead to intermediate matrix iterands

and equilibrium states which are very sparse in a `weighted' sense. That is, a column may have many nonzero

entries, but most of them are very small compared to the largest entries within the column. This gives the

means to scale the algorithm drastically, by applying columnwise pruning.

3. Organization

Notations and de�nitions are covered in Section 4. Section 5 contains a short account of three related proposals

towards graph clustering. They are formulated in terms of path numbers, random walks, and shortest paths.

The proposal is made to assemble these notions under the somewhat grandiloquent label graph clustering

paradigm. In Section 6 proposals towards graph clustering that have a combinatorial nature are discussed. A

relaxation of one of them is the subject of Section 7. It is called k-path clustering and uses path numbers to

detect cluster structure via single link clustering. This method links the combinatorial cluster notions with
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the MCL algorithm, as the starting point for the MCL algorithm is a localized version of k-path clustering.

In Section 8 probabilistic cluster algorithms based on the ideas in Section 5 are briey described. Random

walks on graphs are introduced, corresponding with a localization of the context in which k-path clustering is

applied. The standard way of describing a random walk on a graph associates a particular discrete Markov

chain with the graph, and such is also the setup here. An example of (deterministically computed) random

walks on an undirected graph possessing (weak) cluster structure is given. The initial characteristics of this

stochastic process (c.q. Markov chain) are similar to phenomena observed in applying k-path clustering to the

same graph (Section 7) but in the limit of the process all evidence of cluster structure has withered away. A

new operator called ination is inserted into the process, and an example run using the same input graph

results in a limit which induces a cluster interpretation of the input graph in a generic way. TheMCL algorithm

and MCL process are formally described at the end of Section 8. The relationship between the MCL process

and cluster interpretation of graphs is the subject of Section 9. Section 10 gives mathematical properties of

the ination operator �. In Section 11 the theoretically conceivable equilibrium states of the MCL process are

categorized. Examples are given for each of the introduced classes. A class of symmetric circulant matrices for

which matrix squaring and ination act as each other's inverse is the subject of Section 12. In Section 13 local

convergence properties of the MCL process are studied. The class of nice equilibrium states1 is subdivided

into two categories. It is shown that in the neighbourhood of the equilibrium states in the �rst subclass the

MCL process converges quadratically towards equilibrium. Then it is shown that the equilibrium states S in

the second subclass are instable, but that the MCL process converges quadratically at least on a macroscopic

scale, once close enough to such an equilibrium state S. That is, it is proven that the structural form of the

elements of MCL process converges towards the same block structure as present in S. Roughly speaking, the

conclusion is that the phenomenon of cluster overlap is instable in nature, and that otherwise the instability

of an equilibrium state, c.q. perturbation followed by convergence towards another equilibrium state, does not

change the associated clustering. Section 14 is concerned with complexity and scalability of the algorithm. It

is shown that the algorithm can be scaled drastically for large graphs in which the diameters of the natural

clusters is relatively small.

In [11] conditions are given under which iterands of the MCL process have real c.q. nonnegative spectrum,

and which imply the presence of generalized cluster structure in the iterands. The basic result is that for

symmetric input matrix M , all iterands of the MCL process are guaranteed to be diagonally similar to a

symmetric matrix. If such an iterand (matrix) has in addition nonnegative spectrum, than determinantal

inequalities induce an ordering among the diagonal entries of the matrix which generalizes the mapping from

nonnegative idempotent matrices onto overlapping clusterings given here in De�nition 8. This ordering is also

used in [11] to characterize the working of the ination operator on its argument matrix.

4. Notation and definitions

This section introduces the terminology needed for graphs, (dis)similarity spaces, and clusterings. Single link

and complete link clustering are discussed in some greater detail, because these are methods typically applied

to dissimilarity data derived from attribute spaces, and are yet often formulated in graph{theoretical terms.

Graphs

De�nition 1 Let V be a �nite collection of elements, enumerated v1; : : : ; vt.

i) A weighted graph G on V is a pair (V;w), where w is a function mapping pairs of elements of V to the

nonnegative reals: w : V � V ! IR�0.

a) G is called undirected if w is symmetric, it is called directed otherwise.

1The states correspond with matrices which are idempotent under both expansion and ination, the MCL process
converges quadratically around these states, and they allow a generic mapping onto overlapping clusterings.
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b) G is said to be irreexive if there are no loops in G, that is, w(v; v) = 0; 8v 2 V .

ii) A dissimilarity space D = (V; d) is a pair (V; d), where s is a symmetric function mapping V � V

to IR�0, satisfying s(u; v) = 0 () u = v. The function d is called a dissimilarity measure or

dissimilarity coe�cient.

iii) A similarity space is a pair (V; s), where s is a symmetric function mapping V � V to IR>0 [ f1g,
satisfying s(u; v) =1 () u = v. The function s is called a similarity measure or similarity coe�cient.

The elements in V are called the nodes of G. The dimension of the graph G is de�ned as the cardinality t of

its node set V .

In this thesis, I shall use similarity coe�cients in the exposition of k-path clustering in Section 7.

Let G = (V;w) be a weighted directed graph with jV j = t. The associated matrix of G lying in IR�0t�t,
denoted MG, is de�ned by setting the entry (MG)pq equal to w(vp; vq). Given a matrix M 2 IR�0N�N , the
associated graph of M is written GM , which is the graph (V;w) with jV j = N and w(vp; vq) =Mpq .

An equivalent way of representing a weighted graph G is by identifying G with a triple (V;E;w), where

the edge set E is a subset of V 2 and where w is a positive weight function de�ned on E only. A graph

represented by such a triple (V;E;w) is in 1{1 correspondence with a graph representation (V;w0) (according
to De�nition 1), by setting w0(u; v)=a>0 i� e=(u; v)2E and w(e)=a, and setting w0(u; v)=0 i� e=(u; v)62E.
The second representation leads to the generalization of graphs called hypergraph. A weighted hypergraph

is a triple (V;E;w) where the hyperedge set E is a subset of the powerset P(V ), and where w is a weight

function on E as before.

Matrices and graphs of dimension N are indexed using indices running from 1 to N . If u; v are nodes for which

w(u; v) > 0, I say that there is an arc going from v to u with weight w(u; v). Then v is called the tail node,

and u is called the head node. The reason for this ordering lies in the fact that graphs will be transformed

later on into stochastic matrices, and that I �nd it slightly more convenient to work with column stochastic

matrices than with row stochastic matrices. The degree of a node is the number of arcs originating from it.

A graph is called voidfree if every node has degree at least one.

A path of length p in G is a sequence of nodes vi1 ; : : : ; vip+1 such that w(vik+1 ; vik) > 0, k = 1; : : : ; p. The

path is called a circuit if i1 = ip+1, it is called a simple path if all indices ik are distinct, i.e. no circuit is

contained in it. A circuit is called a loop if it has length 1. If the weight function w is symmetric then the

arcs (vk; vl) and (vl; vk) are not distinguished, and G is said to have an edge (vl; vk) with weight w(vl; vk). The

two nodes vl; vk are then said to be connected and to be incident to the edge. A simple graph is an undirected

graph in which every nonzero weight equals 1. The simple graph on t nodes in which all node pairs u; v; u 6= v,

are connected via an edge (yielding t(t� 1) edges in all) is denoted by Kt, and is called the complete graph

on t nodes. A weighted directed graph for which w(u; v) > 0; 8u 6= v, is called a weighted complete graph. A

weighted directed graph for which w(u; v) = 0 for some (or many) pairs (u; v) is called a weighted structured

graph.

Let G = (V;w) be a directed weighted graph. A strongly connected component of G is a maximal subgraph H

such that for every ordered pair of nodes x; y in H there is a path from x to y in H. If G is undirected,

then the strongly connected components are just called the connected components, and G is called connected

if there is just one connected component (equalling G itself). For G directed, a weakly connected components

is a maximal subgraph H containing at least one strongly connected component C and all nodes x in G

such that there is a path in G going from x to an element of C (and thus to all elements of C). Weakly

connected components can thus overlap, but they always contain at least one strongly connected component

not contained in any of the other weakly connected components.
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Let G = (V; w) be a directed weighted graph G = (V;w). In this thesis the interpretation of the weight

function w is that the value w(u; v) gives the capacity of the arc (path of length 1) going from v to u. Let G be

a simple graph, let M = MG be its associated matrix. The capacity interpretation of the weight function w

is very natural in view of the fact that the pq entry of the kth power Mk gives exactly the number of paths of

length k between vp and vq. This can be veri�ed by a straightforward computation. The given interpretation

of the entries of Mk extends to the class of weighted directed graphs, by replacing the notion `number of paths

between two nodes' with the notion `capacity between two nodes'.

The graph which is formed by adding all loops to G is denoted by G + I. In general, if � is a nonnegative

diagonal matrix, then G+� denotes the graph which results from adding to each node vi in G a loop with

weight �ii.

Partitions and clusterings

A partition or clustering of V is a collection of pairwise disjoint sets fV1; : : : ; Vdg such that each set Vi is a

nonempty subset of V and the union [i=1;::: ;dVi is V . A partition P is called ( top respectively bottom2)

extreme if respectively P = fV g and P = fsingletons(V )g = ffv1g; : : : ; fvtgg. A hierarchical clustering of V

is a �nite ordered list of partitions Pi; i = 1; : : : ; n of V , such that for all 1 � i < j � n the partition Pj
can be formed from Pi by conjoining elements of Pi, where P1 = fsingletons(V )g = ffv1g; : : : ; fvtgg and

Pn = fV g. An overlapping clustering of V is a collection of sets fV1; : : : ; Vdg, d 2 N , such that each set Vi is

a nonempty subset of V , the union [i=1;::: ;dVi is V , and each subset Vi is not contained in the union of the

other subsets Vj ; j 6= i. The latter implies that each subset Vi contains at least one element not contained in

any of the other subsets, and this in turn implies the inequality d � t.

Let s be a similarity coe�cient de�ned on V = fv1; : : : ; vtg. Let s1; : : : ; sn be the row of di�erent values that s

assumes on V �V , in strictly descending order and with the value 0 added. Remember that s(u; u) =1; u 2 V .

Thus, 1 = s1 > s2 > � � � > sn = 0. The single link clustering of the pair (V; s) is the nested collection of

partitions Pi; i = 1; : : : ; n, where each Pi is the partition induced by the transitive closure of the relation in

which two elements u; v; are related i� s(u; v) � si. According to this de�nition, subsequent partitions may be

equal, P1 = fsingletons(V )g, and Pn = fV g. The fact that at each similarity level si the single link clustering

results from taking the transitive closure implies that the clustering coincides with the connected components

of the threshold graph of (V; s) at threshold level si. This is simply the graph3 on t nodes where there is an

edge between u and v i� s(u; v) � si.

The complete link clustering of the pair (V; s), is usually procedurally de�ned as follows. The bottom par-

tition P1 is again taken as fsingletons(V )g. Each clustering Pk, k > 1, is subsequently de�ned in terms

of Pk�1 by uniting the two clusters Cx and Cy of Pk�1 for which the threshold level s such that [the subgraph

on Cx [ Cy in the threshold graph of (V; s) at level s is complete] is maximal. Equivalently, Cx and Cy are

such that the maximum of the minimal similarity in the restriction of the similarity space (V; s) to CX [ CY ,
is assumed for X = x and Y = y. It is not very satisfactory from a mathematical point of view that the

clusterings at a given level depend on the previous clusterings. It would be more elegant to de�ne a clustering

at a given threshold level as all maximal cliques in the corresponding threshold graph. The drawback is that

it will in general result in an overlapping clustering with many clusters. Moreover, di�erent clusters may

have large overlap and small symmetric di�erence. Many variants of this type of complete linkage have been

suggested [19, 23, 31], by �rst forming all maximal cliques at a given threshold level, and subsequently joining

clusters (which are cliques) under the transitive closure of some similarity between clusters, e.g. sharing at

least k neighbours. The computational requirements of such methods are huge, and they are mostly presented

as an exercise in mathematical thought.

2The set of all partitions forms a lattice of which these are the top and bottom elements.
3Usually threshold graphs are presented in the setting of dissimilarity spaces, using the edge de�ning inequal-

ity s(u; v) � si.
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Miscellanea

Numerical experiments are described in this thesis, which means that the realm of �nite precision arithmetic

is entered. Numerical expressions denote oating point numbers if and only if a dot is part of the expression.

Expressions in which single indices or subscripted or superscripted simple expressions are enclosed in paren-

theses denote the object which results from letting the index run over its natural boundaries. E.g. e(i) denotes

a vector or a row (the context should leave no doubt which of the two), Tk(i) denotes the kth row of the

matrix T , and (T (i))kl denotes the set of kl entries of the powers of T . The fact that each of the entries in a

row e(i) equals the same constant c is concisely written as e(i)=
c c.

5. The graph clustering paradigm

What are natural groups? This is in general a di�cult problem, but within the framework of graphs there is

a single notion which governs many proposals. This notion can be worded in di�erent ways. Let G be a graph

possessing cluster structure, then alternative wordings are the following:

a) The number of higher{length paths in G is large for pairs of vertices lying in the same dense cluster, and

small for pairs of vertices belonging to di�erent clusters.

b) A random walk in G that visits a dense cluster will likely not leave the cluster until many of its vertices

have been visited.

c) Considering all shortest paths between all pairs of vertices of G, links between di�erent dense clusters are

likely to be in many shortest paths.

These three notions are strongly related to each other. The situation can be compared to driving a car

in an unfamiliar city in which di�erent districts are connected by only a few roads, with many promising

looking turns and roads unreachable due to tra�c regulations. Viewing crossings and turns as vertices, and

the accessible road segments between them as edges, the notions given above translate to a) There are many

di�erent ways of driving (not necessarily taking the shortest route) from A to B if A and B are in the same

district, and only few if they are in di�erent districts, under the condition that the number of roads segments

visited is equal; b) Driving around randomly, but in line with tra�c regulations, will keep you in the same

district for a long time; c) If the transportation need of the locals is homogeneously distributed over all

departure and destination points, then the roads connecting di�erent districts will be congested.

