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Chapter 1

Introduction

Semi-arid ecosystems, ecosystems with an annual precipitation of 250-500 mm, are
typically found at the edge of deserts, marking the landscape between deserts and
dry steppes on the one side and greener ecosystems such as grass savannas, montane
forests and temperate broadleaf forests on the other side. One striking fact observed
in semi-arid ecosystems is the presence of patterned vegetation, that has been dis-
covered by aerial photographs in the 1950s [52, 53] in sub-Saharan Africa. These
patterns have subsequently been reported in many semi-arid ecosystems in Africa,
the Americas and Australia, and are estimated to cover about 30% of the emerged
surface of the earth. The composition of the vegetation varies wildly from one ecosys-
tem to another and can comprise of grass, scrubs, bushes or trees [51, 53]. Also, the
occurence of these patterns is not specific to the type of soil [51].

It is confirmed widely that semi-arid ecosystems which exhibit vegetation patterns
run the risk of a sudden collapse to become deserts or dry steppes when a vital system
parameter crosses a threshold value, in particular, this occurs when either the precipi-
tation rate crosses a threshold value in a downward movement or the grazing pressure
by cattle crosses a threshold value in an upward movement [41, 46]. Ecologists tend
to speak of a catastrophe since this process is irreversible: when, for example, a valley
with striped vegetation patterns has turned into a desert after years of severe drought,
then, after years when rain begins to fall gradually again, it generally does not turn
back into a vegetated ecosystem.

⋆

Early attempts to formulate a model for semi-arid ecosystems are by using cellular
automata [91] or by mean field models [51]. In 1999, C.A. Klausmeier was the first
to model the dynamic interplay between water infiltration and vegetation density by
a reaction-(advection-)diffusion system [46]. His model describes a positive feedback
between water infiltration and vegetation density and captured the irreversibility of
the catastrophe described above. He introduced a 2-component system to describe

1



2 CHAPTER 1. INTRODUCTION

patterns in semi-arid ecosystems, the components representing water infiltration u
and vegetation density v. In unscaled form, the model he introduced reads as follows:

{

ut = k0ux + k1 − k2u − k3k5uv2

vt = dvvxx − k4v + k5uv2 (0.1)

where u(x, t), v(x, t) : R × R+ → R and ki ≥ 0, i = 1, . . . , 5, dv ≥ 0. The change of
water infiltration ut is assumed to be governed by advection caused by the gradient
slope of the area, modeled by k0ux, a constant precipitation rate k1, an evaporation
rate that is linear in the water infiltration −k2u, and the infiltration feedback, mod-
eled by −k3k5uv2. It assumes that the change of vegetation density is controlled by
a diffusive spread of biomass, modeled by a diffusion term dvvxx, a linear natural
death rate −k4v and the infiltration feedback k5uv2, that has a positive effect on the
vegetation. Since the spread of biomass occurs on a much slower time scale than the
advection of surface water, it is natural to assume dv ≪ k0. Though the model is
simplistic in nature, it is able to capture essential features of semi-arid ecosystems,
such as the emergence of patterned vegetation.

We notice that Klausmeier’s original model [46] assumed two-dimensional spatial
variation in x and y of both vegetation density v and water infiltration u. In this
thesis, we focus on the one-dimensional dynamics of Klausmeier’s original model, so
we have simplified the two-dimensional spatial variance by assuming a constant vari-
ation in the direction of the spatial y-variable. We also assume that both u and v
vary on an infinite domain R instead of a bounded domain [0, L] with L ∈ (0,∞).
This assumption is natural, since the scale of the observed patterns is relatively small
compared to the size of the domain (cf. [41, 46, 52, 53, 74], and [8] and the references
therein).

We extend the model as follows. The model assumes the existence of some slope
or gradient that lets the water flow downhill and the growing vegetation migrate up-
hill. However, patterns have been observed in semi-arid ecosystems without a slope
[52, 53, 100]. In order to model the spread of water on a terrain without a specific
preference for the direction in which the water flows, we have added a term that
models porous media flow, and obtain

{

ut = du(uγ)xx + k0ux + k1 − k2u − k3k5uv2;
vt = dvvxx − k4v + k5uv2,

(0.2)

where it is assumed that γ ≥ 1. Since the spread of biomass occurs on a much slower
scale than the (nonlinear) diffusion of water, it is natural to assume 0 < dv ≪ du.
For ecosystems without a slope, we set k0 = 0. In this thesis we choose either γ = 1
or γ = 2. The choice γ = 1 models the random motion of water as diffusion, whereas
the model with γ = 2 models the motion of water as porous media flow.

In order to reduce the number of parameters, we rescale the model. Set

U = k2

k1
u; V = k2k3

k1
v, (0.3)
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and further

T =
k2
1k5

k2
2k3

t; X =
[

du
k3

k5
(k1

k2
)γ−3

]− 1
2

x. (0.4)

We obtain

{

Ut = Uγ
xx + CUx + A(1 − U) − UV 2

Vt = δ2σVxx − BV + UV 2,
(0.5)

with

A = k2
k2
2k3

k2
1k5

; B = k4
k2
2k3

k2
1k5

; C = k0
k2
2k3

k2
1k5

[

du
k3

k5

(

k1

k2

)γ−3
]− 1

2

and

δ2σ =
dv

du
(
k2

k1
)γ−1 (σ > 0).

One has 0 < δ ≪ 1, since 0 < dv ≪ du. Notice that there is a redundancy in
the introduction of δ2σ. In chapter 2 it will become clear why it is convenient to
define the rescaled diffusion coefficient this way. The system parameters A, B, C
and γ are chosen according to the characteristics of the ecosystem under study. In
particular, ecosystems without a slope are modelled by setting C = 0 and ecosystems
on a terrain that has a slope are modelled by setting C 6= 0. We may view C as a
parameter that measures the rate of advection (or the rate of the slope of the terrain),
A as a parameter that controls the precipitation and B as a parameter that describes
the extinction rate of the biomass. A priori, there is no reason to assume that the
parameters A, B and C are O(1) with respect to δ, in fact, the relative magnitudes
of A, B and C will play a crucial role in the analysis of chapter 2 (see also [56]).

We need to make one crucial remark. The expression for A depends on the rainfall
k1 via A ∼ k3

2/k2
1. At first sight, this may seem contradictory, since in the rescaled

model (0.5) we consider A as a parameter that measures the rainfall. In order to
understand this, consider the expression for B: since B is proportional to B ∼ k2

2/k2
1

and it is assumed that B and the other kj , j = 3, 4, 5, are constant, we conclude
k1 ∼ k2 and therefore

A ∼ k3
2

k2
1

∼ k3
1

k2
1

= k1.

Hence, we see that A is proportional to the rainfall k1.
The above rescaling is motivated by the fact that equation (0.5) reduces to the

Gray-Scott model if we set C = 0 and γ = 1 (see [5, 23, 56] and the references
therein). More generally, by either setting γ = 1 or γ ≥ 1 and either C = 0 or C > 0,
the model (0.5) comprises four types of equations. We will refer to the equations in
(0.5) as the Generalized Klausmeier-Gray-Scott model or shortly, GKGS-model. A
schematic picture of the four classes of the GKGS-system is given in Figure 1.1.
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Gray-Scott:

γ = 1, C = 0

Advection:

γ = 1, C > 0
Full GKGS-model:

γ > 0, C > 0

γ > 0, C = 0patterns:

Standing

Travelling

patterns:

Nonlinear diffusion:

Figure 1.1: A schematic picture of the GKGS-model. On the top line, the models without
advection (C = 0) are depicted. These models generate small amplitude symmetric Turing
patterns that are modulated according to a real GLE. On the bottom line, the models with
a nontrivial advection rate C > 0 are depicted. For these models, the appearance of the
travelling periodic patterns is described by a complex GLE. (See section 2.1.4.)

Like the Gray-Scott model, the GKGS-model (0.5) has three spatially homogeneous
background states for A > 4B2:

U0 = 1, V0 = 0, U± =
1

2A

(

A ∓
√

A2 − 4AB2
)

, V± =
1

2B

(

A ±
√

A2 − 4AB2
)

.

(0.6)
The state (U0, V0) = (1, 0) represents the desert (since V0 ≡ 0). At Asn = 4B2, the
equilibria (U+, V+) and (U−, V−) collapse and disappear in a fold, or saddle node
bifurcation. Hence, for A < Asn, the desert (U0, V0) = (1, 0) is the only background
state, while for A > Asn, we have three background states, among which the homo-
geneously vegetated state (U+, V+) and the desert state (U0, V0) are homogeneously
stable and the homogeneously vegetated state (U−, V−) is homogeneously unstable.

⋆

Now that we have introduced the model that is studied in this thesis, and since
it is our final aim to gain insight in the fall and rise of vegetation patterns in semi-
arid ecosystems, we first dedicate a few words to the use and practice of mathematical
modelling in general in §1.1. Then, in §1.2, we describe some important characteristics
of the model. In §1.3 we aim to explain in a simple setting the methods that we have
used in this thesis to study the GKGS-model (0.5) – in fact, each of the subsections
of §1.3 tries to explain in layman’s terms what is going on in chapters 2, 3 and 4. The
concepts in sections 1.2 and 1.3 will sometimes be explained with models other than
the GKGS-model (0.5) as examples, since we thought it easier for the reader to grasp
the basic ideas when they are applied to a simpler setting. Then, finally, we give a
brief outline of the thesis in §1.4.
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1.1 On mathematical modelling

Despite the famous words of Galileo1, one of the most challenging tasks of the applied
sciences2 is the formulation of mathematical models that properly describe the sys-
tem under study. As of now, many complex natural systems such as wind circulation,
the forming of clouds and rivers, oceanic currents, phytoplankton growth and decay,
leaf arrangements on trees, cellular growth, formation and meltdown of polar ice caps,
stripe pattern formation on the skin of African mammals, tides and many, many more
are only partly understood. Mathematical models aiming to describe these natural
phenomena can only do so to a limited extent. For example, none of the models in
use is able to give precise predictions on the future state of the system under study
– most notably among which are models that aim to describe the future state of the
global climate.

This section is written in order to shortly explain the difficulties that come with the
description of natural systems. We will lay bare some of the restrictions of mathemat-
ical modelling. Also, we will try to shed light on how results based on mathematical
models can be useful.

We start with the important remark that there is a difference between models that are
phenomenological and those that are not. Models such as Newton’s laws or Maxwell’s
laws describe closed systems. Therefore, these ‘laws’ are verifiable3, that is: one can
make predictions based on model calculations and measure if a physical model shows
the behaviour that it predicts for the (closed) system. These models usually form
part of a well accepted general theory.

Phenomenological models are models that describe open systems. They usually
do not derive from first principles4 as they are often debatable. These models can in
principle be validated in the sense that they do not contradict accepted theory [65].
However, due to the openness of the systems they describe they can never be fully
verified [65]. In fact, almost all models for complex natural systems that are used
today are phenomenological models (though not always to the same extent5).

At least three causes for the abundance of phenomenological models can be pointed
out [47]. First, our theoretical understanding of many natural processes is limited.
Second, most models suffer from a lack of complete observations. Parameter uncer-
tainty and uncertainty of the initial and boundary conditions are caused by the lack

1“The laws of nature are written in the language of mathematics.”
2We define applied sciences as sciences that make extensive use of mathematical models in order

to understand physical (observable) systems, such as chemistry, physics, biology, ecology, economics,
climatology or (geophysical) fluid dynamics.

3However, Popper [69] disagrees with this and remarks that no law in the natural sciences can
ever be verified. According to [69], the laws of nature are open only to falsification and corroboration.

4Laws that are part of generally accepted physical theory are said to be derivable from first
principles.

5In climate science, for example, there exist simple phenomenological two-component models that
focus on very specific processes that are part of the climate and that are not able to precisely predict
the climate, while on the other hand, there are fully coupled atmosphere-ocean general circulation
models (AOGCMs) that do make predictions and projections that are relatively precise.
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of complete observations. Third, simplifications of some model assumptions have to
be made due to computational constraints or accessibility to mathematical analysis.

As an example one may consider the central theme of this thesis: semi-arid ecosys-
tems. As of now, we have no complete theoretical understanding of the infiltration
feedback between water infiltration and plant density. The equations of the GKGS-
model (0.5) model the infiltration feedback by ±uv2, but theoretical ecologists agree
that this is only a very coarse way of modelling [41]. Generally speaking, the water
uptake is parametrized by environmental conditions such as the soil type, physical
characteristics of the root system, temperature, precipitation rate, competition among
different trees, and surely others. Also, the relatively simple nature of the GKGS-
model entails that its parametrization can only be approximate: for example, it is
not clear how the parameter dv can be drawn from field data.

These complications generally cannot be undone by just enlarging or simplifying
the model. For example, throwing more data at the problem naturally asks for more
complicated models. However, more complicated models generally suffer from greater
computational difficulties and are generally harder to analyze. Also, assigning mean-
ing to empirical tests of the model becomes increasingly difficult with an ever larger
number of parameters.

Lack of access to the phenomena of interest prevents us to verify some outcomes
of the mathematical model that we propose. However, models can certainly be use-
ful [65]. First, models may corroborate a hypothesis by offering evidence to results
that have already been partly established otherwise. Second, models may elucidate
shortcomings of other models. And third, models can be used for sensitivity analysis:
“what if” scenarios such as worst and best case scenarios can be used to shed light
on what could happen with the phenomena of interest.6

As an example of the first, we turn our attention to the saddle-node bifurcation of the
homogeneously vegetated states (U−, V−) and (U+, V+) of the GKGS-system (0.5).
If A decreases through Asn and the stable state (U+, V+) disappears, then increasing
A again does not bring the system back into a vegetated state. It is precisely this
hysteretical behaviour of the model (0.5) that corroborates the irreversible character
of the catastrophe that has been observed in nature [41, 74].

As another example of the first, we consider the GKGS-model again. One may
formulate the hypothesis that it is not necessary to model the flow of water with
porous media flow, as we have done in the GKGS-model (0.5), since it would not give
more insight than the model for γ = 1. As will be made more precise in chapter 2
and later in chapter 3, the dynamics of the GKGS-system (0.5) with diffusion (γ = 1)
is qualitatively identical to the dynamics of the GKGS-system (0.5) for porous media
flow (γ = 2). This corroborates the hypothesis that the spread of water in a two-
component model comprising water infiltration and vegetation density can in fact
be modelled with diffusion, instead of (the more complicated) porous media flow.

6One usually refers to these scenarios as projections, in contrast to predictions. For example, the
reports of the IPCC (see [42]) contain projections of the average global temperature based on, for
example, assumptions about future CO2 levels.



1.2. SOME IMPORTANT CHARACTERISTICS OF THE MODEL 7

U U VV

+

-

-+
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+

+ -

Figure 1.2: Graphical display of the feedbacks within the activator-inhibitor mechanism
(left) and the positive feedback mechanism (right).

This way we have corroborated our initial hypothesis that modeling water flow in the
GKGS-model (0.5) can be modelled well by diffusion.

1.2 Some important characteristics of the model

1.2.1 Positive feedback

The GKGS-model (0.5) exhibits the important feature of a positive feedback be-
tween the water infiltration and the plant density [31, 41, 46]. From a modelling
perspective, this positive feedback mechanism makes sense: water infiltration in veg-
etated ground is much faster than in unvegetated ground, so the water infiltration is
enhanced by both water infiltration and vegetation density. Mathematically, positive
feedback and activator-inhibitor structures of PDE systems are captured by the sign
structure of the linearization P about a relevant homogeneous background state [31]:

Activator-inhibitor mechanism: P =
(

+ −

+ −

)

.

Positive feedback mechanism: P =
(

− −

+ +

)

.
(2.1)

See Figure 1.2 for a graphical display of the feedback mechanisms that define these
two different types of systems. Assuming we are not far from the background state
(U+, V+), we are sure that the homogeneous dynamics of the GKGS-system (0.5) is
mainly given by the derivative at (U+, V+),

DF |U+,V+
= P =

(

−A − V 2
+ −2B

V 2
+ B

)

. (2.2)

From (2.2) we see that the GKGS-system has a positive feedback, since it has the
structure of a positive feedback mechanism as displayed in (2.1)2.

1.2.2 Turing instability

A.M. Turing7, mostly known for cracking the German code during the Second
World War and remembered as one of the founding fathers of today’s computers,

7The reader may know that A.M. Turing tragically committed suicide, after being released from
a prison sentence brought upon him by the British autorities because of an alleged violation of the
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has also made an important contribution to the science of pattern formation. In an
attempt to clarify the occurence of Fibonacci sequences in plant morphology (known
as phyllotaxis – see for a modern treatment [26, 27, 28, 2, 50]), he introduced a
concept that is now known as a Turing instability. Loosely speaking, a Turing in-
stability happens when a homogeneous background state that is stable with respect
to homogeneous perturbations loses its stability when perturbed by spatially periodic
perturbations. Turing’s vital discovery was, in modern terms, that this can happen in
a two-component PDE for which both components diffuse at different rates. Though
the basic idea can now be viewed as rather simple, one should understand that this
discovery came as rather a surprise: it was known that solutions to Cauchy problems
for the heat equation flatten out in the course of time, and that they do so precisely
due to the presence of diffusion in the heat equation. Turing’s discovery meant that
adding diffusion to a two-component model can destabilize homogeneous solutions,
thereby allowing for pattern growth – which is in sharp contrast to the effect that
initial conditions in one-component models such as the heat equation flatten out in
the course of time.