The idea now is to measure or sample any of these | higher{length paths, random walks, shortest paths |

and deduce the cluster structure from the behaviour of the sampled quantities. The cluster structure will

manifest itself as a peaked distribution of the quantities, and conversely, a lack of cluster structure will result

in a at distribution. The distribution should be easy to compute, and a peaked distribution should have a

straightforward interpretation as a clustering.

I propose to assemble the notions listed above under the denominator of the graph clustering paradigm, being

well aware of the fact that the paradigm label is somewhat grandiloquent. However, the notions clearly share

a common idea that is simple and elegant in that it gives an abstract and implicit description of cluster

structure (rather than tying it to a particular optimization criterion); in that it is persistent, as it has surfaced

at di�erent times and places4; and in that it is powerful, as it can be tied to di�erent graph{theoretical

concepts, yielding di�erent clustering methods.

The idea of using random walks to derive cluster structure is mainly found within the graph partitioning

community. The various proposals utilizing it are discussed in Section 8. The following section describes

4The number of occurrences is not large in itself, but it is signi�cant considering the small number of publications
dedicated to graph clustering.
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proposals for graph clustering which have a strong combinatorial nature. One of these, the linkage{based

k-path clustering method forms the connection between combinatorial and randomized methods. The single

linkage paradigm can be seen as the connecting factor. This requires the dismissal of a notion which is

seemingly central to single link clustering, namely the global interpretation of the (dis)similarity function. It

is argued that this global interpretation hampers the combinatorial clustering methods introduced below; the

introduction of random walks naturally requires a localized interpretation of graph connectivity properties.

6. Combinatorial cluster notions

In the clustering and pattern recognition communities, proposals have been made to de�ne clusters in graphs

which are more combinatorial in nature. An important contributor in this respect is David Matula, who

wrote several articles on the subject. It is noteworthy that Matula's publication record (e.g. [30, 31, 32, 36])

indicates that his primary research interests are in graph theory and discrete mathematics. It seems that his

publications in clustering in the setting of (simple) graphs came too early in the sense that at the time of

writing there was little interest in the clustering community in simple graphs, except as a means of notation

for the description of linkage{based algorithms such as single link and complete link clustering. In fact, Matula

presents several graph cluster concepts in [31] as a series of re�nements splitting the spectrum between single

link and complete link clustering. The presentation of these �ndings in the setting of general similarity spaces

and threshold graphs indicates that the time was not right for clustering in the setting of simple graphs per se.

I see several reasons why the combinatorial notions have not caught on, among which the issue of justi�cation

in the setting of threshold graphs and the lack of genuine (simple) graph applications and problems. Equally

important however are the relative intractability of the proposed notions, and their disposition to produce

unbalanced clusterings. Let G = (V;E) be a graph. The following notions each de�ne subgraphs of G.

k-bond A maximal subgraph S such that each node in S has at least degree k in S.

k-component A maximal subgraph S such that each pair of nodes in S is joined by k edge{disjoint paths

in S.

k-block A maximal subgraph S such that each pair of nodes in S is joined by k vertex{disjoint

(except for endpoints) paths in S.

Each notion de�nes a corresponding hierarchical cluster method by letting k vary and at each level taking as

cluster elements all k-objects and all singletons corresponding with nodes which are not in any k-object, where

object may be any of bond, component, or block. These methods are hierarchical because every k + 1-object

is contained within a k-object. For k = 1 all three k-notions boil down to the connected components of G.

Moreover, for �xed k, it is true that every k-block of G is a subgraph of some k-component, which is in turn a

subgraph of some k-bond of G. This implies that the corresponding cluster methods are successive re�nements,

going from bond to component to block. In the clustering section of the graph partitioning survey article [3]

of Alpert and Kahng one method is mentioned which is a re�nement of the k-component method, namely

the (K;L){connectivity method proposed by Garbers et al in [14]. Nodes are (K;L){connected if there exist

K edge disjoint paths of length at most L between them.

Matula �nds that k-components and k-blocks provide better resolution into cohesive groupings than k-bonds.

The example given here in Figure 1 is taken from the article [31], and it shows a graph with its k-blocks,

yielding the most re�ned clusterings. In this case, the overlapping clustering for k = 3 looks reasonably good,

although it is a pity that the �fth point in the leftmost 2-block ends up as a singleton in the 3-block clustering.

The lack of balance is even stronger in the graph which is depicted in Figure 2, together with its 3-block

clustering. For this graph, the 2-block clustering yields the whole vertex set as a single cluster and the 3-block

clustering is very unsatisfactory. This evidence is neither incidental nor contrived. Rather, it is inherent to

the k-object methods. They are very sensitive to local variations in node degree. Such sensitivity is unwanted

in itself, and in this case leads to unbalanced clusterings. The k-object methods are much too restrictive in
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Figure 1: Graph with its k-blocks. Figure 2: Graph with its 3-blocks.

their de�nition of cohesive structure, especially taking into account the commonly accepted `loose' objective

of clustering. It is reasonable to demand that a clustering method for simple graphs can recognize disjoint

unions of complete (simple) graphs of di�erent sizes, or complete graphs which are sparsely connected. The

k-object methods clearly fail to do so, and one reason for this is that local variations in connectivity have

severe impact on the retrieved clusters.

Finally, the object methods are highly intractable. Matula [31] and Tomi [40] give time complexitiesO(jV j3=2jEj2)
for the retrieval of k-blocks and O(min(jV j8=3jEj; jV jjEj2) for the retrieval of k-components. Among others,

the algorithms require the solution of the minimum cut network ow problem. Since the number of edges jEj
is surely at least jV j for interesting applications, the time complexities are at least cubic in the input size of

the graph.

7. k-Path clustering

Of the existing procedural algorithms, single link clustering has the most appealing mathematical properties.

This is precisely because it allows non-procedural interpretations in terms of Minimal Spanning Trees and in

terms of approximating metrics by ultrametrics (trees). See [17] for an extensive treatment of this subject. In

this section I shall discuss a variant of single link clustering for graphs which I call k-path clustering. This

variant is a further relaxation of the k-block and k-component methods, and its interpretation is related to

the interpretation of the MCL algorithm. The basic observation underlying both methods is the fact that two

nodes in some dense region will be connected by many more paths of length k; k > 1, than two nodes for

which there is no such region. This section is mainly an exposition of ideas, and a few examples are studied.

The examples are intended to support the heuristic underlying the MCL algorithm, and they provide fruitful

insights into the problems and bene�ts associated with re�nements of graph similarities. k-Path clustering is

conceptually much simpler than k-block and k-component clustering, but in terms of tractability it is only

slightly more viable. It su�ers less from a lack of balance in the clusters it produces, but it is still far from

satisfactory in this respect. k-Block, k-component, and k-path clustering were also proposed by Tamura [39],

who was apparently unaware of the work of Matula.

For k = 1, the k-path clustering method coincides with generic single link clustering. For k > 1 the method

is a straightforward generalization which re�nes the similarity coe�cient associated with 1-path clustering.

Let G = (V;w) be a graph, where V = fv1; : : : ; vtg, let M = MG be the associated matrix of G. For each

integer k > 0, a similarity coe�cient Zk;G associated with G on the set V is de�ned by setting Zk;G(vi; vj) =

1; i = j, and

Zk;G(vi; vj) = (Mk)ij ; i 6= j (7.1)
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Note that the values (M i)pp are disregarded. The quantity (Mk)pq has a straightforward interpretation as

the number of paths of length k between vp and vq; this is the exact situation if G is a simple graph. If

G has dense regions separated by sparse boundaries, it is reasonable to conjecture that there will be relatively

many path connections of length k with both ends in the same region, compared with the number of path

connections having both ends in di�erent dense regions. For weighted graphs, the interpretation is in terms of

path capacities rather than paths per se, and the formulation is now that the path capacities between di�erent

dense regions are small compared with the path capacities within a single dense region. The next example is

one in which Zk;G does not yet work as hoped for. It will be seen why and how that can be remedied. For

sake of clear exposition, the examples studied are simple graphs.

Odd and even

The graph G1 in Figure 3 is a tetraeder with attened tips. It clearly admits one good non-extreme clustering,

namely the one in which each of the attened tips, i.e. the four triangles, forms a cluster. The associated

matrix M =MG1
, and the square M2 are shown in Figure 5.

a

b
c

d

Figure 3: Topped tetraeder G1. Figure 4: Bipartite graph G2.

For each of the coe�cients Zk;G1
, single link clustering immediately yields the whole vertex set of G1 as one

cluster. How can this be? Somehow, the expectation that there would be relatively more k-length paths

within the dense regions, in this case triangles, was unjusti�ed. Now, on the one hand this is a peculiarity

of this particular graph and especially of the subgraphs of the triangle type. For even k, spoilers are pairs

like (a; c), for odd k, these are pairs like (a; d). This clearly has to do with the speci�c structure of G1, where

the set of paths of odd length leading e.g. from a to b does not pro�t from (a; b) being in a triangle, compared

with the set of paths leading from a to d. On the other hand the behaviour of any similarity coe�cient Zk;G
is in general very much inuenced by the parity of k. There is a strong e�ect that odd powers of M obtain

their mass from simple paths of odd length and that even powers of M obtain their mass from simple paths

of even length. The only exceptions are those paths which include loops of odd length. Note that the only

requirement for a loop of even length is the presence of an edge (inducing a loop of length 2).

A countermeasure to parity dependence

The observation in one of the previous paragraphs that paths containing circuits of odd length form an

exception brings a solution to the problem of parity dependence. By adding loops to each node in G1, the

parity dependence is removed. Just as every edge induces the minimal loop of even length, every node now

induces the minimal loop of odd length. On the algebra side, adding loops corresponds with adding the identity

matrix to M . The numbers de�ning the new coe�cients Z2;G1+I are found in Figure 5, where the largest

o�-diagonal matrix entries (diagonal entries are disregarded) are printed in boldface. Each coe�cient now
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Figure 5: Several matrices associated with G1.

yields the best clustering, consisting of the set of four triangles. Adding loops helps in further di�erentiating

the numbers Zk;G1+I(s; t) for �xed s and varying t.

For a less symmetrical example, consider the simple graph G3 depicted in Figure 6, also used on page 9. Its

associated matrix after adding loops to each node is given next to it in Figure 7. Below are the results of

single link clustering at all levels, using the similarity coe�cient Z2;G3+I .

Level Clustering

1 : : : 6 fsingletons(V )g = f f1g; f2g; f3g; f4g; f5g; f6g; f7g; f8g; f9g; f10g; f11g; f12g g
5 f f9; 11g; f1g; f2g; f3g; f4g; f5g; f6g; f7g; f8g; f10g; f12g g
4 f f1; 10g; f4; 8; 9; 11g; f2g; f3g; f5g; f6g; f7g; f12g g
3 ff1; 6; 7; 10g f2; 3; 5g; f4; 8; 9; 11; 12g g
2; 1; 0 fV g = ff1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12gg

The clustering at level 3, which is the �rst in which no singletons remain, is rather pleasing. This clustering also

results if the coe�cient is taken to be Z3;G3+I (not given here). The coe�cient Z4;G3+I starts out accordingly,

however, before node 6 gets involved, the groups f4; 8; 9; 11; 12g and f2; 3; 5g are joined. This is caused by

the fact that node 6 is located in the sparsest part of G3. The weak spot of single link clustering, namely

chaining, surfaces here in the speci�c case of k-path clustering.

The last example in this section is a graph G2 for which single link clustering with coe�cient Zk;G2
; k > 1,

initially groups points together which are not connected. The graph G2 in Figure 4 is a small bipartite graph.

The upper and lower nodes have three simple paths of length 2 connecting them. Even in the presence of

loops, the number of k-step paths, k > 1, will always be greater for the pair of top and bottom nodes than

for any other pair. Bipartite graphs form a class of graphs for which it is natural to cluster each of the two

node domains separately5. By adding multiple loops to each node of G2 it can be ensured that the resulting

5e.g. Document phrase databases naturally yield bipartite graphs. Clustering the two node domains then yields a
document grouping and a phrase grouping.



8. Random walks and graphs 12

1 2 3 4

5

6 7 8 9

10 11 12

Figure 6: Graph G3.
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Figure 7: The matrix (N + I)2; N =MG3
.

clustering corresponds with connected components only (one in this case), but it is di�cult to formulate a

su�cient condition which guarantees this property for graphs in general. I conjecture that a su�cient condition

is for a graph to have nonnegative spectrum. This is a non-trivial conjecture, since spectral properties have

to be related to both the ordinal relationship among entries of a matrix power and the 0=1 structure of the

matrix itself.

A critical look at k-path clustering

If k-path clustering were to be applied to large graphs, it would be desirable to work with varying k and

the corresponding coe�cients Zk;G. However, for most application graphs in this research, the matrices Mk

and (M+I)k �ll very rapidly due to high connectivity of the graphs. The potential number of nonzero elements

equals 102N for graphs of vertex-size jV j = 10N . For N = 4 this quantity is already huge and for N = 5

it is clearly beyond current possibilities. More importantly, it is quadratically related to N . In large scale

applications, this is known to be a bad thing. It is di�cult to remedy this situation by a regime of removing

smaller elements.

A second minus was mentioned in the discussion of the example graph G3 in Figure 6. I remarked that under

the coe�cient Z4;G3+I groups which had formed already started to unite before the last node left its singleton

state. The coe�cients Zk;G do account for the local structure around a node. However, a region which is

denser than another region with which it connected to a certain extent, will tend to swallow the latter up. This

is the e�ect of chaining in k-path clustering. A third minus is related to the preceding and arises in the case

of weighted graphs. Di�erentiation in the weight function will lead to the same phenomenon of heavy-weight

regions swallowing up light-weight regions. It should be noted that this situation is problematic for every

cluster method based on single link clustering.

On the credit side I �nd that at least in a number of examples the idea of considering higher length paths works

well. The manoeuvre of adding loops to graphs is clearly bene�cial, and the reason for this lies in the fact

that parity dependence is removed, leading to a further di�erentiation of the associated similarity coe�cient.

The issue of parity dependence has been noted before: Alpert and Kahng criticize the (K;L){connectivity

method of Garbers et al | which is a variant of k-component clustering | for cutting a four{cycle (which is

a bipartite graph) into disjoint paths.