Later, in chapter 2 we will rigorously deduce that the GKGS-system (0.5) un-
dergoes a Turing instability (in fact, it undergoes a Turing-Hopf instability; which
basically means that the emerging patterns are travelling). Here, we seek to explain
this concept in the context of a linear reaction-diffusion model

ut

vt

=
=

D1uxx + (µ − 1)u + v
D2vxx − µu − v

(2.3)

where x ∈ R, t ∈ R+, u, v : R × R+ → R and µ ≥ 0, D1,D2 > 0. System (2.3)
is of purely theoretical interest, only meant to introduce the concept of the Turing
bifurcation and as far as we know, it does not represent a real model for any natural
process. It is assumed that the equilibrium (0, 0) is homogeneously stable – that is, the
equilibrium (0, 0) is stable with respect to perturbations that have no spatial structure.
A necessary and sufficient condition for the equilibrium (0, 0) to be homogeneously
stable is

det

(

µ − 1 1
−µ −1

)

= 1 > 0 and tr

(

µ − 1 1
−µ −1

)

= µ − 2 < 0, (2.4)

which gives the condition

µ < 2. (2.5)

If µ = 2, the equilibrium undergoes a Hopf bifurcation.

Criminal Law Amendment Act 1885 that, in fact, prohibited homosexual behaviour of any kind, be
it private or public. We refer the reader to [40] for an intriguing account on both his life and his
scientific work (also for the nonmathematician).
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By computing the Fourier transform of (2.3)8 with respect to x we derive the dis-
persion relation. The dispersion relation associated to (2.3) is determined by the
eigenvalues of the matrices

M(k) =

(

µ − 1 − D1k
2 1

−µ −1 − D2k
2

)

. (2.6)

The determinant of M(k) is easily computed,

detM(k) = D1D2k
4 + (D1 + D2)k

2 + 1 − D2µk2.

Now, the background state (0, 0) loses stability if one of the eigenvalues of M(k)
crosses the imaginary axis, which happens if detM(k) = 0. Assume we increase µ
from zero upwards. The determinant of M(k) equals zero at

µ = D1k
2 +

D1 + D2

D2
+

1

D2k2
. (2.7)

Remembering that µ increases from zero, the first value of µ for which there exists a k
such that µ can be written as in (2.7) is the minimum of µ = µ(k). By differentiation
of (2.7), we see that the minimum of µ(k) is at

k2
∗ =

1√
D1D2

and µ∗ =

(

1 +

√

D1

D2

)2

. (2.8)

Therefore, the instability sets in at µ = µ∗ and the unstable mode has wavenumber
k = k∗.

For completeness, we remark that it is immediately clear from (2.8) that D1 6= D2,
since if D1 = D2 then condition (2.5) is violated. This is always true: a reaction dif-
fusion system can undergo a Turing instability only if the diffusion rates are different.

Remark System (2.3) undergoes a Hopf instability if µ = 2. Therefore, we sub-
stitute µ∗ into condition (2.5) and obtain an inequality which is stronger than the
above requisite that D1 6= D2:

D1 < (3 − 2
√

2)D2.

If this inequality is not satisfied, then the equilibrium (0, 0) undergoes a Hopf bifurca-
tion first and the Turing instability takes place when the equilibrium is already Hopf
unstable.

1.3 Methods

1.3.1 Nonlinearities: the Ginzburg-Landau approach

If we were studying a solution to a linear model, then every instability and in
particular the Turing instability, would yield perturbations that grow indefinitely and

8 For a study of the stability of patterns, the reader is referred to [39],[76] and [96].
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exponentially in time and the solution would become unbounded (in every nontrivial
norm of the Banach space of solutions that we consider). However, in nature one
never witnesses such behaviour. This is precisely because such instabilities occur in
systems that are inherently nonlinear.

Intuitively, one can understand this as follows. Usually a perturbation is initially
very small and therefore the dynamics are mainly determined by the linear terms of
the model, which tell the solution to grow (exponentially) in time. However, after
some time the perturbed solution becomes larger and the nonlinear terms come into
play. These nonlinear terms usually prevent ongoing exponential growth of the initial
perturbation in some way. Exactly how this happens is a field that is under thorough
study and heavily depends on the premises of the problem under study. In fact, it
is safe to say that most of the modern theory of dynamical systems and the field of
PDEs deals with the study of nonlinearities.9

This section aims to describe at least one method to deal with a PDE for which
the nonlinear terms are taken into account. This method is a reduction method: the
basic idea is to reduce the analysis of the full PDE to the study of a much simpler
and well studied equation that is known as the Ginzburg-Landau equation. In order
for this method to be applicable, three assumptions have to be satisfied. The first
is that the solution u(x, y, t) is defined for a domain that is cylindrically shaped, i.e.
y ∈ Ω with Ω bounded (in our case, Ω = ∅) and x ∈ R, t ∈ [0,∞).

The second assumption is that the spectrum of the differential operator associated
to the linearization about the perturbed solution satisfies the hypotheses as formu-
lated in §2.1 in [55] or in §2.2 in [11]. As this serves as an introduction to the subject
and the exact hypotheses are quite technical, we refrain from repeating the spectral
assumption here. However, as a mental image, one may have the following facts in
mind. First, it is important to keep in mind that in the neighbourhood of the most
unstable mode, the spectrum should be parabolically shaped, as is suggested in Figure
1.3. Second, one should be aware that the spectral assumptions entail that the un-
stable mode associated to the perturbed solution is of the form E = eik∗x associated
to an eigenvalue iω∗ and that either k∗ 6= 0 or ω∗ 6= 0 or both. In fact, in this thesis,
it will always be so that k∗ 6= 0, so that the unstable mode has nontrivial spatial
structure.

The third important condition is the assumption that the critical parameter µ is
only slightly unstable: it is assumed that µ = µ∗ + ε2 with 0 < ε ≪ 1. This way, we
are able to ‘balance’ the linear terms with the nonlinear terms, as we will see shortly.
Notice that this condition severely restricts the applicability of the Ginzburg-Landau
approach: if |µ− µ∗| is of order larger than ε2, the method can no longer be applied.
Still, it enables us to describe the emerging periodic patterns right after the bifur-
cation has taken place. Later in this thesis, in chapter 3, we will develop numerical
techniques that enable us to describe patterns far from equilibrium, i.e. patterns for
which |µ − µ∗| > ε2. We will come back to this later in the introduction (see section
1.3.2).

9To Stanislaw Ulam are attributed the words “Using a term like nonlinear science is like referring
to the bulk of zoology as the study of non-elephant animals.”. Cf. [38].
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Reλ

k

Figure 1.3: Sketch of a critical branch of the essential spectrum locally near the unstable
modes. Near the unstable modes, the spectrum is parabolically shaped.

As an example, we consider the Swift-Hohenberg equation

ut + (1 + ∂xx)2u = µu − u3. (3.1)

The Swift-Hohenberg (3.1) equation serves in many ways as the most natural example
to show the Ginzburg-Landau formalism. The dispersion relation associated to the
spectrum of the background state u0 = 0 of (3.1) reads

λ + (1 − k2)2 = µ. (3.2)

From (3.2) we derive that λ(k) < 0 for all k ∈ R if and only if µ < µ∗ := 0. Hence,
at µ = µ∗ we have

λ = 0 and k∗ = ±1. (3.3)

The interested reader may verify that the spectrum of the linearisation about the
background state u = 0 indeed satisfies the spectral assumptions from [55] or [11].

The basic idea then goes as follows. ( Here, we closely follow the unpublished notes
[20].) Assume that µ = rε2. Then from the dispersion relation (3.2) it is clear that
there exist two intervals centered around k∗ = ±1 for which λ = λ(k, rε2) > 0: I− ∪
I+ = (−1+εK−(ε),−1+εK+(ε))∪(1+εK−(ε), 1+εK+(ε)), with K± = ± 1

2

√
r+O(ε).

Therefore, an unstable and exponentially growing linear mode eikx+[rε2−(1−k2)2]t with
k ∈ I− ∪ I+ can be written as

ei(1+εK)x+[rε2−(1−(1+εK)2)2]t = eiK(εx)+(r−4K2+O(ε))(ε2t)eix = Alin(εx, ε2t)eix (3.4)

Thus, the specific spectral structure associated to the Swift-Hohenberg equation more
generally described by the spectral assumptions in [11, 55] enforce that each linearly
unstable mode can be written as a slow modulation (in time and space) of the most
unstable mode eix.
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The above modulation Alin varies on a slow temporal and slow spatial scale given
by

ξ = εx, τ = ε2t. (3.5)

In order to derive a Ginzburg-Landau equation, we plug in a linear wave of the form

εηAlin(ξ, τ)eix (3.6)

into the full (nonlinear) equation (3.1). Using the shorthand E = eix, this gives

∂tu = εη+2Alin,τE + c.c. + h.o.t.

and
u3 = ε3η[A3

linE3 + 3Alin|Alin|2E] + c.c. + h.o.t..

Let us now come back to the discussion at the begin of this section. In order to balance
the exponential growth induced by the linear terms, the nonlinear terms have to be
of the same order of magnitude. This is only so if 3η = η +2, i.e. if η = 1. Therefore,
we assume a that there exists a modulation A = A(τ, ξ) such that a solution of the
form

u ∼ u0 + εA(ξ, τ)E + c.c. + h.o.t. (3.7)

can be plugged into the equation (3.1). This assumption is usually called the ’Ansatz’.
(In the case of the Swift-Hohenberg equation (3.1), we have u0 = 0.)

Plugging Ansatz (3.7) into the PDE and working out the expansion results in an
equation of the form10

Aτ = aAξξ + rA + b|A|2A
+ ε{cAξξξ + rdAξ + c|A|2Aξ + fA2Āξ}
+ ε2{. . . + g|A|4A} + O(ε3)

with r from |µ− µ∗| = rε2 and a, b, c, d, e, f, g ∈ R. At highest order, this equation is
known as the Ginzburg-Landau equation (GLe):

Aτ = aAξξ + rA + b|A|2A (3.8)

As an example, the GLe for the Swift-Hohenberg equation near criticality reads

Aτ = 4Aξξ + rA− 3|A|2A (3.9)

The GLe (3.9) has a very rich family of solutions [12, 94], though many of these solu-
tions are not stable. For example, the only stable stationary solutions of the GLe for
the Swift-Hohenberg equation (3.9) are the simple ‘linear’ spatially periodic patterns
and a simple front solution – all quasi-periodic and homoclinic solutions are unstable
[15, 34].

10We do not prove this here – the reader interested in the details of the derivation procedure should
consult [20] for an elaborate intuitive account and [55] or [11] for the general abstract approach.
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The GLe and other modulation equations had already been derived as early as the 60s
[59, 82, 90], but it lasted untill the early 90s before the first proofs of its persistency
and validity appeared [93, 7]. Though we have tried in this section to explain some of
the intuition behind the Ginzburg-Landau approach, it is not at all immediately clear
why the Ansatz (3.7) gives a good approximation of the solutions of the full PDE
(3.1) (that is, we must prove the validity of the GLe). Also, it is not clear whether
matters of stability, and more generally the dynamics of (3.1) is fully described by
the GLe (that is, we must prove the persistence of the GLe).

For the general setting, assume we analyze a PDE of the from

ut = L(µ, u) + N (µ, u) (3.10)

with u ∈ R
n, x ∈ R, t ∈ [0,∞) and L a linear operator, N a nonlinear operator. As-

sume at some µ = µ∗ a bifurcation takes place that satisfies the spectral assumptions
from [55]. Then a (complex) GLe can be derived of the form

Aτ = aAξξ + rA + b|A|2A (3.11)

a, b ∈ C and τ and ξ as in (3.5).
In the early nineties the first proofs of versions of the following theorem were

delivered11:

Theorem 3.1 (Validity) Assume A0(ξ) is an arbitrary initial condition for the GLe
(3.11) that is, via Ansatz (3.7), associated to an initial condition uA0

(ξ) for the full
PDE (3.10). We denote by u(x, t) the solution to the PDE (3.10) that has uA0

(ξ)
as initial condition. Also, we denote by A(ξ, τ) the solution to the GLe (3.11) that
takes A0(ξ) as initial condition and denote by uA(x, t) the Ansatz (3.7) associated to
A(ξ, τ). Then there exist C1, C2 such that on t < C1

ε2 we have

||u(x, t) − uA0
(x, t)||X ≤ C2ε

2.

(We do not define the Banach space X here, but see [93, 7].)

Besides this, partial results of the following theorem have been proved (see ([55]):

Theorem 3.2 (Persistence) Assume that A∗ is a spectrally stable solution to the
GLe (3.11). Then it holds that:

1. (Persistence) There is a solution u∗(A∗) of the orginal PDE (3.10) that is
approximated by A∗ via the Ansatz.

2. (Persistence stability) The solution from 1 is spectrally stable: if A∗ is a
spectrally stable solution of the GLe (3.11), then u∗(A∗) is a spectrally stable
solution of the PDE (3.10).

11We intentionally leave out some technicalities for the sake of clarity.
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Figure 1.4: (a) A supercritical Turing bifurcation. The realm of periodic patterns is bor-
dered by the solid curve, the Eckhaus band of stable periodic patterns is indicated by the
dashed curve. The Turing bifurcation is indicated by the black dot. (b) A possible configu-
ration in (µ, κ)-space when the bifurcation is subcritical. Again, the solid line indicates the
border of the existing patterns, the dashed curve indicates the border of the stable periodic
patterns. In this example, the region of stable patterns detaches from the Turing bifurcation.

3. (Nonlinear stability) If the solution u∗(A∗) of the PDE (3.10) induced by A∗
is spectrally stable, then it is also nonlinearly stable.

Having these theorems at hand, we can reduce the analysis of the original PDE (3.10)
to the study of the GLe (3.11). For example, in the case of a real GLe there exists an
Eckhaus band of stable periodic patterns, thus, a similar band of stable patterns must
exist in the full system. See Figure 1.4(a). Also, if the Ginzburg-Landau equation is
subcritical the corresponding bifurcation in the original PDE (3.10) is subcritical too.
See Figure 1.4(b).

1.3.2 Spatially periodic patterns for |µ − µ∗| ≫ ε2

If |µ−µ∗| ≫ ε2, the Ginzburg-Landau approach of section 1.3.1 breaks down. As
of now, no concise and general theory has been built to tackle the far-from-equilibrium
dynamics of general PDEs or general RDEs [61]. Even if we restrict ourselves to the
description of spatially periodic patterns, such a theory does not exist. For example,
one wants to know how the Eckhaus region of stable periodic patterns introduced in
§1.3.1 extends to the region that is far-from-equilibrium, i.e. the region where the
assumption that |µ − µ∗| = O(ε2) is violated. More specifically, one wants to know
which destabilization mechanisms destabilize stable periodic patterns in regions that
are far-from-equilibrium. A full (graphical) description of the stable spatially periodic
patterns (parametrized by their nonlinear wavenumber κ) for each value of µ and the
instabilities that destabilize these patterns is called a Busse balloon and a significant
part (in particular, chapter 3) of this thesis is devoted to the construction of Busse
balloons of the GKGS-system (0.5). See Figure 1.5.

Busse balloons are named after the physicist F. Busse who introduced the concept in
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the seventies [4]. As far as we know, only partial representations of Busse balloons
have been published before [6, 30, 56]. This thesis (see chapter 3) contains a series of
complete Busse balloons for the GKGS-system (0.5).

A Busse balloon gives a complete picture of all the instabilities that spatially peri-
odic patterns can undergo. Therefore, it gives a complete overview of the instabilities
that trigger the rise and fall of periodic vegetation patterns in semi-arid ecosystems.
However, it is not immediately clear what happens to a stable periodic pattern if it
approaches the boundary of the Busse balloon. Forcing the wavenumber to be fixed,
this will ultimately lead to a destabilization of the periodic pattern, though generally,
without forcing, we expect that it will transform into a periodic pattern with a differ-
ent (smaller) wavenumber. This way, transforming gradually into periodic patterns
with ever smaller wavenumbers, we expect it to move into the singular region, where
the patterns are strongly localized and desertification ultimately happens. See Figure
1.5. In order to gain insight into this process, one needs to supply the Busse balloons
with PDE simulations that describe the PDE dynamics of periodic patterns near the
boundary. The Busse balloons that we have constructed and that are presented in
chapter 3 give full insight into the instabilities that occur to the stable periodic pat-
terns; therefore, they form a fundamental first step in the analysis of the dynamics
along the curve of (sideband) instabilities that forms the boundary of the Busse bal-
loon.

The methods we have used are based on relatively small extension(s) of the methods
introduced in [70]. They will be elaborately described in chapter 3 and can also be
found in [70], so due to the technical nature of the methods, we refrain from doing
this here.

1.3.3 Hopf dances

In chapter 4, we describe in detail a generic destabilization mechanism that we have
found numerically for the Gray-Scott system (i.e. the GKGS-system for γ = 1 and
C = 0). Also, we analytically describe the destabilization mechanism for the gen-
eralized Gierer-Meinhardt system [37, 22]. The Hopf dance appears for a class of
two-component, singularly perturbed reaction-diffusion equations that we describe
in chapter 4. Here, it suffices to think about the Gray-Scott system – both the
Gray-Scott system and the Gierer-Meinhardt system belong to this class of reaction-
diffusion systems, though we stress that the GKGS-model for C 6= 0 does not: an
essential ingredient is that the system possesses the reversibility symmetry x → −x.
In this section, we briefly explain the basic idea that underlies the Hopf dance.

Assume the Gray-Scott system (or any other system of the class described in chapter
4, for that matter) is solved by some spatially periodic solution (Uper(x), Vper(x))
with wavelength 2L,
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Hopf

sideband

TH

Figure 1.5: A Busse balloon for the GKGS-model (0.5) with B = C = 0.2 and γ = 1.
The boundary exists of a branch of sideband instabilities that is crossed by a curve of Hopf
bifurcations on the left and a curve of Hopf bifurcations on the right.

0 = Uper,xx + (1 − A)Uper − UperV
2
per,xx

0 = δ2Vper,xx − BVper,xx + UperV
2
per,xx

We are interested in the (spectral) stability of this solution, so we perturb it by

(U(x, t), V (x, t)) = (Uper(x) + u(x)eλt, Vper(x) + v(x)eλt)

To first order, this leads to the equation

λu = uxx − Au − V 2
per,xx · u − 2UperVper · v

λv = δ2vxx − Bv + V 2
per,xx · u + 2UperVper · v

This linearization about the periodic solution (Uper(x), Vper(x)) defines a linear first
order (ODE) problem by

φ(x) = (u(x), p(x) = ux(x), v(x), q(x) = vx(x)) : R → C
4,

and a 2L-periodic 4 × 4 matrix A(x),

φx = A(x;λ, 2L)φ. (3.12)
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Figure 1.6: The loops – continuous images of S
1 – collapse to line segments due to the

reversible symmetry. The endpoints are γ-eigenvalues associated to γ = ±1.

The reversibility symmetry entails that the if φ(x) is a solution, then Rφ(x) := φ(−x)
is also a solution. It follows from Floquet Theory (see [95]) that solutions to (3.12)
are of the form

φ(x) = ψ(x)ecx, c ∈ C with ψ(x) 2L-periodic in x.

Now, since we only allow for bounded perturbations φ(x), it follows that c ∈ iR.
Hence, for γ = e2Lc,

φ(x + 2L) = γφ(x), γ ∈ S
1

We can now define the notion of γ-eigenvalue.12

Definition 1.3.1 [35] λ ∈ C is a γ-eigenvalue if the linear system (3.12) has a
solution φ(x;λ) such that

φ(x + 2L;λ) = γφ(x;λ) for a γ ∈ S
1.

It turns out that the spectrum associated to the stability problem (3.12) consists en-
tirely of γ-eigenvalues [34].

It follows from the above that the spectrum σ(Uper, Vper) consists of (up to countably
many) ’loops’ λ(S1), i.e. continuous images of S

1 (some of these ’loops’ could go to
infinity and need not be closed). However, the reversibility of the system causes these
loops to collapse to curves with endpoints.

Lemma 1.3.2 If λ is a γ-eigenvalue, then λ is also a γ̄-eigenvalue.

12Notice that there is the risk of confusion with the parameter γ that describes the nonlinear
diffusion of (0.5). However, the notion of γ-eigenvalue has become quite standard and so we will
abide to this terminology.
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Figure 1.7: Left: The ’snaking’ Hopf curves in the Busse balloon. There are no instabilities
corresponding to γ-eigenvalues for γ 6= ±1 and all codimension 2 points exist as instabilities.
Right: A stable spectral branch just before it crosses the imaginary axis, depicted twice after
a half turn. The spectral branch crosses the imaginary axis only for γ-eigenvalues λ with
γ = ±1.

Proof. If φ(x) is a solution of the linear problem, then by the reversibility, φ̂(x) :=
Rφ(−x) is also a solution:

φ̂(x) = Rφ(−x) = (u(−x),−p(−x), v(−x),−q(−x)).

Let λ be a γ-eigenvalue, i.e. there is a φ(x;λ) s.t.

φ(x + 2L;λ) = γφ(x;λ).

Then

φ̂(x + 2L;λ) = Rφ(−x − 2L;λ) =
1

γ
Rφ(−x;λ) = γ̄φ(x;λ).

¤

Hence ‘generic loops’ become curves with endpoints. See Figure 1.6.

Using the Evans function, we are also able to derive that near the homoclinic ‘end
point’ of the Busse balloon the curve is actually, to first order, a line segment that
shrinks and rotates as the wavenumber of the periodic pattern decreases towards 0.
Moreover, if it is (almost) vertical, it is slightly bent towards the imaginary axis (see
the right side of Figure 1.7). (We do not delve into the details here; an exposition
on this can be found in chapter 4.) Therefore, either the +1 or the −1 ‘endpoint’ of
the critical spectral branch will be the first to cross the imaginary axis and since the
rotation speed increases with a factor 1/k (here k is the linear wavenumber), there
is an accumulating succession of countably many codimension 2 points at which the
+1 and −1 endpoints simultanuously move through the imaginary axis. In Figure 1.8
the typical ‘in-phase’ respectively ‘out-of-phase’ character of the −1, resp. +1 Hopf
bifurcations are sketched.
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1.4 Outline

This thesis is the start of the study of the generalized Klausmeier-Gray-Scott system
for vegetation patterns. Our primary focus is on the rise and fall of spatially periodic
patterns.

In chapter 2, we consider the rise of patterns. As explained in section 1.3.1 of
this introduction, the emerging patterns can be consistently described by studying
Ginzburg-Landau equations. This chapter appeared as the first part of the arti-
cle Rise and fall of periodic patterns for a Generalized Klausmeier-Gray-Scott model
that has been submitted to Journal of Nonlinear Science for publication. The main
mathematical approach we use here is the Ginzburg-Landau equation in its role as
modulation equation.

In chapter 3, we present a series of Busse balloons for different ecologically rele-
vant parameter values. This chapter forms the second part of the paper Rise and
fall of periodic patterns for a Generalized Klausmeier-Gray-Scott model. The Busse
balloons have been constructed by extensive use of the methods developed in [70].

In chapter 4, we study the generic Hopf dance mechanism that we have found for the
Gray-Scott system which is, in fact, generic for a class of reversible two-component,
singularly perturbed reactions-diffusion equations and has also been recovered for the
GKGS-model with nonlinear diffusion. This chapter will appear as Hopf dances near
the tips of Busse balloons in the journal Discrete and Continuous Dynamical Systems
S. The main mathematical approach used in this chapter is the Evans function.

We must point out that this thesis mainly focuses on a description of the existence and
stability of periodic patterns generated by (0.5). From a practical point of view, the-
oretical ecologists are naturally interested in the sudden collapse of semi-arid ecosys-
tems to the desert state. Therefore, future studies of the GKGS-system should at
least in part focus on the dynamics of periodic patterns near the boundary of the
Busse balloon and especially the singular region where A and κ are small (the region
for small A and small κ), as this is basically where desertification takes place.

Also, many other interesting solutions such as N -pulses and N -fronts, as well as
more complicated patterns generated by (0.5), are not dealt with in this thesis.

An interesting question is raised when we ask what happens if A decreases and
a periodic pattern with fixed wavenumber κ approaches the boundary of the Busse
balloon. PDE simulations of the dynamics near the boundary will be needed here.
More on this and other possible future work will be addressed in chapter 5.
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Figure 1.8: Above: A sketch of the in-phase dynamics of a periodic pattern that has become
unstable due to a perturbation associated to γ = 1. Below: The out-of-phase dynamics
caused by a perturbation associated to γ = −1.



Chapter 2

Ginzburg-Landau equations
for the GKGS-system

This chapter is a first step in the analysis of GKGS model for vegetation patterns.
In the first part (§2.1) of this chaper, we describe analytically the emergence of spa-
tially periodic vegetation patterns in a Turing-Hopf bifurcation of the stationary state
(U+, V+) by deriving a complex Ginzburg-Landau Equation (GLE) for each of the four
classes in Figure 1.1. The derivation of the GLE as modulation equation for a Turing
bifurcation in reaction-diffusion equations is a well-known, but certainly nontrivial
procedure (see for instance [56] for the Turing bifurcation in the Gray-Scott model).
Here we show that this procedure can also be applied to reaction-diffusion-advection
equations with nonlinear diffusion (of porous media type) – to our knowledge a similar
analysis does not yet exist in the literature (see §2.1.4). We derive that the Turing-
Hopf bifurcation is supercritical for ecologically relevant parameter combinations in
each of the four classes, regardless the values we choose for B and C. Moreover, we
have evaluated the associated (and analytically determined) Benjamin-Feir-Newell
criterion ([81] & §2.1.4) from which it follows that there always exists a band of
stable periodic patterns near a Turing(-Hopf) bifurcation for ecologically relevant pa-
rameter combinations. Note that this is quite remarkable, given the dimensions of
the parameter space. It is found however that the Turing(-Hopf) bifurcation becomes
subcritical if γ > γss ≈ 13. Though this might not be of any interest to the ecologist,
we notice that it is, however, an interesting mathematical fact: the nonlinearity of the
diffusion is able to trigger a change from super- to subcriticality while a change of C,
the parameter that measures the advection rate (and that is therefore related to the
gradient of the slope), is not. Also, we show that the Klausmeier model appears as
a limit case of the GKGS-model for large C and derive an explicit Ginzburg-Landau
equation for the Klausmeier model that shows the Turing-Hopf bifurcation of the
Klausmeier system to be supercritical.

21
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2.1 Linear analysis

Before we embark upon a study of the onset of patterns in the GKGS-system, let
us introduce some terminology that will be used throughout the article. Reaction-
diffusion-advection systems as (0.5) naturally allow for spatially periodic solutions.
These spatially periodic patterns or wave trains are solutions u(x, t) that can be writ-
ten as u(x, t) = uper(κx+Ωt) and that satisfy uper(ξ) = uper(ξ +2π). Here κ is called
the (nonlinear) wavenumber and Ω is the (nonlinear) frequency. A wave train is called
a background state or stationary state when both its wavenumber and frequency are
zero, i.e., when u(x, t) ≡ uper(0) for all x ∈ R, t ∈ [0,∞). It is called a Turing pattern
if its frequency is zero, i.e., when u(x, t) = uper(κx) for all x ∈ R, t ∈ [0,∞): Turing
patterns have standing profiles. A generic wave train has κ 6= 0 and Ω 6= 0 and will
therefore have a traveling profile with velocity Ω/κ.

In this section we derive critical parameter values for which the stationary state
(U+, V+) 0.6 undergoes a Turing-Hopf instability and derive a leading order form for
0 < δ ≪ 1 of the GKGS-model (0.5) near the Turing-Hopf bifurcation. The sta-
tionary state (U−, V−) is always unstable, as can be readily checked. Subsequently,
we derive a Ginzburg-Landau equation for the slowly modulating amplitude of the
periodic pattern that appears at the Turing-Hopf instability. In order to employ a
leading order analysis in (0.5) for 0 < δ ≪ 1, we follow [56] and scale the parameters
by

A = aδα, B = bδβ and C = cδν , (1.1)

with α, β > 0, ν ∈ R and a, b, c = O(1) with respect to δ. The background state
(U+, V+) can then be written out to leading order in δ as

(U+, V+) =

(

b2

a
δ2β−α,

a

b
δα−β

)

+ h.o.t.. (1.2)

We notice that the two states (U±, V±) only exist if A ≥ Asn = 4B2, or equivalently,
a ≥ 4b2δ2β−α. Since δ is assumed asymptotically small, boundedness of a yields the
condition

2β − α ≥ 0, (1.3)

with equality allowed only if a ≥ 4b2.

2.1.1 The Turing and Turing-Hopf instabilities

The linearized GKGS-system about the stationary state u+ = (U+, V+) can be
written abstractly as

ut = Duxx + Cux + ∂uF (u+;A,B)u =: L[∂x]u, (1.4)

with u = (U, V ), F (U, V ;A,B) := (A(1 − U) − UV 2,−BV + UV 2), D the matrix
defined by D = diag(γUγ−1

+ , δ2σ) and C the matrix defined by C = diag(C, 0).
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Im Im

ReRe
−iω∗

iω∗

Figure 2.1: The thick lines denote possible typical configurations of a spatially periodic
perturbation of the background state at marginal stability in the complex λ-plane. On the
left, the spectrum near the origin is real, as is typical for the (reversible) GKGS-model with
C = 0. On the right, C 6= 0.

We consider the spectrum specL[∂x] of the operator L[∂x] defined in (1.4) and
define the matrix M by

M(a, c, ik) :=

(

−γ(U+)γ−1k2 + icδνk − V 2
+ − δαa −2bδβ

V 2
+ −δ2σk2 + δβb

)

. (1.5)

Notice that M(a, c, ik) = L[ik]. As can be seen by computing the Fourier transform
of (1.4) w.r.t. x, a complex number λ ∈ C belongs to the L2-spectrum of L[∂x] if
there exists a k ∈ R such that

d(λ, ik) := det[M(a, c, ik) − λ] = 0. (1.6)

Equation (1.6) is called the (linear) dispersion relation of (0.5) about (U+, V+). We
refer to k as the (linear) wavenumber. It is associated to a Fourier mode of the pertur-
bation of the background state (U+, V+). Recall the nonlinear wavenumber κ is the
wavenumber of the bifurcating wave train itself. We can now make a basic definition,
analogous to [80].

Definition 2.1.1 L[∂x] is called marginally stable with critical Fourier mode u0e
ik∗x

associated to the unique critical eigenmode iω∗, up to complex conjugation, if:

1. d(iω∗, ik∗) = 0,

2. d(iω∗, ik) 6= 0 for all k 6= ±k∗,
3. d(λ, ik) 6= 0 for all k ∈ R and all λ ∈ C with λ 6= iω∗ and Reλ ≥ 0.

Two possible spectral configurations of the background state (U+, V+) at marginal
stability are depicted in Figure 2.1. Definition 2.1.1 does not provide an explicit
scheme to determine marginal stability. In practice, one uses the following necessary
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(though a priori not sufficient) conditions to derive marginal stability of L with respect
to eigenfunction U0e

ik∗x and eigenvalue iω∗:

Reλ|k=k∗
= 0 and

∂Reλ

∂k

∣

∣

∣

∣

k=k∗

= 0. (1.7)

We call the instability a Turing-Hopf instability if the wavenumber and its associated
frequency of the eigenmode at marginal stability are nonzero, k∗ 6= 0, ω∗ 6= 0, and we
call the instability a Turing instability if the frequency of the eigenfunction at marginal
stability is zero, i.e., ω∗ = 0 and k∗ 6= 0 (see Figure 2.1). It will be confirmed in §2.1.2
and §2.1.3 that (U+, V+) undergoes a Turing instability to Turing patterns if C = 0
and a Turing-Hopf instability to generic wave trains if C 6= 0.

2.1.2 Critical parameters for the GKGS-model with C = 0

First we derive the critical parameter a∗ and critical wavenumber k∗ at which the
stationary state (U+, V+) undergoes a Turing instability for the GKGS-model with
C = 0. For C = 0, the dispersion relation (1.6) can be written as

d(λ, ik) = det[M(a, 0, ik) − λI]

= λ2 − trM(a, 0, ik)λ + detM(a, 0, ik). (1.8)

If Definition 2.1.1 for marginal stability holds, then the trace trM(a, ik) = λ− + λ+

cannot be positive. Substitution of the leading order formulation for V+ yields

− γδ(2β−α)(γ−1)

(

b2

a

)γ−1

k2 − a2

b2
δ2(α−β) − δαa − δ2σk2 + δβb ≤ 0. (1.9)

Recall a, b > 0. For this inequality to hold, also at k = 0, it is needed that either
2(α − β) ≤ β or α ≤ β. Since the weakest of these conditions suffices, we impose

2α ≤ 3β. (1.10)

Notice that this condition is stricter than (1.3). We are now in the position to formu-
late the following proposition concerning marginal stability.

Proposition 1 Let C = 0, γ ≥ 1 and 0 < δ ≪ 1, and define g := 3 − 2
√

2. The
background state (U+, V+) of (0.5) is marginally stable for σ, a = a∗ and k = k∗
satisfying

(2γ + 1)β − (γ + 1)α = 2σ
k2
∗ = 1

2 (1 − g)bδ−2γβ+(γ+1)α

aγ+1
∗ = gγb2γ+1,

(1.11)

to leading order in δ.
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Notice that we recover Proposition 3.1 of [56] for the Gray-Scott model if we set γ = 1.

Proof. We first show that, as expected from the reversible symmetry for C = 0, an
instability always occurs through the origin so that it suffices to consider the simple
case λ = ω∗ = 0 at k = k∗.

Suppose that d(iω, ik) = 0 and note that M(a, 0, ik) is real. According to (1.8)

Im d(iω, ik) = ωtrM(a, 0, ik) = 0,

so that either ω = 0 (which means λ = 0) or trM = 0. The latter implies

trM(a, 0, ik) = −(γ(U+)γ−1 + δ2σ)k2 + trM(a, 0, 0) = 0,

which has real roots k if and only if trM(a, 0, 0) > 0, which is clearly not the case by
(1.9).

Therefore it suffices to consider λ = 0 and prove that there exist a∗ and k∗ such
that

detM(a∗, 0, ik∗) = 0
∂
∂k detM(a∗, 0, ik∗) = 0

(1.12)

From (1.12)2 we get

k2
∗ = −δ2σV 2

+ + δ2σ+αa∗ − γδβUγ−1
+ b

2γδ2σUγ−1
+

(1.13)

Substitution of this expression in (1.12)1 yields

k2
∗ =

−2δβb(V 2
+ − δαa∗)

δ2σV 2
+ + δ2σ+αa∗ − γδβUγ−1

+ b
. (1.14)

Before we solve a∗ from the combination of (1.13) and (1.14) we first determine its
magnitude. Since k2

∗ in (1.13) is positive, one obtains by using the leading order
expression (1.2),

a2
∗

b2
δ2(α−β+σ) + a∗δ

2σ+α − γb

(

b2

a∗

)γ−1

δβ+(2β−α)(γ−1) < 0. (1.15)

It follows from (1.10) that 2(α− β + σ) < 2σ + α, which means that condition (1.15)
would be satisfied if β+(2β−α)(γ−1) ≤ 2(α−β+σ). Using (1.2) and (1.10), we deduce
from (1.13) that k2

∗ is O(δβ−2σ), and from (1.14) that k2
∗ is O(δ2(α−β)−(2β−α)(γ−1)).

Hence, we find a condition on the magnitude of the parameters at the Turing insta-
bility,

(2γ + 1)β − (γ + 1)α = 2σ. (1.16)

By substituting this in condition (1.15), we get
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aγ+1
∗ < γb2γ+1.

We can now consider the leading order expressions of (1.13) and (1.14), and conclude

(

a2
∗

b3
− γ

(

b2

a∗

)γ−1
)2

= 4γ
a2
∗

b3

(

b2

a∗

)γ−1

.