8. Random walks and graphs

In this section I briey discuss probabilistic cluster algorithms proposed in the graph partitioning community

and the concept of random walks on graphs. In the graph partitioning community, several randomized cluster
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algorithms have been proposed. I follow the survey article [3] by Alpert and Kahng which was written in 1995.

Karger [24] proposed a heuristic where each vertex starts as a singleton cluster. Edges are iteratively chosen in

random fashion, and each time the clusters incident to the currently chosen edge are contracted into a single

cluster. A related approach was proposed by Bui et al in [6, 7]. A matching in a graph is a set of edges such

that no pair of edges has a common vertex. They propose to �nd a random maximal matching and merge

each pair of vertices into a cluster, resulting in a set of n=2 clusters. Both proposals hinge on the fact that

there are more edges within clusters than in between di�erent clusters if cluster structure is present. Hagen

and Kahng sample random walks for cycles in [15]; the basic setup is that if two nodes co-occur su�ciently

often in a cycle, then they are joined within a cluster. Finally, Yeh et al [43] propose a method in which

shortest paths between randomly chosen pairs of vertices are computed. Each edge has a cost associated with

it, which is adjusted every time the edge is included in a shortest path. In dense clusters, alternative paths

are easily found; this not being the case for vertices in di�erent clusters, edges between them will inevitably

acquire a higher check.

The basic idea underlying the MCL algorithm �ts in the same paradigm, but two important distinctions are

that random walks are computed deterministically and simultaneously. The crux of the algorithm is that it

incorporates reinforcement of random walks.

Random walks on graphs

The standard way to de�ne a random walk on a simple graph is to let a Young Walker take o� on some

arbitrary vertex. After that, he successively visits new vertices by selecting arbitrarily one of the outgoing

edges.6 This will be the starting point for the MCL algorithm. An excellent survey on random graphs is [26]

by Lov�asz. An important observation quoted from this article is the following:

A random walk is a �nite Markov chain that is time{reversible (see below). In fact, there is not much

di�erence between the theory of random walks on graphs and the theory of �nite Markov chains; every

Markov chain can be viewed as a random walk on a directed graph, if we allow weighted edges.

The condition that (the chain generated by) a Markov matrix is time{reversible translates to the condition

that the matrix is diagonally similar to a symmetric matrix (see below). In order to de�ne random walks

on weighted graphs in general, the weight function of a graph has to be changed such that the sum of the

weight of all outgoing edges equals one. This is achieved by a generic rescaling step, which amounts to the

localization of the weight function alluded to before.

De�nition 2 Let G be a graph on n nodes, let M = MG be its associated matrix. The Markov matrix

associated with a graph G is denoted by TG and is formally de�ned by letting its qth column be the qth column

of M normalized. To this end, let d denote the diagonal matrix that has diagonal entries the column weights

of M , thus dkk =
P

iMik, and dij = 0; i 6= j. Then TG is de�ned as

TG = MGd
�1 (8.1)

The Markov matrix TG corresponds with a graph G0, which is called the associated Markov graph of G. The

directed weight function of G0, which is encoded in the matrix TG, is called the localized interpretation of the

weight function of G. 2

This de�nition encodes exactly the transformation step used in the theory of random walks on graphs. Given

an undirected graph G, the matrix N = TG is no longer symmetric, but is diagonally similar to a symmetric

matrix. Something can be said about the spectrum of TG in terms of the spectrum of MG if G is undirected.

6Basic notions investigated in the theory of random walks are the access time Hij , which is the expected number of
steps before node i is visited starting from node j, the cover time, which is the expected number of steps to reach every
node, and the mixing rate, which is a measure of how fast the random walk converges to its limiting distribution.



8. Random walks and graphs 14

Lemma 1 Let G be undirected and void-free7, let M = MG be its associated matrix, let T = TG be its

associated Markov matrix. Then the number of positive, negative, and zero eigenvalues are the same for T

and M .

Next denote by l and u the minimum respectively maximum column sum, that is, l = mink
P

iMik, and

u = maxk
P

iMik. Then

�k(M)

u
� �k(T ) � �k(M)

l
�k(T ) > 0 (8.2)

�k(M)

l
� �k(T ) � �k(M)

u
�k(T ) < 0 (8.3)

Proof. Let d be the diagonal matrix of column lengths as de�ned in De�nition 2. The matrix T = Md�1

is similar to the matrix d�1=2Md�1=2, which is congruent to the matrix M . Now the �rst statement of

the lemma follows from Sylvester's law of inertia ([18], page 223). Because of congruence, the inertia of the

matricesM and d�1=2Md�1=2 are the same, and because of similarity, the spectra of the matrices d�1=2Md�1=2

and T = Md�1 are the same, which is a stronger property than sharing the same inertia. The fact that the

transition matrix T = d�1 is diagonally similar to the symmetric matrix d�1=2Md�1=2 is in Markov theory

phrased as that T is time{reversible or that T satis�es the detailed balance condition.

The second statement follows from Ostrowski's theorem ([18], page 224), which relates the eigenvalues of a

hermitian matrix A to the eigenvalues of the matrix SAS� in terms of bounding factors �1(SS
�) and �n(SS�).

In the lemma, these factors are simply the largest and smallest eigenvalue of the matrix d�1, equalling re-

spectively 1=l and 1=u. It should be noted that this result can be re�ned by looking at principal submatrices

of M . This is useful if there are a few columns of M of small weight compared with the other columns. This

re�nement is omitted here since it will not be needed. 2

A closer look at random walks

Given a graph G and its associated Markov matrix T = TG, the value Tpq now indicates `how much is the

vertex q attracted to the vertex p', and this is meaningful only in the context of the other values found in the

qth column. It is still possible to move a node away from all its neighbours by increasing the weight of its

loop. In Figure 8 the matrix M = TG3+I (corresponding with the graph G3 in Figure 6) is given which results

after the rescaling procedure, followed by three successive powers and a matrix labelled M1. The matrix M

is column stochastic. The fact that for each of its columns all nonzero values are homogeneously distributed

can be interpreted as `each node is equally attracted to all of its neighbours', or `at each node one moves to

each of its neighbours with equal probability'.

All powers of M are column stochastic matrices too. For any Markov matrix N , the powers N (i) have a limit,

which is possibly cyclic (i.e. consisting of a sequence of matrices rather than a single matrix). A connected

component C of a graph G, which has the property that the greatest common divisor of the set of lengths of all

circuits in C is 1, is called regular. If for every vertex in C there is a path in C leading to any other vertex in C

it is called ergodic. If the underlying graph of a Markov matrix N consists of ergodic regular components only,

then the limit of the row N (i) is non-cyclic. The graph G3 in Figure 6 clearly has this property, and the limit

is found in Figure 8, denoted as M1. The columns of M1 each equal the unique eigenvector of M associated

with eigenvalue 1. This eigenvector e denotes the equilibrium state of the Markov process associated with M .

A good review of Markov theory in the larger setting of nonnegative matrices can be found in [5]. Regrettably,

the existing theory on Markov matrices is of little use in this thesis, because an essential ingredient of the

MCL process is the operator �r which acts on Markov matrices in a non-linear fashion.

7All vertices are part of at least one edge.



8. Random walks and graphs 15

0
BBBBBBBBBBBBBBBBB@

0:200 0:250 �� �� �� 0:333 0:250 �� �� 0:250 �� ��
0:200 0:250 0:250 �� 0:200 �� �� �� �� �� �� ��
�� 0:250 0:250 0:200 0:200 �� �� �� �� �� �� ��
�� �� 0:250 0:200 �� �� �� 0:200 0:200 �� 0:200 ��
�� 0:250 0:250 �� 0:200 �� 0:250 0:200 �� �� �� ��
0:200 �� �� �� �� 0:333 �� �� �� 0:250 �� ��
0:200 �� �� �� 0:200 �� 0:250 �� �� 0:250 �� ��
�� �� �� 0:200 0:200 �� �� 0:200 0:200 �� 0:200 ��
�� �� �� 0:200 �� �� �� 0:200 0:200 �� 0:200 0:333
0:200 �� �� �� �� 0:333 0:250 �� �� 0:250 �� ��
�� �� �� 0:200 �� �� �� 0:200 0:200 �� 0:200 0:333
�� �� �� �� �� �� �� �� 0:200 �� 0:200 0:333

1
CCCCCCCCCCCCCCCCCA

M = TG3+I

0
BBBBBBBBBBBBBBBBB@

0:257 0:113 0:063 �� 0:100 0:261 0:175 �� �� 0:258 �� ��
0:090 0:225 0:175 0:050 0:140 0:067 0:100 0:040 �� 0:050 �� ��
0:050 0:175 0:225 0:090 0:140 �� 0:050 0:080 0:040 �� 0:040 ��
�� 0:063 0:113 0:210 0:090 �� �� 0:160 0:160 �� 0:160 0:133
0:100 0:175 0:175 0:090 0:230 �� 0:113 0:080 0:040 0:063 0:040 ��
0:157 0:050 �� �� �� 0:261 0:113 �� �� 0:195 �� ��
0:140 0:100 0:050 �� 0:090 0:150 0:225 0:040 �� 0:175 �� ��
�� 0:050 0:100 0:160 0:080 �� 0:050 0:200 0:160 �� 0:160 0:133
�� �� 0:050 0:160 0:040 �� �� 0:160 0:227 �� 0:227 0:244
0:207 0:050 �� �� 0:050 0:261 0:175 �� �� 0:258 �� ��
�� �� 0:050 0:160 0:040 �� �� 0:160 0:227 �� 0:227 0:244
�� �� �� 0:080 �� �� �� 0:080 0:147 �� 0:147 0:244

1
CCCCCCCCCCCCCCCCCA

M2

0
BBBBBBBBBBBBBBBBB@

0:213 0:133 0:069 0:013 0:090 0:259 0:198 0:020 �� 0:238 �� ��
0:106 0:158 0:148 0:053 0:136 0:069 0:095 0:046 0:018 0:077 0:018 ��
0:055 0:148 0:158 0:095 0:134 0:017 0:060 0:078 0:050 0:025 0:050 0:027
0:013 0:066 0:119 0:161 0:085 �� 0:023 0:156 0:165 �� 0:165 0:151
0:090 0:170 0:168 0:085 0:155 0:054 0:126 0:096 0:050 0:069 0:050 0:027
0:155 0:052 0:013 �� 0:033 0:205 0:116 �� �� 0:182 �� ��
0:158 0:095 0:060 0:018 0:101 0:155 0:158 0:026 0:008 0:173 0:008 ��
0:020 0:058 0:098 0:156 0:096 �� 0:033 0:152 0:163 0:013 0:163 0:151
�� 0:023 0:063 0:165 0:050 �� 0:010 0:163 0:204 �� 0:204 0:233
0:190 0:077 0:025 �� 0:055 0:242 0:173 0:010 �� 0:225 �� ��
�� 0:023 0:063 0:165 0:050 �� 0:010 0:163 0:204 �� 0:204 0:233
�� �� 0:020 0:091 0:016 �� �� 0:091 0:140 �� 0:140 0:179

1
CCCCCCCCCCCCCCCCCA

M3

0
BBBBBBBBBBBBBBBBB@

0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096
0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077
0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077
0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096
0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096
0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058
0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077
0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096
0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096
0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077 0:077
0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096 0:096
0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058 0:058

1
CCCCCCCCCCCCCCCCCA

M1

Figure 8: Powers of M = TG3+I , the Markov matrix associated with the graph G3 in Figure 6, loops added to G3
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Consider Figure 8 again. As is to be expected, the equilibrium state e (each column of M1 equals e) spreads

its mass rather homogeneously among the states or vertices of G3. However, the initial iterandsM
k; k = 2; : : : ,

exhibit the same behaviour as did the matrices (N+I)k in Figure 7, inducing the similarity coe�cients Zk;G+I .

Transition valuesMk
pq are relatively high if the vertices p and q are located in the same dense region. There is

a correspondence between the numerical distribution of the column Mk
p(q), and the distribution of the edges

of G3 over dense regions and sparse boundaries.

Boosting the multiplier e�ect

The obvious interpretation of the new weight function is in terms of ow or random walks rather than in

terms of path sets, but the observed behaviour of matrix multiplication is similar. The new interpretation of

the weight function more or less suggests a speculative move. Flow is easier within dense regions than across

sparse boundaries, however, in the long run this e�ect disappears. What if the initial e�ect is deliberately

boosted by adjusting the transition probabilities? A logical model is to transform a Markov matrix T by

transforming each of its columns. For each vertex, the distribution of its preferences (i.e. transition values)

will be changed such that prefered neighbours are further favoured and less popular neighbours are demoted.

A natural way to achieve this e�ect is to raise all the entries in a given column to a certain power greater than

one (e.g. squaring), and rescaling the column to have sum 1 again. This has the advantage that vectors for

which the nonzero entries are nearly homogeneously distributed are not so much changed, and that di�erent

column positions with nearly identical values will still be close to each other after rescaling. This is explained

by observing that what e�ectively happens is that all ratios Tp1q=Tp2q are raised to the same power. Below

four vectors and their image after rescaling with power coe�cient 2 are listed. The notation �rv is introduced

right after these examples.

Vector v:

0
BBB@

0
3
0
1
2

1
CCCA

0
BBB@

0
1=2
0
1=6
1=3

1
CCCA

0
BBB@

1=4
1=4
1=4
1=4
0

1
CCCA

0
BBB@

0:151
0:159
0:218
0:225
0:247

1
CCCA

0
BBB@

0:086
0:000
0:113
0:801
0:000

1
CCCA

Image �2v:

0
BBB@

0
9=14
0

1=14
4=14

1
CCCA

0
BBB@

0
9=14
0

1=14
4=14

1
CCCA

0
BBB@

1=4
1=4
1=4
1=4
0

1
CCCA

0
BBB@

0:110
0:122
0:229
0:245
0:295

1
CCCA

0
BBB@

0:011
0:000
0:019
0:970
0:000

1
CCCA

De�nition 3 Given a matrix M 2 IRk�l, M � 0, and a real nonnegative number r, the matrix resulting

from rescaling each of the columns of M with power coe�cient r is called �rM , and �r is called the ination

operator with power coe�cient r. Formally, the action of �r : IR
k�l ! IRk�l is de�ned by

(�rM)pq = (Mpq)
r
� kX
i=1

(Miq)
r

If the subscript is omitted, it is understood that the power coe�cient equals 2. 2

There are no restrictions on the matrix dimensions to �t a square matrix, because this allows �r to act on

both matrices and column vectors. There is no restriction that the input matrices be stochastic, since it is

not strictly necessary, and the extended applicability is sometimes useful. The parameter r is assumed rather

than required to be nonnegative. The reason is that in the setting of the MCL process nonnegative values r

have a sensible interpretation attached to them. Values of r between 0 and 1 increase the homogeneity of the
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argument probability vector (matrix), whereas values of r between 1 and 1 increase the inhomogeneity. In

both cases, the ordering of the probabilities is not disturbed. Negative values of r invert the ordering, which

does not seem to be of apparent use.

De�nition 4 A nonnegative vector v is called homogeneous if all its nonzero entries are equal. A nonnegative

matrix is called column{homogeneous if each of its columns is homogeneous. 2

The set of homogeneous probability vectors is precisely the set of vectors which are invariant under �r; r 6= 1.

When applied to vectors, the �r operator has a nice mathematical property in terms of majorization. This is

discussed in the following section, Section 10.

Iterating expansion and ination

Figure 9 gives the result of applying �r to the Markov matrix M2 given in Figure 8. The vital step now is to

iterate the process of alternately expanding information ow via normal matrix multiplication and contracting

information ow via application of �r. Thus, the matrix �rM
2 is squared, and the ination operator is applied

to the result. This process is repeated ad libitum. The invariant of the process is that ow in dense regions

pro�ts from both the expansion and the ination step. A priori it is uncertain whether the process converges,

or whether convergence will lead to a meaningful limit. However, the heuristic which leads to the formulation

of the process suggests that something will happen for graphs possessing sparse boundaries. The transition

values corresponding to edges crossing sparse boundaries are given a hard time by the process, and if anything,

it is to be expected that they will tend to zero. This is exactly what happens for the example graph. The

5rd iterand, the 9th iterand, and the invariant limit8 of this process (provisionally denoted by M1
mcl) are given

in Figure 9 as well.

The matrix M1
mcl clearly is an idempotent under both matrix multiplication and the ination operator. It

has a straightforward interpretation as a clustering. Four nodes can be said to be an attractor, namely those

nodes that have positive return probability. The nodes 9 and 11 are as much attracted to each other as

they are to themselves. The rest of the vertex set of G3 can be completely partitioned according to the

nodes to which they are attracted. Sweeping attractors and the elements they attract together, the partition

f4; 8; 9; 11; 12g f1; 6; 7; 10g f2; 3; 5g results, also found earlier with k-path clustering.

A certain subset of the equilibrium states only admits an interpretation as a clustering with overlap. This

is related to the presence of symmetry in the graphs and matrices used. Consider the matrix M depicted

in Figure 10, corresponding with a line{graph on 7 nodes, loops added to each node. An MCL run with

e(i)=
c 2; r(i)=

c 2 results in the limit T1mcl. The nodes 2 and 6 are attractors, the node sets f1; 3g, and f5; 7g, are
respectively attracted to them. The vertex 4 is equally attracted to 2 and 6. The formation of two clusters, or

di�erent regions of attraction, is explained by the fact that the nodes at the far ends, i.e. 1; 2; 6; 7 have higher

return probability after the �rst iterations than the nodes in the middle. Given the symmetry of the graph,

it is only natural that node 4 is equally attracted to both regions.

Formal description of the MCL algorithm

The basic design of the MCL algorithm is given in Figure 11; it is extremely simple and provides basically an

interface to the MCL process, introduced below. The main skeleton is formed by the alternation of matrix

multiplication and ination in a for loop. In the kth iteration of this loop two matrices labelled T2k and T2k+1

are computed. The matrix T2k is computed as the previous matrix T2k�1 taken to the power ek. The

matrix T2k+1 is computed as the image of T2k under �rk . The row
9 of expansion powers e(i) and the row of

8Idempotent under both Exp2 and �2.
9The notation e(i) is shorthand for feigi2IN and likewise r(i) for frigi2IN .
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0
BBBBBBBBBBBBBBBBB@

0:380 0:087 0:027 �� 0:077 0:295 0:201 �� �� 0:320 �� ��
0:047 0:347 0:210 0:017 0:150 0:019 0:066 0:012 �� 0:012 �� ��
0:014 0:210 0:347 0:056 0:150 �� 0:016 0:046 0:009 �� 0:009 ��
�� 0:027 0:087 0:302 0:062 �� �� 0:184 0:143 �� 0:143 0:083
0:058 0:210 0:210 0:056 0:406 �� 0:083 0:046 0:009 0:019 0:009 ��
0:142 0:017 �� �� �� 0:295 0:083 �� �� 0:184 �� ��
0:113 0:069 0:017 �� 0:062 0:097 0:333 0:012 �� 0:147 �� ��
�� 0:017 0:069 0:175 0:049 �� 0:016 0:287 0:143 �� 0:143 0:083
�� �� 0:017 0:175 0:012 �� �� 0:184 0:288 �� 0:288 0:278
0:246 0:017 �� �� 0:019 0:295 0:201 �� �� 0:320 �� ��
�� �� 0:017 0:175 0:012 �� �� 0:184 0:288 �� 0:288 0:278
�� �� �� 0:044 �� �� �� 0:046 0:120 �� 0:120 0:278

1
CCCCCCCCCCCCCCCCCA

�2M2; M de�ned in Figure 8

0
BBBBBBBBBBBBBBBBB@

0:448 0:080 0:023 �� 0:068 0:426 0:359 �� �� 0:432 �� ��
0:018 0:285 0:228 0:007 0:176 0:006 0:033 0:005 �� 0:007 �� ��
0:005 0:223 0:290 0:022 0:173 �� 0:010 0:017 0:003 0:001 0:003 0:001
�� 0:018 0:059 0:222 0:040 �� 0:001 0:187 0:139 �� 0:139 0:099
0:027 0:312 0:314 0:028 0:439 0:005 0:054 0:022 0:003 0:010 0:003 0:001
0:116 0:007 0:001 �� 0:004 0:157 0:085 �� �� 0:131 �� ��
0:096 0:040 0:013 �� 0:037 0:083 0:197 0:001 �� 0:104 �� ��
�� 0:012 0:042 0:172 0:029 �� 0:002 0:198 0:133 �� 0:133 0:096
�� 0:001 0:015 0:256 0:009 �� �� 0:266 0:326 �� 0:326 0:346
0:290 0:021 0:002 �� 0:017 0:323 0:260 �� �� 0:316 �� ��
�� 0:001 0:015 0:256 0:009 �� �� 0:266 0:326 �� 0:326 0:346
�� �� 0:001 0:037 0:001 �� �� 0:039 0:069 �� 0:069 0:112

1
CCCCCCCCCCCCCCCCCA

�2(�2M2 � �2M2)

0
BBBBBBBBBBBBBBBBB@

0:807 0:040 0:015 �� 0:034 0:807 0:807 �� �� 0:807 �� ��
�� 0:090 0:092 �� 0:088 �� �� �� �� �� �� ��
�� 0:085 0:088 �� 0:084 �� �� �� �� �� �� ��
�� 0:001 0:001 0:032 0:001 �� �� 0:032 0:031 �� 0:031 0:031
�� 0:777 0:798 �� 0:786 �� 0:001 �� �� �� �� ��
0:005 �� �� �� �� 0:005 0:005 �� �� 0:005 �� ��
0:003 0:001 �� �� 0:001 0:003 0:003 �� �� 0:003 �� ��
�� �� 0:001 0:024 �� �� �� 0:024 0:024 �� 0:024 0:024
�� �� 0:002 0:472 0:001 �� �� 0:472 0:472 �� 0:472 0:472
0:185 0:005 0:001 �� 0:004 0:185 0:184 �� �� 0:185 �� ��
�� �� 0:002 0:472 0:001 �� �� 0:472 0:472 �� 0:472 0:472
�� �� �� 0:001 �� �� �� 0:001 0:001 �� 0:001 ��

1
CCCCCCCCCCCCCCCCCA

(�2 � Squaring) iterated four times on M

0
BBBBBBBBBBBBBBBBB@

1:000 �� �� �� �� 1:000 1:000 �� �� 1:000 �� ��
�� �� �� �� �� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� �� �� �� �� ��
�� 1:000 1:000 �� 1:000 �� �� �� �� �� �� ��
�� �� �� �� �� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� �� �� �� �� ��
�� �� �� 0:500 �� �� �� 0:500 0:500 �� 0:500 0:500
�� �� �� �� �� �� �� �� �� �� �� ��
�� �� �� 0:500 �� �� �� 0:500 0:500 �� 0:500 0:500
�� �� �� �� �� �� �� �� �� �� �� ��

1
CCCCCCCCCCCCCCCCCA

M1
mcl

Figure 9: Iteration of (�2 � Squaring) with initial iterand M de�ned in Figure 8.

Entries marked `��' are either zero because that is the exact value they assume (this is true for the �rst two
matrices) or because the computed value fell below the machine precision.
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0
BBBBBBBB@

0:5000 0:3333 �� �� �� �� ��
0:5000 0:3333 0:3333 �� �� �� ��
�� 0:3333 0:3333 0:3333 �� �� ��
�� �� 0:3333 0:3333 0:3333 �� ��
�� �� �� 0:3333 0:3333 0:3333 ��
�� �� �� �� 0:3333 0:3333 0:5000
�� �� �� �� �� 0:3333 0:5000

1
CCCCCCCCA

Initial iterand T1 =M

0
BBBBBBBB@

0:3221 0:2393 0:0493 0:0028 0:0000 �� ��
0:6138 0:6120 0:2664 0:0420 0:0021 0:0000 ��
0:0606 0:1275 0:4259 0:2165 0:0383 0:0010 0:0000
0:0035 0:0200 0:2159 0:4662 0:2143 0:0200 0:0034
0:0000 0:0011 0:0403 0:2259 0:4311 0:1282 0:0607
�� 0:0000 0:0022 0:0436 0:2652 0:6116 0:6137
�� �� 0:0000 0:0029 0:0490 0:2392 0:3220

1
CCCCCCCCA

Intermediate iterand T5 (k equals 2)

0
BBBBBBBB@

0:0284 0:0280 0:0191 0:0015 0:0000 0:0000 0:0000
0:9647 0:9631 0:8226 0:1205 0:0016 0:0000 0:0000
0:0066 0:0082 0:0768 0:1362 0:0087 0:0000 0:0000
0:0003 0:0006 0:0686 0:4309 0:0673 0:0006 0:0003
0:0000 0:0000 0:0109 0:1677 0:0863 0:0088 0:0069
0:0000 0:0000 0:0020 0:1414 0:8173 0:9627 0:9644
0:0000 0:0000 0:0000 0:0018 0:0187 0:0280 0:0284

1
CCCCCCCCA

Intermediate iterand T9 (k equals 4)

0
BBBBBBBB@

�� �� �� �� �� �� ��
1:0000 1:0000 1:0000 0:5000 �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� 0:5000 1:0000 1:0000 1:0000
�� �� �� �� �� �� ��

1
CCCCCCCCA

Limit T1mcl (idempotent under Exp2 and �2).

Figure 10: MCL run on a line{graph on 7 nodes
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# G is a voidfree graph.

# ei 2 IN; ei > 1; i = 1; : : : .

MCL (G;�; e(i); r(i)) f # ri 2 IR; ri > 0; i = 1; : : : .

G = G+�; # Possibly add (weighted) loops.

T1 = TG; # Create associated Markov graph

# according to De�nition 2.

for k = 1; : : : ;1 f
T2k = Expek(T2k�1);
T2k+1 = �rk(T2k);

if (T2k+1 is (near{) idempotent) break;

g
Interpret T2k+1 as clustering according to De�nition 8;

g

Figure 11: The basic MCL algorithm. Convergence is discussed in Section 9.

ination powers r(i) inuence the granularity of the resulting partition. The matrices in Figure 9 correspond

with an MCL session in which e(i)=
c 2 and r(i)=

c 2. If the current iterand is su�ciently close to an idempotent

matrix the process stops and the last resultant is interpreted according to De�nition 8 and Theorem 1 in the

next section. The theorem provides a mapping from the set of nonnegative column allowable idempotent

matrices to the set of overlapping clusterings. There are exceptional cases in which the iterands cycle around

a periodic limit. These cases, and the issues of convergence and equilibrium states at large, are discussed in

Sections 12 and 13. It is useful to speak about the algebraic process which is computed by the MCL algorithm

in its own right. To this end, the notion of an MCL process is de�ned.

De�nition 5 A nonnegative column{homogeneous matrix M which is idempotent under matrix multiplication

is called doubly idempotent. 2

De�nition 6 A general MCL process is determined by two rows of exponents e(i), r(i), where ei 2 IN; ei > 1,

and ri 2 IR; ri > 0, and is written

( � ; e(i); r(i)) (8.4)

An MCL process for stochastic matrices of �xed dimension d� d is written

( �d�d ; e(i); r(i)) (8.5)

An MCL process with input matrix M , where M is a stochastic matrix, is determined by two rows e(i), r(i) as

above, and by M . It is written

(M; e(i); r(i)) (8.6)

Associated with an MCL process (M; e(i); r(i)) is an in�nite row of matrices T(i) where T1 = M , T2i =

Expei(T2i�1), and T2i+1 = �ri(T2i), i = 1; : : : ;1. 2
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Figure 12: MCL Clustering of the graph in Figure 1.

In practice, the algorithm iterands converge nearly always to a doubly idempotent matrix. In Section 13 it

is shown that the MCL process converges quadratically in the neighbourhood of doubly idempotent matrices.

A su�cient property for associating a (possibly overlapping) clustering with a nonnegative column allowable

matrix is that the matrix is idempotent under matrix multiplication. In [11] it is shown that the mapping

of idempotent matrices onto overlapping clusterings according to De�nition 8 can be generalized towards a

mapping of time{reversible Markov matrices with nonnegative spectrum onto directed acyclic graphs. This

is not a generalization in the strict sense, because stochastic idempotent matrices are in general not time{

reversible. However the MCL process o�ers a perspective in which idempotent matrices are the extreme points

of the set of time{reversible Markov matrices with nonnegative spectrum [11]. Figure 12 shows the clustering

resulting from applying the MCL algorithm with standard parameters e(i)=
c 2 and r(i)=

c 2 to the example

graph in Figure 1 taken from [31], loops added to the graph.