Solving this for a∗ gives two solutions of which only one satisfies condition aγ+1
∗ <

γb2γ+1, hence

aγ+1
∗ = gγb2γ+1,

which also yields the leading order expression for k2
∗.

Since the spectral curves λ±(k2) are solutions of the quadratic equation in λ (1.8), it
is straightforward to show that d(0, k∗) indeed satisfies Definition 2.1.1, i.e., that L is
marginally stable. ¤

2.1.3 Critical parameters for the GKGS-model

Before we can study the critical parameters at which the (irreversible) Turing-
Hopf instability occurs for C 6= 0, we first need to determine the (critical) scaling of
C, that is, the critical value of the exponent ν (1.1). If C is too small (i.e., ν too
large), it will only have a higher order impact on the analysis of the previous section.
If C is very large, it will have a major impact on the linear stability. The critical
scaling of C is determined by the value of ν at which the influence of C becomes of
leading order in the linear stability analysis (this ν is a ‘significant degeneration’, cf.
[29]). Therefore, we use the scalings obtained in Proposition 1 in M(a, c, ik). Write

k = δ
1
2
(γ+1)α−γβ k̂ (so that k̂c = O(1)). The scalings for A, B and C in (1.1) imply

that we have, to leading order in δ,

M(a, c, ik) =





δ2α−2β
[

−Γk̃2 − a2

b2 + icδν− 1
2
(3−γ)α−(γ−2)β k̃

]

δβ [−2b]

δ2α−2β
[

a2

b2

]

δβ [−k̃2 + b]



 ,

(1.17)

where we have introduced Γ = Γ(γ, a) := γ
(

b2

a

)γ−1

. Hence, it follows that the critical

scaling of ν is given by

ν =
1

2
(3 − γ)α + (γ − 2)β. (1.18)

For this ν, the dispersion relation is determined by

det





δ2α−2β
[

−Γk̂2 − a2

b2 + ick̂ − δ3β−2αλ̂
]

δβ [−2b]

δ2α−2β
[

a2

b2

]

δβ [−k̂2 + b − λ̂]



 = 0, (1.19)



2.1. LINEAR ANALYSIS 27

where we have introduced λ̂ by λ = δβλ̂.

It follows from (1.10) that the term with λ̂ in the upper left entry of (1.19) is not of
leading order. Hence, we conclude that at leading order in δ, and by dropping hats on
k̂ and λ̂, the appearance of the Turing-Hopf instability is governed by the simplified
dispersion relation

detMλ(a, c, ik) = 0, (1.20)

with Mλ(a, c, ik) defined as follows

Mλ(a, c, ik) :=

(

−Γk2 − a2

b2 + ick −2b
a2

b2 −k2 + b − λ

)

. (1.21)

If we define

F (k) := Γk2 + a2

b2 and G(k) := k2 − b, (1.22)

it follows from (1.21) that the dispersion relation of the GKGS-system (0.5) is, to
leading order in δ,

d(λ, ik) := λ[F − ick] + detM0(a, c, ik)
≡ λ[F − ick] + detM0(a, 0, ik) − ickG = 0.

(1.23)

Recall that (1.7) determines two necessary conditions for marginal stability. Substi-
tuting the first relation of (1.7) in (1.23) gives, to leading order in δ,

ωck + detM0(a, 0, ik) = 0
ωF − ckG = 0,

(1.24)

where ω = ω∗ is the critical frequency defined by λ(k)|k=k∗
= iω∗ (see Definition

2.1.1). Differentiation of (1.23) with respect to k yields, after substitution of the
conditions in (1.7),

∂ω
∂k ck + ωc + ∂k detM0(a, 0, ik) = 0
∂ω
∂k F + ωF ′ − cG − ckG′ = 0.

(1.25)

From the second equations in (1.24) and (1.25) it now follows that

ω =
ckG

F
and

∂ω

∂k
=

c

F 2
[F (G + kG′) − kGF ′]. (1.26)

Note that unlike in the case c = 0, here it holds that λ(k)|k=k∗
= iω∗ 6= 0. Thus

the destabilization that sets in at marginal stability indeed is of Turing-Hopf type if
c 6= 0. The right equation in (1.26) gives the group velocity cg := − ∂ω

∂k

∣

∣

k=k∗

, that
may be interpreted as the velocity with which wave packets with Fourier spectrum
centered around the frequency k∗ evolve.

The equations in (1.24) and (1.25) give
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detM0(a, 0, ik) = − c2k2G
F

∂k detM0(a, 0, ik) = −kc2

F 2 [F (2G + kG′) − kGF ′].
(1.27)

These equations determine a∗ and k∗ of Definition 2.1.1.

Proposition 2 Let 0 < δ ≪ 1, k̃ = δ−
1
2
(γ+1)α+βγk and drop the tilde on k̃, and

let C = cδ
1
2
(3−γ)α+(γ−2)β 6= 0. Let, as before, g = 3 − 2

√
2. The stationary state

(U+, V+) undergoes a Turing-Hopf instability at a uniquely defined critical parameter
a = a∗ and critical wavenumber k = k∗ that satisfy

aγ+1
∗ ≥ gγb2γ+1 and k2

∗ < b. (1.28)

If c = 2
3bΓ, the Turing-Hopf instability takes place at the explicit parameter values, to

leading order in δ,

aγ+1
∗ =

1

3
γb2γ+1 and k2

∗ =
1

3
b.

Moreover, for c ≫ 1, we have, to leading order in c and δ,

aγ+3
∗ (c) =

g

γ
b2γ+3c2 + O(c) and k2

∗(c) =
1

2
(1 − g)b + O(1/c). (1.29)

Proof. First we show that a Turing-Hopf instability occurs. We rewrite equations
(1.27) by

K = k2 and E =
a2

b2
(1.30)

to obtain

(K2 + K(E
Γ − b) + E

Γ b)(K + E
Γ ) = −

(

c
Γ

)2
K(K − b)

(2K + E
Γ − b)(K + E

Γ )2 = −
(

c
Γ

)2
(K2 + 2E

Γ K − E
Γ b),

and we further introduce X, ρ and η by

K = bX,
E

Γ
= bρ and

c2

Γ2
= bη. (1.31)

Then the equations simplify to

(X2 + X(ρ − 1) + ρ)(X + ρ) = −ηX(X − 1)
[(X + ρ)(2X + (ρ − 1))] (X + ρ) = −η(X2 + 2ρX − ρ).

(1.32)

As a shorthand we introduce polynomials f, g, h, j and write (1.32) in the obvious
way as

f(X, ρ)(X + ρ) = −ηg(X)
h(X, ρ)(X + ρ) = −ηj(X, ρ).

(1.33)

We view these as functions of X and sometimes suppress the dependence on ρ. With
the above rescalings of a and k, the problem of finding a parameter a = a∗ > 0 with
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wavenumber k = k∗ such that (1.27) holds, has been reduced to the problem of finding
a ρ > 0 and an X ≥ 0 such that (1.33) holds. We may assume η 6= 0 (since the case
c = 0 is dealt with in Proposition 1. From this and from (1.33) it follows that we
search for X ≥ 0 such that

j(X)f(X) = g(X)h(X). (1.34)

We notice the following:

j(0) · f(0) = −ρ · ρ = −ρ2 < 0 and j(1) · f(1) = (1 + ρ) · 2ρ > 0

while

g(0)h(0) = g(1)h(1) = 0.

Hence it follows that for each ρ ∈ R, there is a X = X∗(ρ) ∈ (0, 1) such that (1.34)
holds.

If g(X∗) 6= 0, we can define

η(ρ) := −f(X∗(ρ), ρ)

g(X∗(ρ))
(X∗(ρ) + ρ). (1.35)

The triplet ρ,X∗(ρ), η(ρ) is a solution for (1.33).
We need to consider the case g(X∗) = 0 or j(X∗) = 0 separately. It holds that

g(X) = 0 if and only if X = 0 or X = 1. However, if X = 0 or X = 1, the first
equation of (1.32) contradicts the assumption that ρ > 0, so we find that the condition
g(X∗) 6= 0 is never violated. On the other hand, if j(X∗) = 0 then, by (1.33)2, it
must hold that X∗ = 1

2 (1 − ρ). Solving j(1
2 (1 − ρ)) = 0 gives ρ = 1

3 and so X∗ = 1
3 .

Substituting these values for X and ρ in (1.33)1, gives η = 2
3 . Hence, by rewriting to

original parameters, we obtain the special case for which

aγ+1
∗ =

1

3
γb2γ+1, k2

∗ =
1

3
b and c =

2

3
bΓ.

We have now proven that for each ρ > 0, there is a pair X∗(ρ), η(ρ) that solves (1.33).
In order to complete the proof it remains to show that for each η > 0 (and thus for
each c ∈ R), there is a unique pair X∗(η), ρ(η) (or k∗, a∗) that solves (1.33). This
can be proved by showing that η(ρ) as defined in (1.35), attains each value in [0,∞)
and is an invertible map.

By (1.32) it is easy to see that η(ρ) = 0 if ρ = g. On the other hand, as we will
prove below, η is unbounded as a function of ρ: η → ∞ if ρ → ∞ (which by (1.31)
is c → ∞). Also, the function η(ρ) has no (vertical) asymptotes since we saw that
g(X∗) 6= 0. Hence, η(ρ) attains each value in [0,∞). It now suffices to show that
η = η(ρ) is injective. This can be derived by a tedious analysis of the polynomials in
(1.32): for all η there is at most one pair (X, ρ) such that (1.32) holds. We omit the
details.

Next we derive the estimates in (1.28). The estimate in (1.28)2 follows from the
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fact that 0 < X∗ < 1 and (1.30) and (1.31). We prove the estimate in (1.28)1. From
(1.31) it is clear that η does not allow for negative values. That is, by (1.35), and since
g(X) < 0 for all X ∈ (0, 1), we can only allow for those ρ for which sign(f) > 0. It is
straightforward to show that f(X) > 0 for all X ∈ (0, 1) if ρ > g, and f(X) < 0 for all
X ∈ (0, 1) if ρ < g. Hence, if we rewrite the condition ρ > g to original parameters,
we obtain (1.28)1:

aγ+1
∗ ≥ gγb2γ+1.

Finally, we analyze the case for asymptotically large values of η (or equivalently,
asymptotically large values for c and derive equations (1.29)). Consider equation
(1.32). Since X∗ is bounded (|X∗| < 1), we must rescale ρ and obtain

O(ρ2) = O(η).

We therefore set η = η̃ρ2, with ρ ≫ 1, and expand (1.32):

X + 1 = −η̃X(X − 1) + O(1/ρ)
1 = −η̃(2X − 1) + O(1/ρ).

Solving this gives, to leading order,

X∗ =
1

2
(1 − g) + O(1/ρ) and η̃∗ = 3 + 2

√
2 + O(1/ρ).

Rescaling X∗ back to k∗ and η̃∗ back to a∗ and c gives (1.29),

k2
∗ =

1

2
(1 − g)b + O(1/c) and aγ+3

∗ (c) =
g

γ
b2γ+3c2 + O(c).

¤

2.1.4 Modulation equations for the rising patterns

At the Turing instability of the stationary state (U+, V+) (that takes place if
c = 0) or Turing-Hopf instability (c 6= 0), the homogeneous equilibrium becomes
unstable with respect to periodic perturbations for a < a∗. If the instability is super-
critical, one expects a small band of stable patterns, the so-called Eckhaus-band for
|a − a∗| = O(ε2) and 0 < ε ≪ 1.

In this section we will derive and analyze the associated Ginzburg-Landau equations
for the GKGS-model in each of the four classes of Figure 1.1 and for the special cases
of Proposition 2. The Ginzburg-Landau equation (GLE) governs the behaviour of the
amplitude of the pattern near criticality. Solutions to this equation are slow modula-
tions of the amplitude of the underlying ‘most unstable’ Fourier mode ∼ ei(k∗x+ω∗t)

(see [1, 55] and the references therein).

In the case of the Gray-Scott system it is shown in [56] that the Turing instabil-
ity is supercritical, meaning that stable small amplitude periodic solutions exist in
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the region where the underlying homogeneous pattern is unstable. In §2.1.5 we derive
that for γ > γ∗ ≈ 13 and c = 0, the Turing instability of the stationary state (U+, V+)
of the GKGS-model becomes subcritical (however, we do not see a relevant ecological
interpretation of these values for γ). We also find that the Turing-Hopf instability
that occurs for c 6= 0 is supercritical for all values of c and either γ = 1 or γ = 2.

In §2.1.6 it is shown that, near criticality, the Klausmeier system can be derived
as a limit case of the GKGS-system for c → ∞ (in particular, 0 < 1/

√
c ≪ ε2 ≪ 1).

It is explained that the GLE for the Klausmeier model is the same as the limiting
GLE for the GKGS-system for large c and asymptotically small |ε| ≪ 1 (that is,
we assume 0 < ε2 ≪ 1/

√
c ≪ 1). This is surprising: a priori, it is not at all clear

that it is possible to interchange the limits ε → ∞ and c → ∞. In particular, the
Turing-Hopf instability of the background state (U+, V+) of the Klausmeier system
inherits the supercriticality from the Turing-Hopf instability of the background state
of the GKGS-model.

Let 0 < ε ≪ 1 and assume that the stationary state (U+, V+) is almost marginally
unstable (a = a∗ − rε2, r > 0). Patterns close to the stationary state (U+, V+) can
be described by

U = δ2β−α(Û+ + εÛ(x, t))

V = δα−β(V̂+ + εV̂ (x, t)).
(1.36)

By substitution of these expressions in (0.5) and recalling the previous scaling for ν
in (1.18) and the previous scalings for k̃ and λ̃ that induce the spatial and temporal
scalings

x̃ = xδ
1
2
α− 1

2
(2β−α)γ and t̃ = tδβ , (1.37)

we deduce the following leading order system for the GKGS-system,

δ3β−2αUt = γ
(

b2

a∗

)γ−1

Uxx + cUx − [
a2
∗

b2 U + 2bV ]

+ ε

[

γ(γ − 1)
(

b2

a∗

)γ−2

[UxxU + (Ux)2] − b2

a∗

V 2 − 2a∗

b UV

]

+ ε2

[

γ(γ − 1)(γ − 2)
(

b2

a∗

)γ−3

[U(Ux)2 + 1
2U2Uxx]

+ γ(γ − 1) 1
a∗

(

b2

a∗

)γ−1

Uxx + 2r a∗

b2 U − UV 2

]

Vt = Vxx +
[

a2
∗

b2 U + bV
]

+ ε
[

b2

a∗

V 2 + 2a∗

b UV
]

− ε2
[

2r a∗

b2 U − UV 2
]

,

(1.38)
where we have dropped all hats and tildes and have implicitly assumed δ ≪ ε. Remark
that after application to the linearly ‘most unstable’ Fourier mode ∼ei(k∗x+ω∗t), the
leading order part of (1.38) indeed corresponds to Miω∗

(a∗, c, ik∗) (see (1.21)). The
kernel of Miω∗

(a∗, c, ik∗) is given by
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kerMiω∗
(a∗, c, ik∗) =

(

2b
ηγ,c

)

, (1.39)

with

ηγ,c := −Γk2
∗ −

(a∗
b

)2

+ ik∗c, (1.40)

and the range of Miω∗
(a∗, c, ik∗) is given by

RgMiω∗
(a∗, c, ik∗) =

(

−2b
−k2

∗ + b − iω∗

)

. (1.41)

Thus, Miω∗
(a∗, c, ik∗)x = y has a solution if and only if y ∈ RgMiω∗

(a∗, c, ik∗), that
is, if and only if

2by2 − (k2
∗ + iω∗ − b)y1 = 0, (1.42)

where y = (y1, y2)
T . We will need this in our derivation of the GLE and refer to it

as the solvability condition.

The modulation Ansatz for the derivation of the Ginzburg-Landau Equation is that
solutions of the system behave as slow spatio-temporal modulations of the solution
for the linear first order problem, i.e., they are of the form:

(

U
V

)

= A(ξ, τ)

(

2b
ηγ,c

)

ei(k∗x+ω∗t) + c.c. + h.o.t., (1.43)

with ξ = εx and τ = ε2(x − cgt) and cg the group velocity defined by (1.26) [1, 55].

In [56] the GLE for periodic patterns near the Turing instability of the background
state (U+, V+) for the Gray-Scott system was computed. Using a result of Schneider
[81], the diffusive stability of the Turing patterns described by the Gray-Scott sys-
tem could be derived from the spectral stability of periodic solutions of this GLE.
However, to our knowledge there does not exist a similar result in the literature that
can be applied to the present system, i.e., a quasilinear reaction-diffusion system with
nonlinear diffusion. In fact, we are not aware of any (even formal) GLE analysis in a
system with nonlinear diffusion. Still, we expect that a result similar to that of [81]
must hold – although a proof is beyond the scope of this paper. The reason for this
is that the nonlinear diffusion term in (0.5) can be controlled if U remains bounded
away from 0, i.e., if U(x, t) ≥ d0 > 0 uniformly in x and t. By the nature of the
method, the GLE analysis is applied to solutions (U(x, t), V (x, t)) of (0.5) that are
asymptotically close to the background state (U+, V+) of (0.5), as is made explicit by
‘Ansatz’ (1.36). Since clearly U+ > 0 (see also (1.2)), the GLE approach indeed only
considers patterns in (0.5) for which U(x, t) ≥ d0 > 0 uniformly in x and t on the
time scales associated to this approach. In this region the equation is still parabolic
and existence theory is essentially similar to the semilinear case [?, ?].
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In §2.1.5 we derive a Ginzburg-Landau equation for the slowly varying amplitude
A(ξ, τ). The Ginzburg-Landau equation is first derived without inserting explicit val-
ues of a∗ and k∗. The coefficients of the GLE are functions of b, c and γ, as it is
proven in Proposition 2 that the critical values of a∗ and k∗ depend on b, c and γ.
In Proposition 2 however, we also deduced explicit values for a∗ and k∗ for a number
of special parameter values for b, c and γ. In each of these cases, we will present an
explicit GLE.