9. Basic MCL theory

This section is concerned with basic properties of the MCL process. The �rst section gives a generic mapping

from nonnegative idempotent column allowable matrices onto overlapping clusterings. In Section 10 simple

properties of the � operator are derived. Exceptional cyclic limits for which expansion and ination act as each

other's inverse are the subject of Section 12. The section after that is concerned with convergence towards

equilibrium states and the stability of the MCL process around these states.

Mapping nonnegative idempotent matrices onto clusterings

The following theorem characterizes the structural properties of nonnegative column allowable idempotent

matrices. Using this theorem, De�nition 8 establishes a mapping from the class of nonnegative column

allowable idempotent matrices to the set of overlapping clusterings. Nonnegative doubly idempotent matrices

do not have stronger structural properties than matrices which are idempotent under matrix multiplication

only. The theorem can easily be derived from the decomposition of nonnegative idempotent (not necessarily

column allowable) matrices given in [5]. However, I choose to give a self-contained proof here, which is

inspired more by graph{theoretical considerations. The proof of the theorem is easier to follow by �rst looking

at the large matrix on page 23, and realizing that any nonnegative column allowable idempotent matrix must

essentially have a similar 0=1 structure (the matrix is also stochastic and column homogeneous, which is not

essential for the theorem below).

Theorem 1 Let M be a nonnegative column allowable idempotent matrix of dimension N , let G be its

associated graph. For s; t, nodes in G, write s ! t if there is an arc in G from s to t. By de�nition,
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s! t () Mts 6= 0. Let �; �;  be nodes in G. The following implications hold.

(�! �) ^ (� ! ) =) �!  (9.1)

(�! �) ^ (�! �) =) � ! � (9.2)

�! � =) � ! � (9.3)

Proof. The �rst statement follows from the fact that M� = (M2)� �M�M�� > 0. Suppose the second

statement does not hold, then there exist � and � with � ! �, � ! �, and � 6! �. Denote by V� the set

of nodes which reach �, denote by V� the set of nodes reachable from �. Then V� 6= ; because � ! �, and

V� 6= ; because M is column allowable. It is furthermore true that V� \V� = ; and that there is no arc going

from V� to V�, for this would imply � ! � and � ! � by 9.1. For u; w 2 V�; v 2 V , the property u! v ! w

implies v 2 V�. For u;w 2 V�; v 2 V , the property u ! v ! w implies v 2 V� . It follows that for all

2-step paths between node pairs respectively lying in V� and V� only indices lying in the same node set V�,

respectively V�, need be considered. Reorder M and partition the matrix such that its upper left block has

the form 
A11 A12

A21 A22

!

where the indices of the diagonal block A11 correspond with all the elements in V�, and the indices of the

diagonal block A22 correspond with all the elements in V�. It follows from the construction of V� and V�
that all entries of A21 are positive, since for all u 2 V�; v 2 V�, it is true that u ! � ! � ! v. Similarly,

A12 = 0. The observation made on 2-step paths with beginning and ending in V�, respectively V�, implies

that A11 = A11
2 and A22 = A22

2. Furthermore, the inequality A21 � A21A11 + A22A21 holds. Multiplying

both sides on the left with A22 and on the right with A11, the inequality A22A21A11 � 2A22A21A11 results.

The fact that A21 is positive, and the fact that A11 contains one positive row, i.e. the row corresponding

with �, imply that A21A11 is positive too. Since A22 is nonzero, this implies that the product A22A21A11

is nonnegative and nonzero, leading to a contradiction. The third statement follows by observing that there

must be a path of in�nite length going from � to � in G, that is, a path containing a circuit. If this were not

the case, there would exist a k 2 IN such that (Mk)�� = 0, whereas M�� 6= 0. The existence of such a circuit

implies by 9.2 and 9.3 that � ! �. 2

De�nition 7 Let G = (V;w) be the associated graph of a nonnegative voidfree idempotent matrix of dimen-

sion N , where V = f1; : : : ; Ng. The node � 2 V is called an attractor if M�� 6= 0. If � is an attractor then

the set of its neighbours is called an attractor system. 2

In the following a formal relationship is established between nonnegative idempotent matrices and overlapping

clusterings. In order to sustain insight, it may again be helpful to keep the matrix on page 23 in mind. By

Theorem 1, each attractor system in G induces a weighted subgraph in G which is complete. Theorem 1

furthermore provides the means to formally associate an overlapping clustering with each nonnegative column

allowable idempotent matrix. Let M be an arbitrary nonnegative idempotent matrix, let G = (V; w) be its

associated graph. Denote by Vx the set of attractors of G. Denote the `arc from � to �' relationship in G

by (� ! �). The �rst two statements in Theorem 1 imply that ! is transitive and symmetric on Vx, and !
is reexive on Vx by de�nition of Vx. Accordingly, ! induces equivalence classes on Vx. Denote the set of

equivalence classes by fE1; : : : ; Edg. The de�nition below requires the input of a column allowable matrix, in

order to be able to distribute the elements of V nVx over the classes Ei.

De�nition 8 Let M be a nonnegative column allowable idempotent matrix. Let G = (V;w) be its associated

graph, let ! be the arc relation associated with G. Let Vx be the set of attractors in G, let E = fE1; : : : ; Edg
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be the set of equivalence classes of ! on Vx. De�ne a relation � on E � V by setting �(E;�) = 1 if 9� 2 E

with �! �, and �(E;�) = 0 otherwise. The overlapping clustering CLM = fC1; : : : ; Cdg associated with M ,

de�ned on V , has d elements. The ith cluster Ci; i = 1; : : : ; d is de�ned by Equation (9.4).

Ci =
�
v 2 V j �(Ei; v) = 1

	
(9.4)

2

Note that the set of clusters is precisely the set of weakly connected components10 in the directed graph G.

The inclusion Ei � Ci implies that each cluster has at least one element which is unique for this cluster. All

this is in line with the procedures followed while studying the example in the previous section. It should

be noted that there is in general a very large number of nonnegative column allowable idempotent matrices

which yield the same overlapping clustering according to De�nition 8. This is caused by the fact that the

number of attractors and the distribution of the attractors over the clusters may both vary without resulting

in di�erent clusterings. For example, printing attractors in boldface, the clustering ff1; 2g, f3; 4; 5gg results

from all 21 possible combinations of the distributions f1; 2g, f1; 2g, and f1; 2g for the �rst cluster, and the

distributions f3; 4; 5g, f3; 4; 5g, f3; 4;5g, f3; 4; 5g, f3; 4; 5g, f3; 4;5g, and f3; 4;5g for the second cluster.

Another example shows the extent to which complicated structure can be present in nonnegative idempotent

matrices. The matrix

0
BBBBBBBBBBBBBBBBBBBBBBB@

1=3 1=3 1=3 0 0 0 0 0 0 0 1=3 1=6 0 0 1=5
1=3 1=3 1=3 0 0 0 0 0 0 0 1=3 1=6 0 0 1=5
1=3 1=3 1=3 0 0 0 0 0 0 0 1=3 1=6 0 0 1=5
0 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 1=7 0 0
0 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 1=7 0 0
0 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 1=7 0 0
0 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 1=7 0 0
0 0 0 0 0 0 0 1=2 1=2 0 0 1=6 1=7 1=2 1=5
0 0 0 0 0 0 0 1=2 1=2 0 0 1=6 1=7 1=2 1=5
0 0 0 0 0 0 0 0 0 1 0 1=6 1=7 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCA

is nonnegative idempotent and gives rise to the set Vx = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g, to the equivalence classes

f1; 2; 3g, f4; 5; 6; 7g, f8; 9g, f10g, and to the overlapping clustering f1; 2; 3 11; 12; 15g, f4; 5; 6; 7; 13g, f8; 9; 12;
13; 14; 15g, f10; 12; 13g. This matrix is also doubly idempotent and column stochastic. The MCL process

converges for nearly all input graphs to a doubly idempotent column stochastic limit11. For �xed dimension t,

the class of doubly idempotent column stochastic matrices is �nite, but extremely large. The fact that it is

�nite is easy to see: There is only a �nite number of values that each matrix entry can assume, namely the

set of rationals f0; 1; 1=2; : : : ; 1=tg.

The results in this section, especially De�nition 8, which uses Theorem 1, establish a clear relationship between

nonnegative column allowable idempotent matrices and overlapping clusterings. In practice, the equivalence

classes E1; : : : ; Ed (see De�nition 8) tend to be singleton sets, and overlap in the setting of undirected graphs

has been observed only for graphs having certain symmetries. This is discussed in [10].

10For the de�nition of weakly connected components see page 5.
11This is suggested by practical evidence. It is conjectured in [11] that the MCL process converges almost always if

the input graph is symmetric.
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10. Mathematical properties of the inflation operator

The � operator establishes a majorization relationship between a probability vector and its image. This is

stated in Lemma 2. Concerning just � this is a nice property, however, it does not give enough foothold

by itself for describing the intricate interaction of the � operator with the Exp operator. The � operator

furthermore distributes over the Kronecker product of matrices, which is stated in Lemma 4. Combined with

the distributivity of normal matrix multiplication over the Kronecker product, this yields the result that for

each MCL process the Kronecker product of the respective iterands corresponding with two input matrices A

and B, is equal to the iterands corresponding with the input matrix which is the Kronecker product of A and B.

This property is used in Section 11 to show the existence of certain periodic limits of the MCL process.

Following [28], if z denotes a real vector of length n, then z[1] � z[2] � � � � � z[n] denote the entries of z in

decreasing order.

De�nition 9 Let x; y be real nonnegative vectors of length n. The vector y is said to majorize the vector x if

(10.1) and (10.2) hold. This is denoted by x � y.

x[1] + � � �+ x[k] � y[1] + � � �+ y[k] k = 1; : : : ; n� 1 (10.1)

x[1] + � � �+ x[n] = y[1] + � � �+ y[n] (10.2)

2

The relationship � entails a rather precise mathematical notion of one vector x being more homogeneous than

another vector y. It induces a partial order on each set of nonnegative vectors of �xed dimension. It turns

out that the ination operator �r makes probability vectors less homogeneous for values r > 1, and makes

probability vectors more homogeneous for values r < 1, which is stated in Lemma 2. This lemma follows from

the fact that the vectors � and �r� satisfy the stronger condition of majorization by ratio (Lemma 3, also

found in [28]).

Lemma 2 Let � be a probability vector, let r be a real number, r > 0. The two inequalities (10.3) and (10.4)

are implied by the fact that � and �r� satisfy the conditions of Lemma 3. The two equalities (10.5) and (10.6)

are obvious.

� � �r� r > 1 (10.3)

� � �r� r < 1 (10.4)

� = �r� r = 1 (10.5)

� = �r� � is homogeneous (10.6)

De�nition 10 Let x; y be real positive vectors of length n. The vector y is said to majorize by ratio the

vector x, which is written x / y, if
P

xi =
P

yi and

x[1]=y[1] � x[2]=y[2] � � � � � x[n]=y[n] (10.7)

2

Lemma 3 ( [28], page 179) Majorization by ratio implies (normal) majorization.

Proof. Without loss of generality, assume that y[i] = yi and x[i] = xi. The claim is that for k = 1; : : : ; n�1,
kX

j=1

yj �
kX

j=1

xj
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This follows from

kX
j=1

yj

nX
l=1

xl �
kX

j=1

xj

nX
l=1

yl =
kX

j=1

yj

nX
l=k+1

xl �
kX

j=1

xj

nX
l=k+1

yl

=
kX

j=1

nX
l=k+1

yjyl(
xl
yl
� xj

yj
) � 0

2

The behaviour of �r(�) as r goes to in�nity (where � is a stochastic vector of dimension n), is easily described.

One has that limr!1 �r(�)=(�1; : : : ; �n), where �i=0 if �i < maxi �i and �i=1=m if �i=maxi �i, where m

is the number of indices i such that �i=maxj �j . Also, �0(�)=(�1; : : : ; �n), where �i=0 if �i=0 and �i=1=k

if �i 6= 0, where k is the number of nonzero entries of �. The orbit of �r(�) under r (0 � r � 1), where �

is a stochastic vector, has the property that �s(�) / �t(�) whenever s < t, and satis�es the multiplicative

property �s�t(�)=�st(�). So the �r operator is fairly well understood, and there are many results concerning

the majorization relationship between vectors. One such result is the characterization of so called Schur{

convex functions � (which have the property that x � y implies �(x) � �(y)) in terms of properties of their

partial derivatives. In [10] a particular Schur{convex function is one of the main ingredients of a performance

criterion for graph clustering. A celebrated result in the theory of majorization is that x � y i� there is a

doubly stochastic matrix D such that x = Dy [27].

Unfortunately, results from the theory of majorization of vectors do not carry over to matrices in such a

straightforward way (i.e. the columns of one matrix majorizing the columns of another matrix). In [27] this

issue is discussed at length. However, Lemma 2 clearly shows the inationary or `decontracting' e�ect of �r,

r > 1, as opposed to the contracting e�ect of matrix multiplication of nonnegative matrices in terms of

the so called Hilbert distance between positive vectors (see [11]). Moreover, the ination operator preserves

the majorization by ratio relationship between vectors. For certain perturbations of circulant limits of the

MCL process introduced in Section 12, matrix multiplication preserves the normal majorization relationship.

Both cases (Hilbert distance, majorization) exemplify the phenomenon that the workings of the expansion

and ination operator can be compared and contrasted in special cases. Annoyingly however, ination does

not necessarily preserve normal majorization, and expansion of circulants does not necessarily preserve ma-

jorization by ratio. A similar gap exists for the Hilbert distance.

Lemma 4 Let A;B be nonnegative matrices of respective dimensions s1�t1 and s2�t2, let r 2 IR be positive.

Denote the Kronecker product by (� 
 �). Equation (10.8) holds.