2.1.5 Ginzburg-Landau equation for the GKGS-model

Proposition 3 Assume |a − a∗| = rε2. Then solutions of the form (1.43) to the
GKGS-model (0.5) are described by the governing Ginzburg-Landau equation

Aτ = (a1 + ia2)Aξξ + (b1 + ib2)A + (L1 + iL2)|A|2A. (1.44)

with coefficients given by

a1 + ia2 = 1
2bηγ,c

[

2b(cgy12 + ηγ,c + 2ik∗y12) − (k2
∗ + iω∗ − b)(cx12 + 2bΓ + 2ik∗Γx12)

]

b1 + ib2 = −1
2bηγ,c

[

4ac

b (k2
∗ + iω∗ + b) + LA,NLD(k2

∗ + iω∗ − b)
]

L1 + iL2 = 1
2bηγ,c

[(

k2
∗ + iω∗ + b

)

Ltot −
(

k2
∗ + iω∗ − b

)

LNLD

]

.

(1.45)

We refer to Appendix 6 for the detailed derivation of the GLE as well as the full
expressions for Ltot, LNLD and LA,NLD and xij , yij , ij = 02, 12, 13. Here we remark
that if c = 0, then ω∗ = 0 and cg = 0 by (1.26) and LNLD = 0 and LA,NLD = 0 if
γ = 0, i.e., these coefficients originate from the nonlinear diffusion.

In the GLE (1.44), the coefficient L1 + iL2 is called the Landau-coefficient. The
Turing-Hopf instability of the stationary state (U+, V+) is supercritical if and only if
its real part satisfies L1 < 0. It is subcritical if L1 > 0.

If the Turing-Hopf bifurcation is supercritical, it is straightforward to show [54]
that there exists a band of stable spatially periodic patterns if and only if

1 +
a2L2

a1L1
> 0. (1.46)

This inequality is usually called the Benjamin-Feir-Newell criterion [1]. The patterns
that satisfy condition (1.46) form a parabolically shaped region of stable periodic pat-
terns near the Turing(-Hopf) instability at a = a∗ that lies within a larger parabol-
ically shaped region of periodic patterns [54, 55]. See Figure 2.3 for a schematic
picture. For a ≈ a∗ − rε2, the region of stable patterns is called the Eckhaus region,
after its boundary which is called the Eckhaus instability [55]. In Figure 2.3 the Eck-
haus region is depicted as a part of the larger Busse balloon (the concept of the Busse
balloon will be discussed in more depth in §??).
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Figure 2.2: Contourplots of the real part of the Landau-coefficient for (a) the GKGS-model
with linear diffusion (γ = 1) and for (b) the GKGS-model with nonlinear diffusion (γ = 2),
drawn on a grid of points at (b, c) = (0.1, 0.0) + 0.1(k, l), k, l = 0, . . . , 40. In both pictures,
the non-advection case (c = 0) is depicted by the horizontal axis. Notice that the origin in
the pictures is at (b, c) = (0.1, 0.0), since the case b = 0 has no ecological meaning.
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Figure 2.3: An impression of the stable Eckhaus region as part of a Busse balloon. Compare
Figure 1.5. Inset: the Eckhaus region of stable patterns (boundary depicted by a dashed
line) lies within the larger locally parabolic region of (not necessarily stable) patterns.

As explained in the introduction, the ecologically relevant parameter values for γ
are γ = 1 or γ = 2. With the help of Mathematica we evaluated the Landau co-
efficient of the GLE for the GKGS-model with γ = 1 and γ = 2. This way, we have
obtained sufficient evidence to claim:
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Claim 1 For the GKGS-model (0.5) with γ ∈ {1, 2}, the real part of the Landau
coefficient L1 of (1.44) is negative for all values of b and c up to c ∼ 106 and b ∼ 102.
Therefore we claim that the Turing-Hopf bifurcation at a = a∗ of the stationary state
(U+, V+) of the GKGS-model with c > 0 and γ = 1, 2 is supercritical.

As an illustration, we have depicted in Figure 2.2 a set of contourlines of the real
part of the Landau-coefficient L1 for γ = 1 and γ = 2 and values of (b, c) on a grid
spanned by (b, c) = (0.1, 0.0) + 0.1(k, l), k, l = 0, . . . , 40.

By computing the Benjamin-Feir-Newell criterion (1.46), we checked that this in-
equality holds for the Ginzburg-Landau equation for the GKGS-model for all b and c
up to c ∼ 106 and b ∼ 102 and γ ∈ {1, 2}. Hence we claim

Claim 2 For (0.5) with c > 0 and γ = 1, 2, there exists a stable band of periodic
patterns that appears at the Turing-Hopf instability.

Next, we present four explicit Ginzburg-Landau equations for which we have explicit
values for the critical parameter value a∗ and wavenumber k∗ at hand. The parameter
choices for the three Ginzburg-Landau equations are drawn from three different cases
of the GKGS-model as depicted in Figure 1.1. Of course, the sign of the real part
of the Landau coefficient confirms the evaluations presented in Figure 2.2 in all three
cases.

2.1.5.1 The GKGS-model with c = 0 and γ = 1. Clearly, the GKGS-model
with γ = 1 and c = 0 reduces to the Gray-Scott system. By recalling from Proposition
1 (or from [56]), a2

∗ = (3− 2
√

2)b3 and k2
∗ = (

√
2− 1)b3, the above equation simplifies

to

Aτ = 2
√

2Aξξ +
2√
b
A− 2

9
(10

√
2 − 7)b2|A|2A. (1.47)

Since the real part of the Landau coefficient is negative, the Turing-bifurcation is
supercritical. Note that this equation corresponds to (3.27) derived in [56].1

2.1.5.2 The GKGS-model with c = 0. In the case of c = 0 and γ ≥ 1, we
have derived explicit expressions for the critical parameter a∗ and wavenumber k∗ in
Proposition 1, namely

aγ+1
∗ = gγb2γ+1 and k2

∗ =
1

2
(1 − g)b. (1.48)

with g = 3 − 2
√

2 (notice we rescaled k∗ in §2.1.3). Due to the reflexion symmetry
of the GKGS-system at c = 0, all coefficients of the GLE are real. In this case, the
GLE (1.45) has the form

1Notice however the extra b2 in the coefficient in front of the nonlinear term. In [56], b is scaled
out of the matrix Mc in formula (3.24). That is, the matrix bMc in [56] plays the role of our matrix
Miωc (ac, 0, ikc). This is equivalent to scaling A → bA in (1.47).
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Aτ = 2
√

2Aξξ + b1(γ)A + L1(γ)|A|2A (1.49)

with

b1(γ) = [−39 + 27
√

2 + (41 − 29
√

2)γ]
(gγ

b

)
−1
1+γ 1

b

L1(γ) = −1

9
(2 −

√
2)

[

18(3 + 2
√

2) + 12(2 +
√

2)γ + (−8 + 3
√

2)γ2
] (gγ

b

)
2

γ+1

b3

One can check that b1(γ) > 0 for γ > 0 as it – of course – should be. Moreover, the
Ginzburg-Landau equation for the GKGS-system for general γ (1.49) reduces to the
Ginzburg-Landau equation for the Gray-Scott system (1.47) if γ = 1.

However we notice that the real part of the Landau coefficient L1(γ) becomes
positive for large γ and equals zero for

γss ≈ 13.0446. (1.50)

Therefore we have the following result.

Proposition 4 The Turing bifurcation for the GKGS-model (0.2) with c = 0 is su-
percritical for γ < γss and subcritical for γ > γss.

2.1.5.3 The Ginzburg-Landau equation for the GKGS-model with γ = 1

and c =
√

2
3b. In this case, the critical parameters for the Turing-Hopf instability

can be drawn from the ‘special case’ in Proposition 2:

k2
∗ =

1

3
b, a2

∗ =
1

3
b3, ω∗ =

1

3
b
√

2 and cg =

√

2

3
b.

The GKGS-model for γ = 1 is not reflexion symmetric. Therefore, traveling spatially
periodic patterns appear in a Turing-Hopf bifurcation. The associated GLE is a
complex GLE (cGLE),

Aτ =
1

3
(8 + i

√
2)Aξξ +

2

9

√

3

b
(5 + i

√
2)A− 2

33
(5 − 2i

√
2)b2|A|2A. (1.51)

Since Re
(

− 2
33 (5 − 2i

√
2)b2

)

< 0, the bifurcation is supercritical. We refer to Ap-
pendix 6.0.1 for a complete derivation. We remark that it is possible to derive a
special case GLE for general γ (see Proposition 2). However, this gives no additional
insight.
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model equals the

Figure 2.4: Diagram for the GLE for the GKGS for large c and the GLE for the Klausmeier-
model. A priori, it is unclear whether this diagram commutes.

2.1.6 Ginzburg-Landau equation for the case c ≫ 1: the Klausmeier
model and the GKGS model for c ≫ 1

In the Gray-Scott scaling introduced in (0.5), the original Klausmeier system reads2

{

Ut = Ux + A(1 − U) − UV 2

Vt = δ2σVxx − BV + UV 2.
(1.53)

Of course, the stationary states for the Klausmeier system are the same as the station-
ary states for the GKGS-model: we have the ‘desert’ state (U0, V0) and the stationary
states (U±, V±) given in (0.6).

A priori, equation (1.53) cannot be considered as a natural limit of the GKGS-
system (0.5) since the diffusion coefficient du in front of U has been scaled to du = 1
in (0.5) (so du cannot be set to 0). In fact, from the point of view of mathematical
modelling the original Klausmeier system is somewhat inconsistent: the (linear or
nonlinear) diffusion of water U is neglected since it is dominated by the advection
term, while the diffusion of vegetation V , which is in fact much smaller than that of
U , is retained in (1.53).

In this subsection we justify this for C ≫ 1 in (0.5) or c ≫ 1 in (1.38) and discuss
the relation between the GKGS model with c ≫ 1, i.e., the case in which advection
dominates diffusion in the U -equation, with the original Klausmeier model. We will
do so in the context of the ‘rise of patterns’ and handle the problem in terms of the
GLE associated to the Turing-Hopf bifurcations. As shown in the diagram of Figure
2.4, there are two paths to obtain a GLE for the case c ≫ 1. Based on the previous
sections, the most direct way is to consider the case c ≫ 1 in the general GLE with

2Notice that this rescaling of the Klausmeier system can be acquired from Klausmeier’s original
nondimensional system (see [46]),



uT = νuX + a − u − uv2;
vT = δ2σvXX − mv + uv2,

(1.52)

by rescaling with x = a2

ν
X, t = a2T , v = aV , u = aU , A = 1

a2 , B = m
a2 and by further introducing

0 < δσ := a
ν
≪ 1. (From the estimates for a and ν in [46], it can be deduced that indeed 0 < a

ν
≪ 1.)
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coefficients given by (1.45) by introducing a new small parameter 1/
√

c. This choice
implies that it is implicitly assumed that 0 < ε ≪ 1/

√
c ≪ 1 (recall that ε is the

distance from criticality introduced in §2.1.3).
However, we will first start out with a path that is closer to the original motivation

behind the Klausmeier model: before we embark upon the weakly nonlinear GLE
analysis, we first consider the limit c ≫ 1 in (0.5). In other words, we take the other
path in Figure 2.4 and assume that 0 < 1/

√
c ≪ ε ≪ 1. We show that under this

assumption the GKGS equation indeed agrees exactly with the Klausmeier model
(at leading order). Nevertheless, this limit is significantly different from the limit
associated to the other path in the diagram of Figure 2.4 and there is a priori no reason
for the diagram in 2.4 to commute. The somewhat surprising outcome to our analysis
is that the two resulting GLEs are identical. Before we consider asymptotically large
c ≫ 1, we introduce the scalings

U = Ũb3/4

√
c

; V = b1/4
√

cṼ ; a∗ = ã∗b5/4
√

c;

x = b−1/2x̃; t = b−1/4t̃; r = r̃b5/4
√

c.
(1.54)

These rescalings appear a little abrupt. We remark however that it follows from
Proposition 2 that a∗ grows with

√
c as c ≫ 1 and that the rescalings in terms of

c are ‘balanced’ such that the terms resulting from the nonlinear diffusion in the
U -component of the GKGS-system for γ ≥ 1 are of higher order in 1/

√
c and such

that all other terms are of the same, lowest order. The rescalings with b are balanced
such that all terms in the GKGS-model that are of lowest order in 1/

√
c are also of

the same order in b. We refer to appendix 6.0.3 for a more elaborate account on the
derivation of these rescalings.

Now, starting from the GKGS model we employ the following scalings. As before,
we rescale x̃ and t̃ in the GKGS-model (0.5) as given by (1.37). In §2.1.4, we have
seen that patterns close to the stationary state given by (1.36) are described by the
leading order form (1.38) with respect to ε. We adopt the rescalings as given in (1.54)
and obtain, by disregarding all terms that are of higher order in 1/

√
c,

0 = Ũx̃ − [ã2
∗Ũ + 2Ṽ ]

−ε
[

1
ã∗

Ṽ 2 + 2ã∗Ũ Ṽ
]

+ ε2
[

2r̃ã∗Ũ − Ũ Ṽ 2
]

,

Ṽt̃ = Ṽx̃x̃ + [ã2
∗Ũ + Ṽ ]

+ε
[

1
ã∗

Ṽ 2 + 2ã∗Ũ Ṽ
]

− ε2
[

2r̃ã∗Ũ − Ũ Ṽ 2
]

.

(1.55)

Note that the leading order formulation of the GKGS-system for large c presented
in (1.55) does not include any terms that result from the nonlinear diffusion in the
U -component. In ecological terms this confirms the (natural) observation that the
character of the diffusion is irrelevant in a strongly sloped – and thus advection dom-
inated – setting.

It is easy to verify that the leading order system (1.55) is identical to the one that
could be derived from the Klausmeier system (1.52), had we adopted the rescalings
given in (1.54) with c = 1 (as is the case in (1.53)). Thus, the system (1.55) also
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describes the dynamics of the Klausmeier system near the Turing-Hopf instability of
(U+, V+). Therefore, we indeed have deduced that the Klausmeier model coincides
with the GKGS model (at leading order) if we assume that 0 < 1/

√
c ≪ ε ≪ 1.

Now we turn to the GLE analysis. In Appendix 6.0.3, it is shown that the asso-
ciated GLE is given by

Aτ = 1
41

[

(66 − 56
√

2) − i(63 − 23
√

2)
√√

2 − 1
]

Aξξ

+ r̃
[

4
√√

2 − 1 + i(4 − 2
√

2)
]

A

+ 4
69

[

−807 + 534
√

2 + i(418 − 286
√

2)
√√

2 − 1
]

|A|2A

(1.56)

Numerically, the Landau-coefficient in front of the |A|2A-term is given by

L|A|2A ≈ −1.50174 + 0.252493 i

We see that the real part of the Landau-coefficient is negative. This once more con-
firms that the Turing-Hopf bifurcation of the equilibrium (U+, V+) in the Klausmeier-
model is supercritical. We note that this establishes the supercriticality of the Turing-
Hopf instability of the background state (U+, V+) that was suggested in [87].

Next, we consider the alternative path in the diagram given in Figure 2.4 and as-
sume 0 < ε ≪ 1. In order to obtain an end result that can be compared to the other
path, we scale (1.38) with (1.54) for c 6= 0 (i.e., not necessarily c ≫ 1) and obtain

δ3β−2αb1/2c−1/2Ũt̃

= γã1−γ
∗ b

3
4
γ− 1

4 c−
1
2
γŨx̃x̃ + c1/2Ũx̃ − c1/2[a2

∗Ũ + 2Ṽ ]

+ ε
[

γ(γ − 1)ã2−γ
∗ b

3
4
γ− 1

4 c−
1
2
γ [Ũx̃x̃U + (Ũx̃)2] − c1/2[ 1

ã∗

V 2 + 2ã∗Ũ Ṽ ]
]

+ ε2
[

γ(γ − 1)(γ − 2)ã3−γ
∗ b

3
4
γ− 1

4 c−
1
2
γ [Ũ(Ũx̃)2 + 1

2 Ũ2Ũx̃x̃]

+ γ(γ − 1)ã−γ
∗ b

3
4
γ− 3

2 c−
1
2
γ− 1

2 Ũx̃x̃ + 2rã∗c1/2Ũ − c1/2Ũ Ṽ 2
]

;

Ṽt̃ = Ṽx̃x̃ +
[

ã2
∗Ũ + Ṽ

]

+ ε
[

1
a∗

Ṽ 2 + 2a∗Ũ Ṽ
]

− ε2
[

2rã∗Ũ − Ũ Ṽ 2
]

.

(1.57)
In Appendix 6.0.3 we derive that the GLE for this system equals the GLE for the
Klausmeier system (0.33). Therefore, patterns near the Turing-Hopf point of the
GKGS-system for large c are, to first order, described by the Klausmeier system.
Ecologically, one may put this by saying that ecosystems for which the slope along
which the water flows downhill has a relatively steep gradient, are, to first order,
described by the Klausmeier model.
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Chapter 3

Busse balloons for the
GKGS-system

The Ginzburg-Landau analysis of the last chapter is weakly nonlinear in the sense
that it is valid only given the necessary assumption that the parameter a is close
to its critical value a∗ at which the Turing(-Hopf) bifurcation takes place, that is,
|a − a∗| = O(ε2) for a small parameter 0 < ε ≪ 1. Naturally, we are interested in
the existence of stable patterns if a is not asymptotically close to a∗. In this chapter,
by using novel techniques implemented in the continuation software package Auto

[10], we will present a complete picture of all the instabilities that spatially periodic
patterns can undergo for different values of a and fixed values for b, c and γ. This
complete picture will be called the Busse balloon, after the physicist F. Busse who
introduced the concept in [4]. Later, mostly partial presentations of Busse balloons
for reaction-diffusion systems have been presented, see [6, 30, 56] and the references
therein. To our knowledge, the first complete Busse balloon has been described in
[21]. In this chapter, we will give a description of a series of Busse balloons for the
GKGS-model. See also Figure 2.3, in which we have depicted the Eckhaus region as
part of the larger Busse balloon.

To be more precise, let us consider the GKGS-system (0.5) for some fixed B, C
and γ and let, as before, κ be the nonlinear wavenumber.1 A Busse balloon for the
GKGS-system (0.5) for B, C and γ is a (not necessarily connected) set B in (A, κ)-
space with the following property: a point (A, κ) lies in B if equations (0.5) with
parameter A allow for at least one stable periodic solution (Up, Vp) with wavenum-
ber κ. Periodic patterns on the boundary of a Busse balloon ∂B are marginally stable.

The Busse balloon is part of the larger realm of existing (i.e., not necessarily sta-
ble) patterns. Let us give a proper definition for the convenience of terminology.

1Remark that we silently switched back to the original parameters A, B and C in (0.5). We will
comment on the relation between A, B and C on the one hand and a, b and c on the other hand in
§4.3.2.

41
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The existence region or existence balloon is a (not necessarily connected) set E in
(A, κ)-space with the following property: a point (A, κ) lies in E if equations (0.5)
with parameter A allow for at least one periodic solution (Up, Vp) with wavenumber
κ. Typically, this means that the set has nonempty interior [71].

In this chapter, we present a series of Busse balloons for a number of choices for
the values of B, C and γ (we will explain our choices for the values of these param-
eters later). First, we briefly present some facts from the stability theory of wave
trains. Then, we consider the instabilities that will appear in the construction of the
Busse balloons. Thirdly, we explain the numerical continuation method.

Stability of wave trains. The GKGS-system (0.5) can be recast in a moving
frame of reference, with respect to the variables (ξ, t) = (x − st, t) (and with a slight
abuse of notation),

{

Ut = (Uγ)ξξ + (s + C)Uξ + A(1 − U) − UV 2

Vt = DVξξ + sUξ − BV + UV 2 (0.1)

The basic advantage here is that generic wave trains uper(ξ) = (Uper(ξ), Vper(ξ)) with
ξ = κx + Ωt and uper(ξ) = uper(ξ + 2π) then become stationary L-periodic solutions
for s = Ω/κ (and with L = 2π/κ),

{

0 = (Uγ
per)ξξ + (s + C)Uper,ξ + A(1 − Uper) − UperV

2
per

0 = DVper,ξξ + sUper,ξ − BVper + UperV
2
per

(0.2)

To establish spectral stability, we linearize (0.1) about uper = (Uper, Vper) by perturb-
ing the wave train with u(ξ)eλt. We obtain the linear problem (write u = (U, V )),



λU = γUγ−1
per Uξξ + D1Uξ − D2U − 2UperVperV

λV = DVξξ + sVξ + V 2
perU − (B − 2UperVper)V

(0.3)

with D1 = D1[Uper, γ, s, C] := γ(γ−1)UperU
γ−2
per,ξξ +γ(γ−1)(γ−2)U2

perU
γ−3
per,ξξ +s+C

and D2 = D2[Uper, Uper, γ, A, ] := 2γ(γ − 1)UperU
γ−2
per,ξξ + A + V 2

per. Written as a first-
order ODE, (0.3) defines a four-component system

φξ = Aλ(uper(ξ))φ (0.4)

with

Aλ(uper(ξ)) =











0 1 0 0
λ+D2

γUγ−1
per

− D1

γUγ−1
per

2UperVper

γUγ−1
per

0

0 0 0 1

−V 2
per

D 0
λ+B−2UperVper

D − s
D











, (0.5)

The matrix Aλ(uper(ξ)) is L-periodic. Hence, by Floquet theory, there exists an L-
periodic matrix Bλ(ξ) and a constant matrix Rλ such that the fundamental solution
to the above first-order system is given by
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Φλ(ξ) = Bλ(ξ)eRλξ.

Since we only allow for bounded perturbations, it follows that the Floquet exponents
ν of Φλ are purely imaginary, ν = ik. That is, the dispersion relation

d(λ, ik) := det(Φλ(L) − eikLI) = 0 for some k (0.6)

holds. This is equivalent to the boundary value problem (see [70])

λu = Liku

u(0) = u(L) (0.7)

uξ(0) = uξ(L)

with Lik : H1
per(0, L) ⊕ H1

per(0, L) → L2
per(0, L) ⊕ L2

per(0, L) defined by

Lik :=

(

γUγ−1
per ∂2 + D1 · ∂ − D2 −2UperVper

V 2
per D∂2 + s∂ − [B − 2UperVper]

)

, (0.8)

where ∂ := ∂ξ + ik. We will occasionally refer to (0.7) as the dispersion relation for
the linearization about uper.

The operator Lik has compact resolvent for each k, so its spectrum consists of
countably many isolated eigenvalues [?]. Since each of these eigenvalues is a root
of the complex analytic dispersion relation d(λ, ik), one can continue the eigenvalues
λj(k), j ∈ N globally in k. By periodicity, each homotopy along λj(k) → λj(k + 2π)
will map the set of eigenvalues λj(k), j ∈ N onto itself (notice however that it will
generally not be the case that each eigenvalue λj is mapped onto itself by the homo-
topy!). Therefore, the essential spectrum of the wave train uper will generally consist
of (at most) countably many connected components. One of these components is
connected to the translational eigenvalue at the origin.

A spatially periodic pattern is marginally stable if its associated operator Lik and the
dispersion relation d(λ, ν) (0.7) satisfy the conditions in Definition 2.1.1.

Each of the destabilization mechanisms through which a periodic pattern (Uper, Vper)
may destabilize, is characterized by a specific configuration of the essential spectrum.
The GKGS-model with C 6= 0 breaks the spatial symmetry that allows for Turing pat-
terns. This is a crucial observation, since the robust codimension-one destabilization
mechanisms for generic wave trains are in principle different from the destabilization
mechanisms for Turing patterns [71]. We only discuss the robust codimension-one
instability mechanisms that we have encountered for wave trains in our construction
of Busse balloons for the GKGS-model; these are: Turing-Hopf instability2, fold and
sideband instability. Note that Hopf instabilities and sideband instabilities are robust
destabilization mechanisms for all wave trains, while a fold is not a robust instability

2With slight abuse of terminology, in the context of perturbations of periodic patterns we abbre-
viate the Turing-Hopf instability to ‘Hopf instability’ in the rest of this paper.
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Re ReO O

ImIm

Figure 3.1: Sketches of spectra at Hopf instabilities with λ ∈ C. Left: Spectral branches for
C = 0. Due to the reversibility, the spectral branches have collapsed to curved line segments
(see [21]). Right: Spectral branches for C 6= 0.

mechanism for generic spatially periodic patterns (with Ω 6= 0 and κ 6= 0) though it
is robust for Turing patterns (Ω = 0) (see [71]).

A spatially periodic pattern uper undergoes a Hopf instability at A = A∗ if the
operator Lik in (0.8) is at marginal stability with k∗ 6= 0 at critical eigenvalue λ = iω∗
with ω∗ 6= 0. See Figure 3.1. A fold and a sideband instability are both character-
ized as instabilities for which k∗ = 0 at critical eigenvalue λ = iω∗ = 0. A sideband
instability satisfies the additional condition that

Re
∂2λ

∂k2

∣

∣

∣

∣

k=k∗

= 0. (0.9)

We have depicted the difference between the fold (in the reversible case) and the
sideband instability schematically in Figure 3.2. Note that the dispersion relation in
the reversible case possesses the symmetry d(λ, ν) = d(λ,−ν) and is thus of the form

d(λ, ik) = a1λ + a2λ
2 + a3k

2 + a4λk2 + a5k
4 + O(λ3 + k6), (0.10)

where aj ∈ R. See also [71]. A fold occurs at a1 = 0 and the sketches in the top row
of Figure 3.2 correspond to a1 < 0, a1 = 0, a1 > 0 (and aj > 0 for j > 1).

Methods and implementation notes. For the construction of the Busse bal-
loons, we have made use of the continuation and bifurcation software package Auto

(see [10]). The methods we have used to construct the Busse balloons are based upon
[70]. In this section, we describe these methods.

Using (0.2), a wave train solution (U, V ) of the GKGS-model can be written as a
first order system,
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Figure 3.2: Sketches of spectral configurations we encounter for wave trains close to marginal
stability, when a system parameter is crossing a critical value. Top row: reversible fold for
C = 0. Bottom row: sideband instability for general C.

Uξ = P

Pξ = − 1

γUγ−1

[

γ(γ − 1)Uγ−2P 2 + A(1 − U) − UV 2 + (s + C)P
]

Vξ = Q (0.11)

Qξ = −D−1
[

sQ − BV + UV 2
]

We denote the vectorfield at the right hand of (0.11) by F = F (U,P, V,Q) : R
4 → R

4

and write ψ = (U,P, V,Q)T . If we normalize the period L to unity, then (0.11)
together with the boundary condition from (0.7) can be written as

ψξ = LF (ψ)

ψ(0) = ψ(1) (0.12)

In Auto, the nonlinear equation for the wave train (0.12) is solved together with the
dispersion relation (0.7). By a translation of the independent variable via ∂ζ = ∂ξ+ik,
the dispersion relation (0.7) can also be conveniently cast as a first order system.
Translating back and normalizing the period L to unity again, one obtains

φξ = L[Aλ(uper(ξ)) − ik]φ

φ(0) = φ(1) (0.13)
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with Aλ(uper(ξ)) as in (0.4). Hence, we consider the boundary value problem

ψξ = LF (ψ)

φξ = L[Aλ(uper(ξ)) − ν]φ

φ(0) = φ(1)

ψ(0) = ψ(1) (0.14)

In Auto, we consider the boundary value problem (0.14) for general ν, as this allows
us to switch between connected components of the essential spectrum [70]. The
essential spectrum is characterized by solutions to (0.14) such that ν = ik. We also
impose the normalization conditions

∫ 1

0

〈ψξ, ψold − ψ〉 dξ = 0;

∫ 1

0

〈φold − φ〉 dξ = 1, (0.15)

where the solutions ψold and φold are solutions from a previous continuation step or
an initial solution [70].

Remark that ψ ∈ R
4 and φ ∈ C

4 ≃ R
8. Hence, we have 8+4 = 12 real unknowns.

On the other hand, we have 12 boundary conditions plus 3 real integral conditions, so
we need 3 + 1 = 4 parameters for continuation. We have at our disposal the system
parameters A, B, C and D, as well as Reλ, Imλ, the linear wavenumber k = Re ν,
the imaginary part Im ν, the comoving frame speed s and the spatial period L (that
is related to the (nonlinear) wavenumber via κ = 2π

L ).

The sideband can be continued by defining the curvature

λ|| :=
∂2Reλ0

∂k2

∣

∣

∣

∣

k=k∗

where λ0(k) is the curve through the origin, and k∗ the wavenumber associated to
λ0(k∗) = 0 at the origin (cf. (0.9)). We refer to [70] for an exact account on the
implementation.

Hopf instabilities are continued in a similar way. Hopf instabilities generically oc-
cur when a connected component of the essential spectrum crosses the imaginary
axis, see Figure 3.1(b). A sufficient condition in order to fix the spectral component
at marginal stability when a system parameter is changed, is:

Reλ|k=k∗
= 0 and

∂Reλ

∂k

∣

∣

∣

∣

k=k∗

= 0. (0.16)

This condition makes sure that the connected component of the essential spectrum
extends into the left half-plane when continued from λ(k∗) = iω∗. In Auto, one
therefore defines the tangency

λ| :=
∂Reλ

∂k
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and keeps it zero during a continuation of Hopf instabilities, along with Reλ. The
implementation can be derived in the same way as for the sideband instability by dif-
ferentiating the dispersion relation. (Note that some terms do not vanish for λ 6= 0.)

The above considerations are purely local in the spectrum. The determination of
(marginal) stability requires more effort. We refer to [70] for the algorithms.. In ad-
dition, we checked the stability of the spectrum within the Busse balloon by explicit
numerical evaluations on a grid.

3.0.7 The existence balloon

From §2.1.3 we know that the stationary state u+ undergoes a Turing-Hopf in-
stability at some A = A∗ with critical eigenmode eik∗ and critical frequency λ = iω∗.
Hence, at A = A∗ the dispersion relation of the stationary state u+ (1.6) satisfies

d(iω∗, ik∗) = 0.

In §2.1.4 we deduced by our Ginzburg-Landau approach (see also Figure 2.3), that
for A < ATH sufficiently close to the Turing-Hopf instability of the background
state u+ = (U+, V+), there exists a parabolically shaped region of periodic pat-
terns. More precisely, for A < ATH sufficiently close to ATH, there exists an interval
IA = (κ−(A), κ+(A)) such that for each κ ∈ IA there is a spatially periodic pattern
with wavenumber κ and these form a continuous family. For each A, the endpoints
κ± = κ±(A) of the interval IA are characterized by the dispersion relation of u+ at
A,

d(iΩ±, iκ±) = 0. (0.17)

We remark that this characterization for the endpoints κ± of IA holds for a full range
of A < ATH not necessarily close to ATH. An equivalent formulation to (0.17) can be
given by means of the first order ODE formulation of the linearisation about u+ (see
(0.4)),

φξ = Aλ(u+)φ. (0.18)

(notice that Aλ(u+) is a constant matrix here). The dispersion relation (1.6) satisfies
(0.17) for some Ω∗ and κ∗ if and only if there exists an Ω∗ such that there is a solution
to (0.18) for λ = iΩ∗ that has purely imaginary eigenvalues ν = iκ∗.

More generally, λ ∈ C is in the essential spectrum of u+ if and only if there is
a solution to (0.17) for some ν = iκ. Since the wavenumbers ν from the dispersion
relation of the stationary state u+ (1.6) appear as eigenvalues to the spatial ODE
(0.18), they are also referred to as spatial eigenvalues. With Auto, we have traced
out a curve of boundary points κ± = κ±(A) that mark the boundary of the existence
balloon in (A, κ)-space. By construction, this provides an extension of the existence
of the band of periodic patterns near the Turing-Hopf instability that is predicted by
the GLE.

We digress a little on the characterization of the boundary of the existence balloon.
Let C 6= 0, and consider fixed A and κ+ = κ+(A), so that there exists a λ = iΩ
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Figure 3.3: The boundary of the existence region near the Turing and Turing-Hopf bifur-
cations. Closed curves are sketches of some periodic patterns for fixed A, illustrating the
amplitude variations. Compare with Figure 2.3. Insets show the configurations of spatial
eigenvalues of u+ at the boundary of the existence balloon at this value of A. (a) the
reversibly symmetric case C = 0 with s ≡ 0; spatial eigenvalues are two pairs of purely
imaginary values. (b) Asymmetric case C, s 6= 0, where spatial eigenvalues change with s;
note that at each end of the dotted curve, a different (single) pair of eigen valueslies on the
imaginary axis.

such that (0.18) has purely imaginary spatial eigenvalue κ+ and therefore a pair of
complex conjugated spatial eigenvalues ±κ+. Hence, for fixed A, and by changing
the speed s of the comoving frame, typically two spatial eigenvalues ±iκ+ cross the
imaginary axis so that a Hopf bifurcation occurs. Therefore, locally there exists a
one-parameter family of periodic orbits parametrized by the speed s.

Likewise, there exists a one-parameter family of periodic orbits when the other pair
of eigenvalues ±κ− crosses the imaginary axis. By a continuation of the two families
of periodic patterns with Auto, we have found that they are connected. See Figure
3.3(b). This extends the band of periodic patterns that is described by the GLE close
to the Turing-Hopf bifurcation for A = ATH.

If C = 0, the reversible symmetry forces the spatial spectrum to be symmetric with
respect to the real axis and the imaginary axis. At the Turing bifurcation of the sta-
tionary state u+, the spatial spectrum shows a 1:1 reversible Hopf bifurcation: there
are two identical pairs of complex conjugate purely imaginary spatial eigenvalues ±k∗.
By the reversible symmetry, for A < ATH , two pairs of spatial eigenvalues will move
along the imaginary axis. Then one can apply the reversible Lyapunov center theorem
[9]: for (non-resonant) κ− as well as for (non-resonant) κ+, there is a one-parameter
family of periodic orbits with limiting wavenumber κ± as the orbits approach the
background state u+. (At resonances additional bifurcations occur, which are not
relevant here.) Again, by continuation, we find that the family that emerges from κ−
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Figure 3.4: The V±-component of the stationary states u± against A, with B = 1. (a)
reflection symmetric case C = 0. (b) the nonsymmetric case C 6= 0. The insets show the
typical configuration of the spatial spectrum of the stationary state u+. In the nonsymmetric
case, the spatial spectrum depends on s – the speed of the pattern – and thus various distinct
configurations have been plotted. Compare to Figure 3.3.

is connected to the family that emerges from κ+, which in turn extends the connected
band of periodic solutions close to the Turing-Hopf bifurcation that we know from
the Ginzburg-Landau analysis. See Figure 3.3(a).

The spectral stability of a stationary state is partly characterized by its spatial spec-
trum. In Figure 3.4 we have plotted the spatial spectrum of the stationary states u+

and u− for different values of either A and the comoving frame speed s. We briefly
comment on Figure 3.4(b) here. First, we check that the speed of the critical pattern
that appears at the Turing-Hopf instability equals s∗ = −ω∗

k∗

. If we write the (sta-
tionary) dispersion relation ds(λ, ν) in (1.6) with respect to a comoving coordinate
ξ = x − st, it holds that ds(λ, ν) = d0(λ − sν, ν). In particular, if k∗ 6= 0 we see

dω∗/k∗
(0, ik∗) = d0 (iω∗, ik∗) = 0.