�r(A
B) = �rA
 �rB (10.8)

Proof. Use the following notation for the Kronecker product of matrices. Let (A 
 B)i;j;k;l denote the

entry (A
B)is2+k;jt2+l, which is by de�nition equal to AijBkl. Here i = 1; : : : ; s1, k = 1; : : : ; s2, j = 1; : : : ; t1,

and l = 1; : : : ; t2. I prove Identity (10.8) by proving that the ratios between two entries in the same column is

the same on both sides of Equation (10.8). Let i; j; k; l be as above and let i0; k0 be additional indices within
the same bounds as respectively i and k. The indices j; l, identify the (jt1+ l)th column on both sides of (10.8).

The two index pairs (i; k) and (i0; k0) identify two row entries in this column.
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�
�r(A
B)

�
i j k l�

�r(A
B)

�
i0j k0l

=

 
(A
B)i j k l

(A
B)i0j k0l

!r

=

 
Ai j Bk l
Ai0j Bk0l

!r

=

�
Aij

Ai0j

�r �
Bkl

Bk0l

�r
=

�
�rA

�
i j�

�rA

�
i0j

�
�rB

�
kl�

�rB

�
k0l

=

�
�rA
 �rB

�
i j k l�

�rA
 �rB

�
i0jk0l

2

Lemma 5 Let A;B, be square column stochastic matrices with no further restrictions imposed on their re-

spective dimensions. Let K = A 
 B be their Kronecker product. Suppose all three are input to the same

MCL process (�; e(i); r(i)). Denote the respective iterand pairs by (A2i; A2i+1), (B2i; B2i+1), (K2i; K2i+1),

i = 1; : : : ;1. Identity (10.9) holds.

Kj = Aj 
Bj j = 1; : : : ;1 (10.9)

Proof. The lemma follows from the observation that both matrix multiplication and � distribute over the

Kronecker product. 2

11. Equilibrium states of the MCL process

In order to characterize the equilibrium states of the MCL process, I make two extra assumptions on the input

rows r(i) and e(i). These are

i) ri = c eventually, c 2 IR; c > 1.

ii) ei = 2 eventually.

The main purpose of these requirements is to study for speci�c parameters whether matrices exist correspond-

ing with periodic limits. This question will be answered a�rmatively below. The �rst requirement implies

that the process di�ers genuinely from the usual Markov process. It is necessary to require ri > 1 eventually

in order to ensure that the limit of the corresponding MCL process can in principle have structural properties

which are di�erent from the original input graph in terms of the number and distribution of the weakly con-

nected components. Consider a regular ergodic input graph (all example graphs in the �gures except graph G2

in Figure 4 are regular and ergodic). The structural properties of all intermediate iterands (with respect to

reachability) are identical, and positive entries can thus only tend to zero eventually, they can not become

equal to zero eventually. It is true only for the limit of the process that it may di�er structurally from the

input graph.

An equilibrium state corresponds with an MCL process (M; e(i); r(i)) with e(i)=
c 2, and r(i)=

c c > 1, for which

the associated row of matrix pairs (T(2i); T(2i+1)) is periodic. A periodic row of objects is a row consisting
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of a �nite list of objects repeated in�nitely many times. The period of a periodic row is the minimum

cardinality of such a �nite list, the period of a constant row is 1. An equilibrium state can be associated with

the input matrix M , with the in�nite row (T(2i); T(2i+1)) generated by M , and with a �nite list of matrices

constituting a cycle of period p in (T(2i); T(2i+1)). A priori, I distinguish three di�erent types Li (i = 1; : : : ; 3)

of equilibrium states for the MCL process with column stochastic input matrix M , input row r(i)=
c c > 1, and

input row e(i)=
c 2. A matrix M is said to be of type Li if its associated output row is of type Li. In order of

decreasing strength of properties, the types Li are:

L1 M is doubly idempotent, implying that all matrices T2i and T2i+1 are equal.

L2 The row of pairs (T2(i); T2(i)+1) has period 1. Even iterands are (Exp2 � �c){id , odd iterands are

(�c � Exp2){id , and T2i 6= T2i+1.

L3 The row of pairs (T2(i); T2(i)+1) has period p > 1, that is, T2i = T2(i+p) and T2i+1 = T2(i+p)+1. The even

iterands T2i are idempotents under p iterations of the operator (Exp2 � �c), the odd iterands T2i+1 are

idempotents under p iterations of the operator (�c � Exp2).

L3a As above, where the matrix T1 is the Kronecker product of a column homogeneous column stochastic

cyclic matrix P with odd period and a matrix A which is of type L2 or L1. An example of such P is a

permutation matrix containing cycles of odd period only.

Each of the classes L1, L2, and L3 is non-empty. The most important class of equilibrium states is the large

class L1 of doubly idempotent matrices. These matrices are invariant under arbitrary MCL processes. For

dimensions 2; 3; 4; 5 a few matrices of L2 type for c = 2 can be found quickly by algebraic computation.

They are depicted on page 29. The general graph templates on n nodes, n = 2; : : : ; 5, which were used to

derive these examples, are invariant under the automorphism group of the ring-graph of order n. Note that

the matrix R4b is the Kronecker product of the matrices 1=2J2 and R2a, where J2 is the all-one matrix of

dimension 2. Higher dimensional versions of the templates in Figure 13 have solutions as well (Lemma 6).

The only clusterings suiting ring graphs are the two extreme clusterings. Slight perturbations of either the

MCL process parameters or the input graphs lead the MCL algorithm to converge towards a limit of the

L1 type, corresponding with one of the two extreme clusterings. For example, setting p = 101=601 in the

3-dimensional matrix template in Figure 13 leads the algorithm to convergence to the identity matrix, setting

p = 99=601 leads the algorithm to converge to 1=3 J , where J is the all-one matrix. The same behaviour

results after respectively setting c = 201=100 and c = 199=100. For the latter settings, it is in line with

heuristic considerations that a slight increase in ination leads the algorithm to converge towards a matrix

corresponding with the bottom extreme partition (i.e. fsingletonsV g), and that a slight decrease in ination

leads the algorithm to converge to a matrix corresponding with the top extreme partition (i.e. fV g).

The class L2 consists of equilibrium states which are very instable by nature. The image of the column vectors

under either �2 or Exp2 is very di�erent from the original vector. For this class, expansion and ination act

as each others inverse. A slight perturbation of the MCL process parameters or the equilibrium state leads to

one of the two getting the upper hand. This is formally proved for a subclass of the class L2 in Lemma 6.

So far, all limits resulting from inputting undirected graphs were of the L1 type. If the condition e(i)=
c 2 is

relaxed to e(i)=
c k, where k 2 IN is a constant, examples of the L3a type can be found as well by selecting

bipartite graphs, setting e(i)=
c 3, and refraining from adding loops. This is not surprising, since in bipartite

graphs paths of odd length always go from one of the two node sets to the other. As was the case with ring-

graphs, the relationship between parameter choice, expected behaviour, and observed behaviour fully agree,

so this is an agreeable situation.
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The class L3 is nonempty for rows e(i)=
c 2 as well. It is easy to construct matrices of the L3a type, by taking

the Kronecker product of L1{ or L2{type matrices and permutation matrices containing odd permutations

only, illustrating the use of Lemma 4. Denote by LxnLy the class of matrices satisfying the Lx constraints but

not satisfying the Ly constraints. It is an open question whether matrices of the type L3nL3a exist. If they

exist, I expect them in any case to be as sensitive to perturbations of parameter settings and matrix values

as are the matrices of the L2 type. While the L3 and L2 classes are of interest for studying the MCL process,

they do not form a weak spot of the MCL algorithm. If a graph constructed from some application such as

a thesaurus or a database leads to an MCL process which at any stage approaches an L2 or L3 type matrix,

then the application graph is in all likelihood a curiosity lacking cluster structure anyhow. Moreover, limits

of L3 type have non-real spectrum, and cannot occur if the input graph is symmetric. This follows from the

results in [11].

12. Flip{flop equilibrium states

There is a class of matrices which is known not to lead to convergence. In small dimensions, it is easy to �nd

matrices M such that �2M =M1=2, representing a ip{op equilibrium state. Several of these are depicted in

Figure 13, each having the form of a symmetric circulant matrix. The three-dimensional specimen is notable

for its simple (rational) form. The Kronecker product K of such a matrix with any other stochastic matrix

has the property that the MCL process (K; e(i) = 2; r(i) = 2) does not converge towards a doubly idempotent

matrix. However, such ip{op equilibrium states are sensitive to perturbations. This can be proven for a

subclass of them.

There exists an in�nite family of `basic' (indecomposable in terms of the Kronecker product) ip{op positive

semi-de�nite equilibrium states of the form aIn + (1� a)=nJn. For these states it is relatively easy to prove

that they are instable with respect to alternation of Exp2 and �2.

Lemma 6 Let n > 1. De�ne �n by

�n =
3
p
vn

6(n� 1)
� 2(3n� 4)

3(n� 1) 3
p
vn

� 1

3(n� 1)
(12.1)

vn = 108n2 � 180n+ 64 + 12(n� 1)
p
3n(27n� 32) (12.2)

Then the n-dimensional matrix An = �nIn + (1� �n)=nJn has the property that �2(An
2) = An. In the class

of matrices faIn + (1� a)=nJnja 2 [0; 1]g, there is no trajectory to the equilibrium (ip{op) state An for the

MCL process with parameters ei and ri constant equal to 2, thus these states are instable for this process.

Proof. This is derived by computing the square of A = aIn + (1 � a)=nJn, which equals B = a2In + (1 �
a2)=nJn, and subsequently solving for (B11=B12)

2 = A11=A12. This yields the equation a(1� a)(a3(n� 1) +

a2 + a � 1) = 0. The solutions a = 0 and a = 1 yield the double idempotents In and Jn; the term of degree

three yields the solution as stated in the lemma. It is straightforward to prove that this term has only one

solution in the interval (0; 1) (and in fact, only one real solution). It follows that for a > �n the MCL process

(aIn+(1�a)=nJn; e(i) = 2; r(i) = 2) converges towards In, and that for a < �n the process converges towards

Jn, as is to be expected. The cases where n = 2; 3; 4; 5 are depicted in Figure 13. 2

In general, one might hope that the analysis of the stability of ip{op states which correspond with symmetric

circulants is easier, even if no explicit representation is known. However, it is di�cult to describe expansion

and ination in the same framework. Suppose that a is a positive vector such that the circulant Ca is a

ip{op state, i.e. �2(Ca
2) = Ca. Let e be a vector the elements of which sum to zero such that a + e is a

nonnegative vector satisfying a+ e � a, let f be likewise a vector such that a+ f / a. Extend the de�nition

of � (/) to circulants by setting Cx � Cy i� x � (/)y. Now it is easy to prove that Cx � Cy =) Cx
2 � Cy

2,
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�
1� p p
p 1� p

�
0
BBB@

1� 2p� 2q p q q p
p 1� 2p� 2q p q q
q p 1� 2p� 2q p q
q q p 1� 2p� 2q p
p q q p 1� 2p� 2q

1
CCCA

0
@1� 2p p p

p 1� 2p p
p p 1� 2p

1
A

0
BB@
1� 2p� q p q p

p 1� 2p� q p q
q p 1� 2p� q p
p q p 1� 2p� q

1
CCA

General templates for (�2 �Exp2){id matrices in dimensions 2; 3; 4, and 5. Explicit solutions for the resulting equations
are given below.

R2a =

�
0:77184 0:22816
0:22816 0:77184

�
p = 2

3
� 3
p
v + 1

18 3
p
v
;

v = 17
216

+ 1
72

p
33

R3a =

0
@2=3 1=6 1=6
1=6 2=3 1=6
1=6 1=6 2=3

1
A p = 1

6

R4a =

0
BB@
0:60205 0:13265 0:13265 0:13265
0:13265 0:60205 0:13265 0:13265
0:13265 0:13265 0:60205 0:13265
0:13265 0:13265 0:13265 0:60205

1
CCA

q = p; p = 5
18
� 3
p
v + 1

162 3
p
v

v = 67
23328

+ 1
2592

p
57

R4b =

0
BB@
0:38592 0:11408 0:38592 0:11408
0:11408 0:38592 0:11408 0:38592
0:38592 0:11408 0:38592 0:11408
0:11408 0:38592 0:11408 0:38592

1
CCA

q = 1
2
� p; p = 1

3
� 3
p
v + 1

72 3
p
v

v = 17
1728

+ 1

576
p
33

R4c =

0
BB@
0:59594 0:17610 0:05205 0:17610
0:17610 0:59594 0:17610 0:05205
0:05205 0:17610 0:59594 0:17610
0:17610 0:05205 0:17610 0:59594

1
CCA

q = p� 4p2; p = 1
3
� 3
p
v + 18

3
p
v

v = 13
864

+ 1
288
p
57

R5a =

0
BBB@

0:5568 0:1108 0:1108 0:1108 0:1108
0:1108 0:5568 0:1108 0:1108 0:1108
0:1108 0:1108 0:5568 0:1108 0:1108
0:1108 0:1108 0:1108 0:5568 0:1108
0:1108 0:1108 0:1108 0:1108 0:5568

1
CCCA

q = p; p = 13
60
� 3
p
v + 11

3600 3
p
v

v = 233
216000

+ 1
36000

p
1545

R5b =

0
BBB@

0:5346 0:2087 0:0239 0:0239 0:2087
0:2087 0:5346 0:2087 0:0239 0:0239
0:0239 0:2087 0:5346 0:2087 0:0239
0:0239 0:0239 0:2087 0:5346 0:2087
0:2087 0:0239 0:0239 0:2087 0:5346

1
CCCA

Values are numerically found roots
of a polynomial of degree 8 which
is irreducible over the rationals.

Figure 13: (�2 � Exp2){id matrices.
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and that Cx / Cy =) �r(Cx) / �r(Cy) (r � 1). Unfortunately, neither of the corresponding statements of

the other pairings �r;� and Exp2; / is in general true, which severely impedes the analysis of the stability of

ip{op states.

One interesting freak ip{op state exists in dimension 3, which has the form of a nonsymmetric circulant

matrix corresponding with the generating vector (1� b� c; b; c). Testing this template for a ip{op solution

in Maple yields an algebraic number � of the form h(�), where � is a zero of g, where g is a polynomial

of degree 16, and where h is a polynomial of degree 10 divided by a polynomial of degree 9. Numerical

computations yield and verify that the matrix below is a genuine ipop equilibrium state.0
B@0:795668870 0:004344249 0:199986881

0:199986881 0:795668870 0:004344249

0:004344249 0:199986881 0:795668870

1
CA (12.3)

13. Convergence towards equilibrium states

In this section the stability of the equilibrium states in L1 is considered. The setting is as follows. Let M

be the associated matrix of an equilibrium state in L1, let � be a perturbation matrix such that M + � is

stochastic. For various types of perturbation � the limit or set of possible limits of the perturbed MCL process

(M + �; e(i)=
c 2; r(i))=

c 2 is investigated. The states in L1 which are stable in every respect correspond with

doubly idempotent matrices which have precisely one nonzero entry (equal to 1) in each column. This is

stated in Theorem 2. A doubly idempotent matrix M corresponds with an instable equilibrium state if it has

columns with more than one nonzero entry. Two cases can be distinguished: the case where all columns with

multiple entries correspond with nodes which are attracted to or are part of a single attractor system having

more than one attractor (Lemma 8), and the case where p is not an attractor and is attracted to two di�erent

attractor systems (Lemma 9). For both cases, it is of interest in which respects the associated clustering of a

limit resulting from the perturbed MCL process may di�er from the associated clustering of M .

In the �rst case, the equilibrium state is shown to be stable on a macroscopic scale which corresponds with

the cluster structure derived from M (Theorem 4). A perturbation � of M may thus lead the MCL process

(M + �; e(i); r(i)) to converge towards a di�erent equilibrium state. Theorem 4 guarantees that this new

equilibrium state yields a cluster interpretation which is identical to or a re�nement of the associated clustering

of M . For a restricted class of perturbations �, Theorem 5 guarantees that the new equilibrium state yields

a cluster interpretation which is identical to the associated clustering of M . These are perturbations only

a�ecting the principal submatrices M [�], where � is any index set describing an attractor system in M . In

words, Theorem 5 states that for such a perturbation an attractor system cannot split into a number of smaller

attractor systems.

In the second case, if a perturbation of column p is unevenly spread over the attractor systems towards which

p is attracted, then the process (M; e(i); r(i)) will converge towards a state in which p is attracted to just one

of those systems. This means that the phenomenon of cluster overlap is instable in nature (Lemma 9). The

following theorem identi�es the equilibrium states in L1 for which the associated matrix M is attractor for all

input matrices M + � with regard to the MCL process (M + �; e(i)=
c 2; r(i)=

c 2), for � small enough.

Theorem 2 The MCL process with standard parameters (�; e(i)=c 2; r(i)=c 2), converges quadratically in the

neighbourhood of each nonnegative idempotent column stochastic matrix for which every column has one entry

equal to 1 and all the other entries equal to 0.

The formulation of this theorem is rather non-technical. What I shall prove is Lemma 7.
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Lemma 7 Let M 2 IR�0n�n be a nonnegative idempotent column stochastic matrix for which every column

has one entry equal to 1 and all other entries equal to 0. Let xi be the row index such that Mxii = 1. Let f > 0

be a real number and let � be a matrix in IRn�n, the columns of which add to zero, such that M + � is column

stochastic and nonnegative, and such that [M + �]xii � 1� f . De�ne the matrix � by �((M + �)2) =M + �.

For f � 1=4 the inequality maxi;j j�ij j � 8f2 holds.

Proof. The structure of nonnegative idempotent matrices as described in Theorem 1 implies the equality

xxi = xi, by the implication i ! xi =) xi ! xi. It furthermore follows from the de�nition of � that

maxi;j j�ij j � f . Consider the entry [M + �]2xii. The inequalities [M + �]2xii � [M + �]2xixi [M + �]2xii �
(1 � f)2 � 1 � 2f hold. Now consider the entry [�(M + �)]xii. It is true that

P
k (M + �)ki

2 � (1 � f)2.

Furthermore,
P

k 6=xi(M + �)ki � f and thus
P

k 6=xi (M + �)ki
2 � f2. It follows that

P
k 6=xi [�(M + �)]ki �

f2=(1�f)2, and consequently [�(M+�)]ki � 1�f2=(1�f)2. For f < 1=4) the inequality 1�f2=(1�f) � 1�2f2
holds. Combining this inequality and the previous one yields the desired result. 2

Theorem 3 The equilibrium states of the MCL process in L1 for which the associated doubly idempotent

matrices have one or more columns with more than one nonzero entry are instable.

Two cases are distinguished in proving this theorem, namely the case in which a column with more than one

nonzero entry corresponds with an attractor, and the case in which it corresponds with a non-attractor. Both

cases are illustrated with simple examples which generalize in a straightforward manner to higher dimensional

and more complex cases.

Lemma 8 Let M , �f and L be the matrices

M =

 
1=2 1=2

1=2 1=2

!
�f =

 
f f

�f �f

!
L =

 
1 1

0 0

!

For each f > 0 the MCL process (M + �f ; e(i)=
c 2; r(i)=

c 2) converges towards L.

Proof. The matrix M + �f is idempotent under matrix multiplication for arbitrary f , as it is a rank 1

stochastic matrix. Direct computation shows that [�(M + �f )]11 equals (1=4 + f2 + f)=1=2 + 2f = 1=2 +

2f=(1 + 4f2). Thus �(M + �f ) can be written as M + �2f=(1+4f2). For small f , the deviation of �(M + �f )

from M is nearly twice as large as the deviation of M + �f from M . The lemma follows. 2

The proof of the following lemma is nearly identical and is omitted.

Lemma 9 Let M , �f and L be the matrices

M =

0
B@1 0 1=2

0 1 1=2

0 0 0

1
CA �f =

0
B@0 0 f

0 0 �f
0 0 0

1
CA L =

0
B@1 0 1

0 1 0

0 0 0

1
CA

For each f > 0 the MCL process (M + �f ; e(i)=
c 2; r(i)=

c 2) converges towards L. 2

The previous results do not imply that the MCL algorithm is built on quicksand. The instability of the

phenomenon of cluster overlap cannot be helped, if only the limit of the MCL process is taken into account.
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As mentioned before, there is a cure for this by looking at the speci�c structure which is present in all iterands

of the process [11].

The instability of attractor systems consisting of more than one element is not a serious issue if only regarding

clustering purposes. Below it is shown that perturbation of doubly idempotent matrices M by a matrix

� for which the associated clustering C does not have overlap, lead the iterands of the MCL process (M +

�; e(i)=
c 2; r(i)=

c 2) to stay within a class of matrices the block structure of which only admits a clustering which

is a re�nement of C. These statements are assembled in Theorem 4, which is preceded by two more technical

lemmas. This result is extended by Theorem 5, which demonstrates that for a speci�c class of perturbations

the notion `a re�nement of' in Theorem 4 can be strengthened to `identical to'. The proof of this theorem

gives con�dence that the result extends to arbitrary perturbations.

If a diagonal block structure can be mapped onto part of a column stochastic matrix M such that the mass of

the columns in this part is highly concentrated in the blocks, then the entries outside the diagonal blocks tend

to zero quadratically in the MCL process (M; e(i)=
c 2; r(i)=

c 2). If it is moreover assumed that the mass of the

columns in the remaining part is (for each column separately) concentrated in a set of rows corresponding to

at most one diagonal block, then the entries not belonging to these rows tend to zero as well. Conceptually,

the proof is very similar to that of Lemma 7. The more complicated setting requires substantial elaboration.

Let M be a column stochastic matrix of dimension n, let f > 0 be a real number. Assume that there is a

strictly increasing row of indices k1; : : : ; kl+1 with k1 = 1 and kl+1 � n+1 such that the mass of the columns

in each principal submatrix M [ki; : : : ; ki+1�1], i = 1; : : : ; l is greater than or equal to 1� f . It is convenient

to denote the set of indices fkx; : : : ; kx+1�1g by �x, indicating the xth diagonal block.

Lemmas 10 and 11 hold, and are preparatory to Theorem 4. The corresponding statements for matrices which

are permutation{similar to a matrix with the required block structure follow from the fact that both matrix

multiplication and ination distribute over simultaneous permutation of rows and columns.

Lemma 10 Let f , M and k0; : : : ; kl be as above. Let T2i and T2i+1 be the iterands of the MCL process

(M; e(i)=
c 2; r(i)=

c 2), where T1 =M . Let �x be the range of indices fkx; : : : ; kx+1�1g and let q be an index in

�x. For f small enough, the entries (Ti)jq tend to zero for all j with j 62 �x as i goes to in�nity.

Proof. Suppose that kl+1 < n+1. Thus, the block diagonal structure (the blocks of which have large mass)

does not fully cover M , as the last block is indexed by the range kl; : : : ; kl+1�1. This is the most general

case where nothing is assumed about the remaining columns kl+1; : : : ; n. Let �x and q be as in the lemma,

so q 2 �x. Let p be any index, 1 � p � n.

Consider the pth entry of the qth column ofM2. Consider �rst the case where kl+1 � p � n. The identityM2
pq

=
Pn

i=1MpiMiq holds. Split the latter sum into the parts
P

i2�x MpiMiq and
P

i62�x MpiMiq. For i 2 �x
the inequality Mpi � f holds. Since

P
i2�x Miq � 1, the �rst sum is smaller then or equal to f . By similar

reasoning it is found that the second sum is smaller than or equal to f2.

Now consider the case where p 2 �y; y 6= x. Write the entryM2
pq in three parts:

P
i2�x MpiMiq ,

P
i2�y MpiMiq ,

and
P

i62�x[�y MpiMiq. For the �rst part, Mpi � f and the entries Miq sum to less than one. For the second

part, the entries Mpi sum to less than j�yj and Miq � f . For the third part, Mpi � f and the entries Miq sum

to less than f . Combining these results yields that the full sum is smaller than or equal to f + j�yjf + f2. So

after multiplication, the combined mass of all entries in column q which are not in �x is bounded from above

by n(n+ l)(f + f2), which is of order f .

Estimate the entry [�(M)]pq as follows. The sum of squares
Pn

i=1Miq
2 is bounded from above by 1=n. For
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p 62 �x the inequality Mpq
2 � f2 holds and thus [�(M)]pq � nf2. The combined mass of all entries in

column q which are not in �x is thus bounded from above by the (crude) estimate n2f , which is of order f2.

Combination of this with the result on multiplication yields the following. If f is viewed as the error with

which M deviates from the block structure imposed by the index sets �x (in the index range 1; : : : ; kl+1�1),
then application of � � Exp2 to M yields a matrix for which the new error is of order f2. This proves the

lemma. 2

Lemma 11 Let f , M and k1; : : : ; kl+1 be as in Lemma 10. Assume moreover that kl+1 < n + 1 and that

for each q � kl+1 there exists a block indexed by �x = fkx; : : : ; kx+1�1g such that the mass in the submatrix

M [�xjq] (which is part of column q) is bounded from below by 1�f . Let Ti be the iterands of the MCL process

(M; e(i)=
c 2; r(i)=

c 2). Then, for f small enough, all entries (Ti)pq tend to zero for p 62 �x as i goes to in�nity.

Proof. The proof is very similar to that of Lemma 11. Consider the pth entry of the qth column of M2.

First consider the case where kl+1 � p � n. The identity M2
pq =

Pn
i=1MpiMiq holds. Split the latter sum

into the parts
P

i2�x MpiMiq and
P

i62�x MpiMiq. As in the proof of Lemma 11 it is found that the two parts

are respectively bounded from above by f and f2.

Now consider the case where p 2 �y; y 6= x. Writing the entry M2
pq in three parts:

P
i2�x MpiMiq ,P

i2�y MpiMiq , and
P

i62�x[�y MpiMiq , it is found that these parts are respectively bounded by f , j�yjf ,
and f2. After multiplication, the combined mass of all entries in column q which are not in �x is bounded

from above by n(n+ l)(f + f2), which is of order f .

The entry [�(M)]pq is estimated as before, yielding [�(M)]pq � nf2, and bounding the combined mass of the

entries [�(M)]pq , q 62 �x by n2f . Viewing f as the error with which column q deviates from the structure

imposed by �x gives that applying � �Exp2 to M yields a matrix for which the new error is of order f2. This

proves the lemma. 2

Theorem 4 is a general result on perturbation of equilibrium states for which the associated matrix M may

have columns with more than one nonzero entry. It states that the associated clustering of any idempotent

limit resulting from the perturbed process must be a re�nement of the clustering associated with M . The

proof of the theorem is a direct consequence of Lemma 10 and 11.

Theorem 4 Let M be a doubly idempotent matrix in IR�0n�n for which the associated clustering C is free

of overlap. Let f > 0 and let � be a matrix in IRn�n, the columns of which sum to zero and for which

maxi;j j�ij j � f . The iterands Ti of the MCL process (M + �; e(i)=
c 2; r(i)=

c 2), for f small enough, have the

property that (Ti)pq tends to zero as i goes to in�nity, if q 6! p in the associated graph of M . Consequently,

an idempotent limit resulting from the process (M + �; e(i)=
c 2; r(i)=

c 2) corresponds with a clustering which is

identical to or a re�nement of C. 2

The following theorem extends this result for a restricted class of perturbations, namely those that only a�ect

the principal submatrices of the doubly idempotent matrix M which correspond to an attractor system in

the associated clustering of M . Theorem 1 implies that such a submatrix has the form 1
k
Jk, where Jk is the

all one matrix of dimensions k � k. Theorem 5 is concerned with limits which may possibly result from the

MCL process ( 1
k
Jk + �; e(i)=

c 2; r(i)=
c 2), where � is as before. It appears that for small perturbations � it is

guaranteed that the iterands of the process approach arbitrarily close towards the set of rank 1 stochastic

matrices, without actually pinpointing a particular limit point. This implies that an idempotent limit of the

perturbed process (M + �; e(i)=
c 2; r(i)=

c 2), where M is doubly idempotent and � only a�ects the attractor

systems of M , is guaranteed to yield an associated clustering which is the same as that of M , except for the

cases where overlap occurs.
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Theorem 5 Let M be a doubly idempotent matrix in IR�0n�n for which the associated clustering C is free of

overlap. Let f > 0 and let � be a matrix in IRn�n, the columns of which sum to zero, for which maxi;j j�jij � f ,

and for which �kl 6= 0 =) k and l are attractors in the same attractor system in M . That is, � only a�ects

the diagonal blocks of M corresponding with its attractor systems.