Secondly, the spatial spectrum of the fold of the stationary states u− and u+ is
characterized by a complex conjugated pair of purely imaginary eigenvalues that come
together in the origin and move on to the real axis. Thirdly, we remark that for fixed
ASN < A < ATH for any relevant value of s and κ−(A) < κ < κ+(A), the spatial
spectrum of the stationary state u+ has no intersection with the imaginary axis. In
Figure 3.4(b), s+ is the critical frame speed when κ+ crosses the imaginary axis and
s− is the critical frame speed when κ− crosses the imaginary axis. In the pictures
of spatial spectra for the different si, i = 1, 2, 3 it is understood that the comoving
frame speed s varies but differs from either s−, s+ or s∗.

3.0.8 Busse balloons for the GKGS-model

In this section we present a series of Busse balloons for a number of parameter
sets, that we have constructed using Auto (by methods discussed above).



50 CHAPTER 3. BUSSE BALLOONS FOR THE GKGS-SYSTEM

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

equilibrium

Busse balloon

fold

equilibrium

Hopf

A

upper branch of
sideband instabilities

sideband instabilities
lower branch of

κ

Figure 3.5: Busse balloon and existence balloon for B = 0.2, C = 0.4, γ = 1. Here, periodic
patterns become unstable by either sideband or Hopf instability. Compare Figure 1.5.

In [46] the parameters of the Klausmeier model have been estimated. In our scaling of
the GKGS-model, it is estimated that Atree ∈ [18.9, 169], Btree ∈ [5.7 ·10−3, 5.1 ·10−2]
and Dtree ∈ [4.2·10−4, 1.2·10−2] and that Agrass ∈ [0.127, 1.13], Bgrass ∈ [5.7·10−2, 5.1·
10−1] and Dgrass ∈ [5.2 ·10−3, 1.5 ·10−2]. The advection term that measures the slope
of the surface has been put to C = 182.5. We therefore set B = Bgrass = 0.2 and
D = 1.0 ·10−3. In the results we are about to present, we found interesting behaviour
for C satisfying 0 < C < 1, which is relatively small compared to the estimate of C
in [46]. There seem to be no significant changes in the characteristics of the Busse
balloon for C > 1. Therefore, we focus on Busse balloons with these parameter values
for C rather than on Busse balloons with C ≈ 182.5. This means that we focus on a
presentation of Busse balloons that describe periodic patterns for ecosystems with a
weaker slope than in [46]. The power γ in the nonlinear diffusion term is either set
to γ = 1 or γ = 2.

We have checked that the Turing-Hopf bifurcation indeed takes place at the parame-
ter values predicted by the analysis in §2.1.2 and 2.1.3. Consider for instance Figure
3.5. There, B = 0.2, C = 0.4, D = 0.001, γ = 1 and further ATH ≈ 1.24 and
k∗ ≈ 9.1. The estimates for a∗ and k∗ from Proposition 2 are satisfied given that
(2γ + 1)β − (γ + 1)α = 2σ. Further, it must hold that ν satisfies its critical scaling
(1.18): ν = 1

2 (3 − γ)α + (γ − 2)β. For α = 1
2 , β = 1, γ = 1, ν = − 1

2 and σ = 1

(so that D = 0.001 gives δ =
√

0.001) these conditions are satisfied. The rescaling

for k introduced in §2.1.3 is then: k∗ = δ
1
2
(γ+1)α−γβ k̃∗ = 1.62 since k̃ ≈ 9.0. Fur-
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ther, we compute a∗ = Aδ−α = 1.24 · δ−1/2 = 7.0, b = Bδ−β = 0.2 · δ−1 = 6.3 and
c = Cδ−ν = 0.4 ·δ1/2 = 0.07. Hence, the estimates of Proposition 2 are easily verified:
k2
∗ = 1.622 < 6.3 = b and a2

∗ = 7.02 > 42.9 ≈ (3 − 2
√

2) · 6.33.

Both branches of sideband instabilities extend far into the region that is not asymp-
totically close to ATH. More precisely, there exists an interval Isb = (Asb, ATH) such
that for each A ∈ Isb there is an interval (κsb−(A), κsb+(A)) of stable patterns that
destabilize by sideband instabilities at κsb−(A) and κsb+(A). Notice that this is anal-
ogous to the existence of the Eckhaus region of stable patterns near ATH (see Figure
2.3).

3.0.8.1 Hopf instabilities In Figure 3.5 both branches of sideband instabilities
are crossed by a branch of Hopf instabilities. The nature of these Hopf instabilities
can be better understood if we first deal with the situation for C = 0, so we first
discuss the Hopf instabilities for C = 0 and refer to the more elaborate account on
this topic in [21] when necessary.

H1

A A

Hm1

inner hull of Hopf
instabilities

Hm2

H1

κ κ

H−1
H−1

Figure 3.6: Left: sketch of a Hopf dance for the GKGS-model with C = 0. Right: four Hopf
curves, each associated to a different Floquet multiplier m. For each m ∈ S

1 there exists a
Hopf curve Hm. At the right, the inner hull of Hopf instabilities forms the boundary of the
Busse balloon. It is assumed that m1 6= m2 and m1, m2 6= ±1. The horizontal lines indicate
the stable region.

For C = 0, the branch of Hopf instabilities decouples in two intertwining curves of
Hopf bifurcations (see [21]). As is shown in [21], the reversibility induces a symmetry
of the essential spectrum Σess. See, for example, Figure 3.1. Each connected compo-
nent that has the structure of a closed loop for C > 0, collapses to a (slightly) bended
line-segment in the limit C = 0. Due to an additional effect (called the ‘Belly-dance’,
see [21]), a Hopf instability occurs only if one of the end points of the destabilizing
line segment crosses the imaginary axis (see Figure 3.1(b)). It is shown that the end
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points are associated with Floquet multipliers m = eik· 2π
L that satisfy m = −1 or

m = 1. Hence, the Hopf bifurcation for C = 0 occurs either with respect to a Fourier
mode that is in phase (m = 1) with the destabilizing periodic pattern or with re-
spect to a Fourier mode that is exactly out of phase (m = −1) with the destabilizing
pattern. Each of these instabilities traces out a different curve in (A, κ)-space. As
a consequence, in the reversible case the boundary of the Busse balloon associated
to a Hopf bifurcation, typically has a (nonsmooth) fine structure of two intersecting
curves, one associated to m = 1 and the other to m = −1, separated by co-dimension
two points; the intersections of these m = ±1 curves.

For C > 0, the reversible symmetry is broken. Therefore, the essential spectrum
consists of at most countably many open or closed loops. Each loop is parametrized
by Floquet exponents k, k ∈ [0, L], or equivalently, by Floquet multipliers m ∈ S

1. A
Hopf instability occurs when a loop crosses the imaginary axis. In Figure 3.1(a) one
can see a closed loop of essential spectrum crossing the imaginary axis. The destabi-
lizing Fourier mode is characterized by its Floquet multiplier m ∈ S

1. The difference
between the reversible case and the irreversible case is that in the irreversible case the
destabilizing modes exhaust all Floquet multipliers m ∈ S

1, while in the reversible
case the destabilizing Floquet multiplier is either m = −1 or m = 1. For each Floquet
multiplier m ∈ S

1 there exists a curve of Hopf instabilities that is associated to m.
The multitude of these curves defines an inner hull of Hopf instabilities that is the
boundary of the Busse balloon. See Figure 3.6 for a schematic picture.

3.0.8.2 The homoclinic fall of patterns An intriguing characteristic of all
Busse balloons we have constructed for the GKGS-equation is that the homoclinic
pattern, i.e., a localized vegetated ‘oasis’ state with wavenumber κ = 0, is the last
pattern to become unstable if we change A and keep all other parameters fixed. On
the one hand, this is not atypical for reaction-diffusion models; in the context of
Gierer-Meinhardt type equations it is called Ni’s conjecture (see [60] and [21] for a
deeper discussion). On the other hand, it is certainly not well understood why this
‘homoclinic fall of patterns’ turns up naturally in reaction-diffusion equations.

The homoclinic fall of (stable) patterns is strongly associated to the appearance of
the ‘Hopf-dance’ at the boundary of the Busse balloon near the homoclinic tip that
we described in §3.0.8.1. In fact, the Hopf-dance phenomenon has been discovered
in the context of our research of the GKGS model and led to [21] as ‘spin-off’. In
this paper it is shown for a class of reversible model problems that the intertwining
m = ±1 Hopf curves described above (§3.0.8.1) accumulate on the homoclinic tip
of the Busse balloon as A approaches its minimal value (for which stable periodic
patterns exist). Thus, the curves have countably many intersections that accumulate
on the homoclinic tip of the Busse balloon – see Figure 3.6(a) for a schematic sketch.
The GKGS-model is not of this class (certainly not for γ = 2) but we found that all
Busse balloons for the GKGS model with C = 0 do exhibit this ‘Hopf-dance’ near
the homoclinic tip. Of course, this fine structure and its associated co-dimension two
points immediately disappear as C becomes unequal to zero and gives rise to a simple
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smooth oscillating curve of Hopf instabilities. See Figure 3.6.

3.0.8.3 Upper branch of sideband instabilities An intriguing phenomenon
is the fact that this branch of Hopf instabilities crosses the upper branch of sideband
instabilities, moves out of the Busse balloon for increasing C. See Figure 3.7 for a se-
ries of (zoomed in) Busse balloons and a schematic sketch from which the ‘dynamics’
of the Hopf bifurcation curve are more clear. More precisely, there exists a CT1

> 0
such that the branch of Hopf instabilities is tangent to the branch of sideband insta-
bilities. For C slightly larger than CT1

, two connected components of the boundary
of the Busse balloon consist of Hopf instabilities. At C = CH > CT1

the branch of
Hopf instabilities gets connected to the origin. For C slightly larger than CH , locally
there is only one connected component of the boundary of the Busse balloon that
consists of Hopf instabilities. If one increases C even further, it passes a second value
CT2

at which there is a tangency between the branch of Hopf instabilities and the
branch of sideband instabilities. For C > CT2

the sideband is the only destabilization
mechanism for long wavelength patterns.

If C = 0, the sideband reaches the A-axis at A 6= 0. However, the intersection of
the upper branch of sideband instabilities with the A-axis rapidly moves to A = 0 as
C is increased. This is certainly not fully understood.

3.0.8.4 Lower branch of sideband instabilities We recall that the lower
branch of sideband instabilities is intersected by a branch of Hopf instabilities as
well. See Figure 3.8, where we have magnified the intersection between the lower
branch of sideband instabilities and the right branch of Hopf instabilities. It is visible
as a strikingly sharp cusp. In Figure 3.8 we have also depicted the spectrum asso-
ciated to the stability of a solution at the sideband instability close to the crossing
point, denoted by À, the spectrum associated to the solution at the crossing point,
denoted by Á, and the spectrum associated to a solution close to the crossing point
undergoing a Hopf instability, denoted by Â. The crossing point Á is a codimension-
two point at the boundary of the Busse balloon: the solution at the crossing point
simultaneously undergoes a sideband instability and Hopf instability, as is visible in
the plot of the spectrum of solution 2.
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Figure 3.7: Upper panels: The left Hopf curve moving out of the Busse balloon for increasing
C. The horizontal lines indicate the stable region. Center panel magnify the box in left
panels. The fold curve in the upper left panel has not been plotted in the other panels for
readability. Lower panels: A schematic sketch of the same process (sb=sideband). (a) The
curve of Hopf instabilities has one intersection with the upper branch of sideband instabilities.
(b) At C = CT1 , there is a tangency between the two curves. (c) For CT1 < C < CH there are
two connected components of the boundary of the Busse balloon formed by Hopf instabilities.
(d) At C = CH , the curve of Hopf instabilities is connected to the origin: only one connected
component of the boundary that consists of Hopf instabilities. (e) At C = CT2 , there is a
second tangency between the two curves remains. (f) For C > CT2 , the sideband remains as
the only destabilization mechanism in the homoclinic tip (see §3.0.8.2).
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the origin for the solutions 1, 2 and 3 indicated in the magnification are plotted in the three
figures at the bottom.
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Figure 3.9: The right branch of Hopf instabilities disappears into the A-axis when C ↓ 0.
At the left, we see a part of the Busse balloon for C = 0.1. In the middle, C = 0.01. At the
right, C = 0.001. The fold curve plotted in the left panel has moved very close to the Hopf
and sideband curves in the other panels so that it cannot be visually distinguished.

When C approaches zero, the lower branch of sideband instabilities stretches out to-
wards the A-axis and thereby decreases the size of the branch of Hopf instabilities.
The Hopf instabilities disappear at C = 0 where also the sideband curve merges with
the very nearby fold curve (see [21]). The fact that reversible folds yield sideband
instabilities upon symmetry breaking can be readily seen by perturbing (0.10). See
also Figure 3.2. In Figures 3.9 we have plotted three close-ups of the Busse balloons
for C = 0.1, C = 0.01 and C = 0.001.

A second intriguing phenomenon is the irregular ‘jazzy’ behaviour of the lower branch
of sideband instabilities for relatively small C (C = 0 to approximately C = 0.8). See
Figure 3.10. This fine structure of the lower branch of sideband instabilities is in sharp
contrast with the regular, parabolically shaped Eckhaus region for A near ATH. Even
a closed curve of sideband instabilities occurs (see Figure 3.10(b)). For increasing C,
the fine structure gradually disappears.

While the fine structure of sideband instabilities lies in the unstable region, we digress
a little on its structure and location within the existence region. To the right of the
fine structure lies the fold curve mentioned above (see Figure 3.9, left), which we refer
to as the right fold. For the C values considered in Figure 3.10, the right fold curve
(see the discussion in §4.4.1) terminates on the equilibrium curve at some (Afe, κfe)
near (0.8, 4). Hence, for A < Afe there is a second co-existing ‘sheet’ of (unstable)
spatially periodic patterns.

In the lower panel of Figure 3.11(a) we plot (for a different C) the L2-norm for
fixed κ to illustrate the different sheets of solutions. Here the co-existence region
is rather small. See top right panel. continuation of periodic patterns for constant
wavenumber κ. Comparison with Figures 3.9 and 3.10 shows how the fine structure
of sideband instabilities is to the left of the right fold, thus lying on the same “sheet”
of solutions as the stable periodic patterns of the Busse balloon.

An additional phenomenon of the existence region is shown by the region near A = 0.3:
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Figure 3.10: (a-d) The fine structure of the lower branch of sideband instabilities for B = 0.2
and (a) C = 0.2, (b) C = 0.4, (c) C = 0.6, (d) C = 1.0. The equilibrium continues through
the fold and reaches a second sheet of (unstable) patterns; therefore it is plotted with a
dashed curve. The intersection point of the Hopf instabilities with the sideband is indicated
with a black circle. Also, the intersection point of the fold with the equilibrium is indicated
with a black circle. Note that some pieces of the curve of sideband instabilities are missing;
here the continuation of the sideband with Auto becomes extremely difficult since the norm
of one of the eigenvectors in (0.15) rapidly increases.

there are two more folds which emerged through a cusp bifurcation when decreas-
ing C from C = 0.2. lower branch, thereby giving rise to a cusp. We notice that
this behaviour of the unstable sheet of solutions close to the Busse balloon is highly
nongeneric. Indeed, the existence region has a much richer structure than what we
encounter within the Busse balloon. Finding out the precise geometrical mechanism
that triggers the formation of this cusp is beyond the scope of the present paper.
However, this will be the subject of future research.
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existence balloon. The thick line indicates the value of κ used in (a).
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3.0.9 Busse balloons for C > 0 and γ = 2

We are not aware of any (even partial) representations of a Busse balloon for a
system with nonlinear diffusion in the literature. Nevertheless, the approach with
Auto developed here can also be directly applied to the GKGS model (0.5) with
γ > 1. In Figure 3.12 an existence and a Busse balloon for periodic patterns of the
GKGS-model with γ = 2 and B = C = 0.2 are shown. One can see that the structure
of the Busse balloon of the existence region closely resembles the structure of the
Busse balloon and existence region of the GKGS-model for γ = 1 (see for instance
Figure 3.5).

As before for γ = 1, we check that the Turing-Hopf bifurcation indeed takes place
at the parameter values predicted by the analysis in §2.1.2 and §2.1.3. We there-
fore check whether k2

∗ < b and a3
∗ = aγ+1

∗ > gγb2γ+1 = 2gb5 with k = k∗ scaled
as in §2.1.3 and Figure 3.12. There, B = 0.2, D = 0.001, γ = 2 and further
ATH ≈ 0.525 and k∗ ≈ 8.9. If γ = 2, the estimates for a∗ and k∗ from Proposi-
tion 2 are satisfied given that 5β − 3α = 2σ. Since D = δ2σ = 0.001 we choose
σ = 1 and δ =

√
0.001 and α = β = σ = 1. The rescaling for k introduced in

§2.1.3 is then: k̃∗ = δ−
1
2
(γ+1)α+γβk∗ = δ1/2k∗ = (0.001)1/4 · 8.9 ≈ 1.58. Further,

we compute a = Aδ−α = 0.525 ·
√

1000 ≈ 16.6 and b = Bδ−β = 0.2 ·
√

1000 ≈ 6.3.
Hence, the estimates of Proposition 2 are verified by k2

∗ = 1.582 < 6.3 = b and
a3
∗ = 16.63 ≈ 4.75 · 103 > 3.47 · 103 ≈ 2gb5.