An idempotent limit resulting from the process (M + �; e(i)=
c 2; r(i)=

c 2), has an associated clustering which is

identical to C.

This theorem is a consequence of the following lemma. Note that the diagonal blocks of M corresponding

with its attractor systems are of the form 1
k
Jk.

Lemma 12 Let f > 0 be a real number, let J be an arbitrary rank 1 column stochastic matrix in IR�0n�n, let
� 2 IRn�n be a matrix the columns of which sum to zero and for which maxi;j j�jij � f . For f small enough,

the matrix �2[(J + �)2] can be written as J 0 + �, where J 0 is rank 1 column stochastic, the columns of � sum

to zero and maxi;j j�jij � cf2, where c > 0 is a constant independent from J, �, and f .

Proof. Consider (J + �)2. This product can be written as J2 + J� + �J + �2. The identities J2 = J and

J� = 0 hold. Furthermore, the sum J+�J is a rank 1 column stochastic matrix. Thus the product (J+�)2 can

be written as the sum of a rank 1 column stochastic matrix and �2. It is easy to show that maxi;j j�2jij � nf2,

which is of order f2.

Now consider the result of applying �2 to J+�, and compare this with �2J . First compute the renormalization

weight for the lth column of �2(J + �). This equals
P

i(Jil + �il)
2. Split this sum into the parts

P
i Jil

2,

2
P

i �ilJil, and
P

i �il
2. Then 2jPi �ilJilj � 2f , and

P
i �il

2 � nf2. It follows that
P

i(Jil + �il)
2 can be

written as
P

i Jil
2 + �d, where j�dj � 2f + nf2 (and the d stands for denominator).

Observe that (Jkl + �kl)
2 = Jkl

2 + 2Jkl�kl + �kl
2 can be written as Jkl

2 + �e, where j�ej � 2f + f2. It follows

that [�2(J + �)]kl can be estimated as below.

Jkl � �eP
i Jil

2 + �d
� (Jkl + �kl)

2P
i(Jil + �il)2

� Jkl + �eP
i Jil

2 � �d

Now let a=b be a positive fraction less than or equal to one, let x and y be real numbers. Observe that

a� x

b+ y
=

a

b
� x+ ay=b

b+ y
� a

b
� jxj+ jyj

b+ y

a+ x

b� y
=

a

b
+
x+ ay=b

b� y
� a

b
+
jxj+ jyj
b� y

Finally,

[�2J ]kl � j�ej+ j�djP
i Jil

2 + j�dj � [�2(J + �)]kl � [�2J ]kl +
j�ej+ j�djP
i Jil

2 � j�dj

Since
P

i Jil
2 � 1=n it follows that the di�erence j[�2(J + �)]kl � [�2J ]klj can be bounded by cf , where c > 0

is a constant depending on n only. This, combined with the result on (J + �)2 proves the lemma. 2

Remark. An alternative proof this lemma is given in [11] using results on the Hilbert distance between

positive vectors. In this setting the proof simpli�es considerably.

Remark. For the proof of Theorem 5 one needs also consider the behaviour of columns in M , the associated

nodes of which are not attractors. It is an easy exercise to show that such columns exhibit the same behaviour
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as the columns of the attractor systems to which they are attracted. This concludes a series of results on the

stability and instability of the equilibrium states in L1 in both the usual and a macroscopic sense.

The combined results of Theorem 4 and 5 indicate that perturbations of M may only disturb the phenomenon

of overlap, which is inherently instable. Intuitively, it is clear that otherwise the clustering associated with an

idempotent matrix must be stable under small perturbations. This is because the submatrices corresponding

with attractor systems are e�ectively the only part of the matrix that may a�ect the associated clustering;

the columns of nodes that are attracted to such a system must follow suit (the distribution of such a column c

in the powers of M is forced to converge towards the distribution of the corresponding attractor submatrix,

no matter how c is perturbed itself). The only thing lacking here is a proof that if the set of columns of M

corresponding with an entire attractor system is perturbed, than the same set of columns must have rank 1

in the limit of the powers of the perturbed matrix.

In [10] experimental results are discussed concerning the phenomena of overlap and attractor systems. Current

evidence suggests that these phenomena imply the existence of automorphisms of the input graph. Generally,

the MCL process converges so fast that idempotency can be recognized long before instability of overlap and

attractor systems begin to play a role. This is related to the fact that the examples given here concern small

graphs. However, the crucial property is that the natural cluster diameter is small. Thus, large graphs G

for which the natural cluster diameter is small may also lead the MCL process (TG; e(i); r(i)) to converge

towards idempotency before instability starts to play a role. Finally, by using the results in [11] overlap can

be detected at early stages. The primary use of the MCL process lies in detecting cluster structure however,

and the observed correspondence between graph automorphisms and respectively cluster overlap and attractor

systems does not seem particularly useful for detection of the latter two.

14. Scaling the MCL algorithm

The complexity of the MCL algorithm, if nothing special is done, is O(N3) where N is the number of nodes

of the input graph. The factor N3 corresponds to the cost of one matrix multiplication on two matrices of

dimension N . The ination step can be done in O(N2) time. I will leave the issue aside here of how many

steps are required before the algorithm converges to a doubly idempotent matrix. In practice, this number

lies typically somewhere between 10 and 100, but only a small number of steps (in a corresponding range

of approximately 3 to 10) in the beginning correspond with matrix iterands that are not extremely sparse.

The only way to cut down the complexity of the algorithm is to keep the matrices sparse. Fortunately, the

MCL process is by its very nature susceptible to such modi�cation. This issue is discussed below, followed by

a brief description of the MCL implementation in use at the CWI.

Complexity and scalability

The limits of an MCL process are in general extremely sparse. All current evidence suggests that overlap

or attractor systems of cardinality greater than one correspond with certain automorphisms of the input

graph [10].

The working of the MCL process with respect to �nding cluster structure is mainly based on two phenomena.

First, the disappearance of ow on edges between sparsely connected dense regions, in particular the edges in

the input graph. Second, the creation of new ow within dense regions, corresponding with edges in the limit

graph not existing in the input graph.

Typically, the average number of nonzero elements in a column of a limit matrix is equal to or very close to

one, and the intermediate iterands are sparse in a weighted sense. The expansion operator causes successive

iterands to �ll very rapidly, but if natural cluster structure is present and the cluster diameters are not too

large (cf. [10]) then the ination operator ensures that the majority of the matrix entries stays very small,
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and that for each column the deviation in the size of its entries is large. A small cluster diameter implies that

the equalizing of probability distributions is relatively easy as ow need not be transferred over long distances

before it eventually stabilizes. This fact is exploited in various proposals for matrix pruning schemes made

below.

Remark. Before introducing these schemes a remark on the justi�cation of pruning is in place. I will not

attempt a numerical or perturbation analysis of pruning. Rather I will stick to heuristic reasoning in higher-

level terms of cluster structure and random walks when discussing the viability of pruning. This is put to the

test by experimenting with randomly generated testgraphs in [10].

Pruning schemes. If it is assumed that the probabilities of intermediate random walks are indeed distributed

inhomogeneously per column, then this leads naturally to the idea that it will do no harm to remove interme-

diate random walks (i.e. setting matrix entries to zero) which have very small probability. The interpretation

of the process then enforces obvious constraints on such pruning:

� The magnitude of a transition probability is only relevant in relationship to the other transition probabil-

ities of the associated tail node. Pruning must be done locally rather than globally, that is, column-wise.

� Pruning should only remove a small part of the overall weight of a column; the corresponding entries

should ideally have large (downward) deviation from the column average (for a suitable notion of column

average).

� In order to maintain the stochastic interpretation, columns are rescaled after pruning.

Together these form the the key to an e�cient implementation of the MCL algorithm. Three di�erent pruning

schemes have been considered and implemented. Let M be a sparse column stochastic matrix. Suppose a

column c of the square M2 has been computed with full precision. The three schemes are respectively:

� Exact pruning | the k largest entries of the column are computed. Ties are broken arbitrarily or are

allowed to increase the bound k. This computation becomes increasingly expensive for larger values of k

and increasing deviation between k and the number of nonzero entries of c.

� Threshold pruning | a threshold value f is computed in terms of the mass centre ctr(c) of order two

of c. All values greater than f are kept, the rest is discarded. A typical candidate for such a threshold

value is of the form a ctr(c)(1 � b[maxi(ci) � ctr(c)]), where 0 < a �1 and b is chosen in the range 1 : : : 8;
another one is a[ctr(c)]b, where 0 < a � 1 �b. The motivation for the �rst depends on the fact that

if maxi(ci) is close to ctr(c) then the (large) nonzero entries of the vector c are rather homogeneously

distributed.

� A combination of the above, where threshold pruning is applied �rst in order to lower the cost of exact

pruning. It is either allowed or disallowed for threshold pruning to leave a number of nonzero entries

smaller than k.

If pruning with pruning constant k is incorporated into the algorithm, the complexity is reduced to O(Nk2)

for a single matrix multiplication. This follows from the fact that any column of the product of two k-pruned

matrices has at most k2 nonzero entries. It is assumed that pruning can be done in O(t) time for a vector

with t nonzero entries. In the experiments in [10] this was ensured by using threshold pruning.

Factors affecting the viability of pruning. It is intuitively acceptable that pruning eats away the

least probable walks, if they have large downward deviation from the column centre, and if the total number
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of pruned entries accounts for a relatively small percentage of the column mass, say somewhere in between 5

and 10 percent. If the distribution of a column c is rather homogeneous, with many entries approximately

equal to the centre ctr(c), and if pruning removes a sizeable fraction of the distribution, this will clearly disturb

the MCL algorithm, rather than perturb. The examples in [10] indicate that the latter will be the case if the

diameter of the natural clusters is large and if the subgraphs induced by the clusters are very homogeneous.

Convergence in the presence of pruning. The convergence properties in the setting sketched above

do not change noticeably, and the resulting clusterings are still very satisfactory. Clusterings of graphs with

up to a thousand nodes resulting from both normal matrix computation and prune mode with otherwise

identical parametrizations were compared. The respective clusterings sometimes di�ered slightly (e.g. a node

moving from one cluster to another) and were often identical. The e�ect of varying the pruning parameter is

investigated quantitatively in [10].

An example of pruning is given in Figure 14. The equilibrium state and several matrix iterands are given for

the MCL process with input graph G3, and pruning constant k = 5. The clustering resulting from this pruned

process is the same as the clustering resulting from the unperturbed process.

MCL implementation

The MCL algorithm was implemented at the CWI by the author. It is part of a library written in C with

extensive support for matrix operations, mapping of matrices onto clusterings, comparison of clusterings,

generation of statistics (e.g. for di�erent pruning schemes), and facilities for random generation of partitions

and cluster test matrices. Both Jan van der Steen and Annius Groenink have contributed signi�cantly to the

matrix section of the library in terms of rigor and elegance. The library will be made available under a public

license.

At the heart of the library lies the data structure implementing a matrix. A matrix is represented as an

ordered array of vectors, and a vector is represented as an array of index/value pairs. Each index is unique

in the array, and the index/value pairs are ordered on increasing index. This generic construction is used to

represent a nonnegative vector by its positive entries only. The vector (4:2; 0:0; 2:7; 3:1; 0:0; 0:0; 5:6)T is thus

represented as the array (indexing starts at zero)

[0j4:2][2j2:7][3j3:1][6j5:6]

There is a choice of representing a matrix via its rows or its columns. A column stochastic matrix M is

naturally represented via its columns. Assuming that pruning is applied with pruning constant k, computing

the square M2 requires for each column of M2 the computation of a weighted sum of at most k columns,

resulting in a vector which may have k2 entries. This vector is pruned down to at most k entries via either

of the schemes given above. For large k, say larger than 70, it is pertinent that threshold pruning is applied

in order to ease the burden of exact pruning. This may lead to a pruned vector with less than k entries.

It is easy to envision a looping process in which several thresholds are tried in order to obtain an optimum

threshold value resulting in a vector with a number of entries close or even to k, or even a version of threshold

pruning where the pruning regime depends on the weight distribution of the probability vector, so that nodes

with a large homogeneous distribution are allowed to have more than k nodes. This was not tried for, but the

experiments in [10] indicate that �ne-tuning the pruning regime may result in considerably better performance.

References

1. ACM/IEEE, editor. Proceedings of the 26th ACM/IEEE Design Automation Conference. IEEE, June

1993.

2. ACM/SIAM, editor. Proceedings of the fourth annual ACM{SIAM symposium on discrete algorithms.

ACM, January 1993.

3. Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning: a survey. Integration:

the VLSI Journal, 19(1{2):1{81, 1995.



References 38

0
BBBBBBBBBBBBBBBBB@

0:405 0:094 �� �� 0:098 0:295 0:223 �� �� 0:323 �� ��
�� 0:376 0:228 �� 0:192 0:019 �� �� �� �� �� ��
�� 0:228 0:376 �� 0:192 �� �� �� �� �� �� ��
�� �� 0:094 0:365 �� �� �� 0:219 0:146 �� 0:146 0:083
0:061 0:228 0:228 �� 0:518 �� 0:092 �� �� 0:019 �� ��
0:151 �� �� �� �� 0:295 0:092 �� �� 0:186 �� ��
0:120 0:074 �� �� �� 0:097 0:369 �� �� 0:148 �� ��
�� �� 0:074 0:212 �� �� �� 0:342 0:146 �� 0:146 0:083
�� �� �� 0:212 �� �� �� 0:219 0:293 �� 0:293 0:278
0:262 �� �� �� �� 0:295 0:223 �� �� 0:323 �� ��
�� �� �� 0:212 �� �� �� 0:219 0:293 �� 0:293 0:278
�� �� �� �� �� �� �� �� 0:123 �� 0:123 0:278

1
CCCCCCCCCCCCCCCCCA

�2M2 for MCL process with pruning.
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�2(�2(M2) � �2(M2)), for MCL process with pruning.
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(�2 � Squaring) iterated three times on M for MCL process with pruning
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Figure 14: Iteration of (�2 � Squaring) with initial iterand M de�ned in Figure 8. Pruning with pruning constant k = 5

is applied throughout the process.
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