A priori, the GKGS-model for γ = 2 can of course not be interpreted as a ‘per-
turbation’ of the GKGS-model for γ = 1. Quantitatively the structure between the
Busse balloon for γ = 2 and the Busse balloons for γ = 1 is quite different. This is
already apparent in the simple verification of the parameter estimates for a, b and
c above. Nevertheless, qualitatively the structure of the Busse balloon for γ = 2 is
remarkable akin to the structure of the Busse balloons for γ = 1. All main features of
the (behavior of the) Busse balloon for various C as studied in the previous section
for γ = 1 and described in the Introduction, also appear for γ = 2. Figure 3.12 shows
that the sideband instabilities make most of the boundary of the Busse balloon, until
the upper and lower branches of sideband instabilities are crossed transversally by
Hopf instabilities for decreasing wavenumbers k. Also, for relatively small C > 0
there is a ‘Hopf dance’ (if C = 0) in the homoclinic tip of the upper branch of side-
band instabilities. In the Figure, where C = 0.2, there is a Hopf curve crossing the
upper branch of sideband instabilities. Just as in the case for γ = 1, the left curve of
Hopf instabilities disappears into the unstable region for bigger values of C. These
are not new phenomena and are known from the previous numerical analysis of the
GKGS-model for γ = 1.
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Figure 3.12: An existence balloon (left) and a Busse balloon (right) for the GKGS-model
with γ = 2. B and C are B = C = 0.2. The intersection points of the Hopf instabilities
with the upper and lower curves of sideband instabilities are indicated with a black circle.



Chapter 4

Hopf dances near the tips of
Busse balloons

4.1 Introduction

The (complex) Ginzburg-Landau equation exhibits bands of stable periodic patterns
that are generically destabilized by the sideband (or Eckhaus, or Benjamin-Feir) insta-
bility mechanism. Moreover, the boundary of a Busse balloon near onset is generically
given by a parabola – the Eckhaus parabola – of sideband destabilizations, see chapter
2. Ginzburg-Landau theory is a general and very powerful theory, however, it only
applies to the asymptotically small part of a Busse balloon near onset.

Of course, one can in general not hope to obtain a full analytical control over an entire
Busse balloon. As for the Ginzburg-Landau theory one should only expect to be able
to capture small, but essential, parts of the Busse balloon by analytical means (see
however Remark 1.1). Moreover, it is at present too ambitious to propose to develop
a theory for ‘far-from-equilibrium-patterns’ that is as general as Ginzburg-Landau
theory. Based on recent developments in the (mathematical) theory, we nevertheless
claim it is possible to consider the above question in the setting of a well-specified
class of problems: the stability and destabilization of nearly localized, spatially peri-
odic patterns in reaction-diffusion equations, see Figure 4.1. This class of problems
is especially interesting, since there are quite a number of results in the literature
that indicate that these (singular) long wavelength periodic multi-pulse/front/spike
patterns appear as the ‘most stable’ – i.e the last periodic patterns to destabilize –
spatially periodic patterns [17, 44, 48, 49, 56, 58, 60, 68, 97]. This is also confirmed
by the Busse balloon for the Gray-Scott system (1.1) presented in Figure 4.2(a): for
decreasing A, stable patterns appear at a Ginzburg-Landau/Turing bifurcation and
eventually disappear at a ‘tip’ at which the wavenumber k approaches zero (i.e. at
which the wavelength of the patterns becomes large). Thus, these singular patterns
may indeed represent an essential (but small) part of the Busse balloon. Complemen-
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Figure 4.1: Two typical stationary, nearly localized, reversible spatially periodic pat-
terns with different wavelengths L/wavenumbers k. These patterns coexist as stable
solutions of the Gray-Scott model (1.1) with A = ε4 = 0.01 and B = 0.060 [16].

tary to the small amplitude Ginzburg-Landau patterns that indicate the ‘bottom’ of
the Busse balloon at which patterns appear, the nearly localized patterns may form
the ‘tip’ of the Busse balloon at which the stable periodic patterns disappear.

Therefore, we focus in this chapter on the study of Busse balloons associated to
periodic patterns in reaction-diffusion systems in one spatial dimension. In the nu-
merical (first) part of the chapter, we do consider a ‘full’ Busse balloon, but only
in the context of a very explicit, singularly perturbed two component model, the
well-studied Gray-Scott equation,

{

Ut = Uxx + A(1 − U) − UV 2

Vt = ε4Vxx − BV + UV 2 , (1.1)

in which A,B > 0 and ε > 0 are parameters (and 0 < ε ≪ 1 in the singularly
perturbed setting). In the analytic part of this chapter, we restrict ourselves to the
nearly-localized tip of the Busse balloon, in the context of a certain (sub)class of
problems that a priori includes the patterns considered in the Gray-Scott model (see
sections §4.1.2 and §4.3.5): the stability and destabilization of nearly localized re-
versible patterns in singularly perturbed two component reaction-diffusion equations.

The specific choice to restrict the analysis to singularly perturbed systems is motivated
by the state-of-the-art of the mathematical theory for the existence and stability of
nearly localized periodic patterns. There is a well-developed qualitative mathematical
theory for (one-dimensional) localized structures, such as (homoclinic) pulses/spikes
and (heteroclinic) fronts, in reaction-diffusion equations – see [76] and the references
therein. By the methods developed in [35, 36, 78], it is possible to extend this theory
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to nearly-localized spatially periodic patterns. However, at this point, the general the-
ory does not provide the amount of quantitative information necessary to study the
nearly homoclinic (k = 0) tip of Busse balloons in full detail. Such a more quantitative
theory has been developed in the context of singularly perturbed reaction-diffusion
equations, both for the localized patterns [17], as well as for the nearly-localized spa-
tially periodic patterns [68]. We refer to section §4.6 for a discussion of the extension
of our main results to non-singularly perturbed systems.

The generic mechanism proposed here – the ‘Hopf dance near the tip of Busse balloons’
– is graphically presented in Figure 4.2. Figure 4.2(a) is the outcome of a comprehen-
sive numerical study of the stability and existence boundaries in (parameter,wavenumber)-
space of spatially periodic patterns of the Gray-Scott model, by means of continua-
tion techniques (see especially [70]). Although the Gray-Scott system is one of the
most thoroughly studied reaction-diffusion systems in the recent literature, see e.g.
[16, 18, 23, 48, 49, 56, 57, 58, 62, 63, 66, 67, 73, 98], we are not aware of a compara-
ble comprehensive (numerical) study of periodic patterns in the Gray-Scott model (a
rough approximation of this Busse balloon, obtained by direct simulation the Gray-
Scott model, has been presented in [56]; in [89] the same continuation approach has
been used to study the stability of periodic patterns in lambda-omega systems, where
it can be reduced to the much more simple case of constant coefficients). The ‘Hopf
dance’ is performed by two intertwined snaking curves of Hopf instabilities, denoted
by H±1 in Figure 4.2, that terminate in the limit k = 0 at the Hopf bifurcation of
the limiting homoclinic pulse. Figure 4.2(b) gives a schematic sketch of the Hopf
dance destabilization mechanism. The curve H+1, represents a Hopf destabilization
in which all extrema of the pattern start to oscillate exactly in phase at the bifurca-
tion; at H−1 the maxima (or minima) of the patterns that are one period away from
each other begin to oscillate exactly out of phase. The Hopf dance gives the boundary
of the Busse balloon a fine structure of alternating pieces of the curves H+1 and H−1,
representing different types of destabilizations, separated by an infinite sequence of
corners, or co-dimension 2 points.

The H±1 Hopf instabilities stem from the intersections with the imaginary axis of
the endpoints of a bounded curve of the spectrum associated to the linearized stabil-
ity of the periodic pattern (see section §4.2). To leading order, this spectral curve is a
straight line segment that, as a function of decreasing wavenumber k, rotates around
its center while shrinking exponentially in length. At second order, the spectral curve
is bent, and it is striking to note that its overall curvature oscillates with twice the
frequency of the rotation, so that the most unstable point of the spectral curve can-
not be an interior point, but must always be one of the two H±1 endpoints. In this
chapter, we refer to this oscillation as the ‘belly dance’.

A priori, the Hopf (and belly) dance performed by the (spectrum associated to
the) periodic patterns in the Gray-Scott model may seem very special, and thus non-
generic, behavior. However, this is not the case. In the second part of this chapter,
§4.4–§4.5, we prove that both the Hopf and the belly dances occur in a class of two
component, singularly perturbed reaction-diffusion systems that includes the gener-
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Figure 4.2: (a) A Busse balloon associated to the Gray-Scott equation, (1.1) with
B = 0.26 and ε4 = 0.001, embedded in the associated existence balloon, i.e. the
region in (parameter, wavenumber)-space in which spatially periodic patterns exist
(but are not necessarily stable). For decreasing A, the Busse balloon is initiated by a
Turing/Ginzburg-Landau bifurcation; it ends at a ‘homoclinic tip’ at A of the order
of ε4. The boundary segments are labeled according to their type: for existence these
are curves of folds (sn1, sn2) and of vanishing amplitude at equilibria; for stability
these are curves of Hopf instabilities, sideband instabilities and also folds – the exact
meaning and interpretation of these labels are discussed in detail in section §4.3.
Bullets mark corners (co-dimension 2 points). The inset enlarges the rectangular
region near the homoclinic (k = 0) limit at which the Hopf dance of the curves H±1

occurs. Note that only the first three intersections of the curves H±1 have been
plotted. (b) A schematic sketch of the Hopf dance at the homoclinic tip of a Busse
balloon; µ is a parameter and µH indicates the Hopf bifurcation value associated to
the homoclinic pulse pattern that appears as k ↓ 0.

alized Gierer-Meinhardt model [17]. Based on the Evans function analysis of [68], we
give explicit formulas for the leading and next order geometry of the spectral curves
associated to the stability of the nearly localized spatially periodic patterns in this
class of systems. In particular, our formulas give explicit expressions (in terms of
exponentially small quantities in ε) for the local (fine) structure of the boundary of
the Busse balloon. Moreover, we identify the quantity that determines whether the
limiting homoclinic k = 0 pulse is the last periodic pattern to become unstable as the
parameter varies (called Ni’s conjecture [60], see Remark 5.4). Similarly, we identify
the quantity that determines the orientation of the belly dance, that is, whether the
H±1 endpoints of the spectral curves are always the most unstable or not. In the
latter case, the actual stability boundary will be a smoothed out version of that ob-
tained from considering the endpoints alone, see Figure 4.10 and section §4.6.
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We conclude this chapter by a discussion of the robustness of the Hopf dance desta-
bilization mechanism within larger classes of systems (section §4.6).

Remark 1.1 An important class of equations with a rich, and relatively easy to
study, class of periodic patterns (or wave trains) is the widely studied complex
Ginzburg-Landau equation. In the most simple case, the real Ginzburg-Landau equa-
tion, the boundary of the Busse balloon is in its entirety given by the (unbounded)
Eckhaus parabola of sideband instabilities. For the general (complex) cubic Ginzburg-
Landau equation, the Busse balloon may be non-existent, or its boundary may consist
of certain Hopf bifurcations [54]. The structure of the Busse balloon becomes less
simple, and for instance includes co-dimension 2 corners, for (extended) cubic-quintic
Ginzburg-Landau equations that occur near the transition of super- to subcritical
bifurcations [14, 30, 83, 84]. In fact, the analysis in [30] indicates that there may even
be bounded Busse balloons in this case.

Remark 1.2 Some aspects of the Hopf dance destabilization mechanism were already
found analytically in [68] for the special case of the classical Gierer-Meinhardt model.
However, it was not yet recognized in [68] as a generic phenomenon, and not analyzed
in detail.

4.1.1 The setting

In their most general form, two component reaction-diffusion equations in one
spatial dimension are given by,

{

Ut = Uxx + F (U, V ; ~µ)
Vt = D2Vxx + G(U, V ; ~µ)

(1.2)

The reaction is described by the vector fields F,G : R
2 → R

2 that depend on the
parameter(s) ~µ ∈ R

m (m ≥ 1) in the problem. The system is considered on the
unbounded real line, i.e. x ∈ R, and x is scaled such that the diffusion coefficient
associated to U is 1; V diffuses with coefficient D2 > 0.

The stationary problem associated to (1.2) consists of two purely second order or-
dinary differential equations in the time-like space variable x. Such equations always
possess a reversible symmetry induced by spatial reflection x → −x. Solutions that
are reflection symmetric in x are called reversible, which is the case for all solu-
tions that are relevant for our purposes. Reflection symmetric periodic patterns, or
standing wave trains, of (1.1) are reversible periodic orbits and typically persist as
periodic orbits under perturbation with an adjusted period L (or wavenumber k), e.g.,
[25, 71]. Hence, we can expect open regions of existence in the (~µ, k)-parameter space.

Let (Up(x; k), Vp(x; k)) be such a family of stationary spatially periodic patterns with
associated periodic solutions γp(x; k) of the 4-dimensional (spatial) dynamical system
for stationary solutions of (1.2). Existence regions then come as (maximal) connected
regions Ie(~µ) ⊂ R in k for which (Up(x; k), Vp(x; k)) exist. Note that for a given ~µ,
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Ie(~µ) may only be one of several disjoint existence regions. The physically most rele-
vant patterns are the solutions of (1.2) that are dynamically stable. In this chapter we
are only concerned with spectral stability. We define σ = σ(Up, Vp) as the spectrum
associated to the linearization about a pattern (Up(x; k), Vp(x; k)) (1.2) and call a
pattern spectrally stable if σ ∩ {Re(λ) ≥ 0} = {0}, and if the curve of σ through the
origin has quadratic tangency, see e.g, [71]. Stable periodic patterns form a subset
of Ie(~µ). Let Is(~µ) ⊂ Ie(~µ) be a connected component of this subset in the sense
that (Up(x; k), Vp(x; k)) destabilizes as k approaches the boundary of Is(~µ). A Busse
balloon BB of (1.2) is defined as a connected component of the (~µ, k)-parameters of
stable periodic patterns, that is,

BB =
⋃

~µ∈Rm

(~µ, Is(~µ)) ⊂ R
m+1, (1.3)

see also Remark 1.3. For practical reasons, one often fixes (m − 1)-components of ~µ
and only plots a two-dimensional cross-section of BB in (µj , k)-space – see Figure 4.2.

The reversible symmetry has consequences for the (stability) boundary of the Busse
balloon. According to [71], the following types of instabilities can generically occur
along curves of the boundary. Where noted, this is with respect to a destabilizing
mode ei(αt−ηx) (and its complex conjugate).

‘Sideband’ curvature of the curve of σ at the origin changes sign through
the instability (also called Benjamin-Feir or Eckhaus instability)

‘Hopf’ α 6= 0, η 6= 0 (also called Turing-Hopf)
‘Turing’ α = 0, η 6= 0
‘Period doubling’ as Turing, but with η = k/2,
‘Pure Hopf’ as Hopf but with η = 0,
‘Fold’ the pattern undergoes a saddle-node bifurcation.

In all cases σ∩{Re(λ) ≥ 0} = {0, iα,−iα}, where α = 0 for sideband, fold and Turing.

Inspired by the Hopf dance observed in the Gray-Scott model, we focus in the analytic
part of this chapter on the ‘normal form model’ for large amplitude pulse patterns to
singularly perturbed equations given by

{

ε2Ut = Uxx − ε2µU + Uα1V β1

Vt = ε2Vxx − V + Uα2V β2 ,
(1.4)

in which 0 < ε ≪ 1. This model is known as the generalized Gierer-Meinhardt equa-
tion [17, 43, 44, 60, 97, 99]; U(x, t), V (x, t) are scaled versions of their counterparts
in (1.2) and are by construction O(1) w.r.t. ε. This equation was originally derived
as leading order normal form model for large amplitude pulse patterns to singularly
perturbed two component reaction-diffusion equations in [17]. It is derived from equa-
tions of the type (1.2) by imposing a couple of assumptions:
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(A-i) the system has a stable ‘background state’ (U(x, t), V (x, t)) ≡ (0, 0);
(A-ii) the equations decouple at the linear level (i.e. as ‖(U, V )‖ becomes small);
(A-iii) the nonlinearities grow algebraically and are ‘separable’ in a sense explained in §4.1.2.

We refer to section §4.1.2 for a sketch the derivation of (1.4) and the conditions
on its parameters. As for the Gray-Scott model, there are many indications in the
literature that tip of the Busse balloon associated to (1.4), i.e. the last region in
which stable periodic patterns exist, is also formed by nearly homoclinic, nearly lo-
calized, spatially periodic patterns [17, 44, 60, 68, 97]. More specifically, the limiting
homoclinic k = 0 pattern generally appears as ‘the last pattern to become unstable’
– see §4.5 and particularly Remark 5.4 on Ni’s conjecture. In section §4.4, (part of)
the existing literature on the existence and stability of stationary singular spatially
periodic patterns to (1.4) is summarized.

Remark 1.3 Reaction-diffusion equations naturally also exhibit traveling spatially
periodic patterns, or wave trains, i.e. non-stationary solutions that are periodic in
space and in time. For these patterns, one can also define the concept of a Busse
balloon (in a completely equivalent fashion). However, in this chapter we only consider
stationary periodic patterns.

4.1.2 The normal form model

In this section we give a brief derivation of (1.4) as normal form model for large am-
plitude pulses in the general class of singularly perturbed (two component) reaction-
diffusion models (1.2). First, we bring the equation into a singularly perturbed form
that satisfies the first two assumptions ((A-i) and (A-ii),

{

Ut = Uxx − µU + H1(U, V ; ε, ~µ)
Vt = ε4Vxx − V + H2(U, V ; ε, ~µ),

(1.5)

where H1(U, 0) = H2(U, 0) ≡ 0. Note that the parameter µ controls the (relative)
decay rates of U and V (i.e. µ > 0). Singular equations of this type generally exhibit
localized patterns that are singular in various ways: (E-i) the ‘fast’ V -components are
spatially localized in regions in which the ‘slow’ component U remains at leading order
constant; (E-ii) the U -components vary slowly in regions in which V is exponentially
small; (E-iii) the amplitude of both U - and V -components scale with a negative
power of ε – i.e. they are asymptotically large. Therefore, it is natural to scale out
the asymptotic magnitudes of U and V ,

Ũ(x, t) = εrU(x, t), r ≥ 0, Ṽ (x, t) = εsV (x, t), s ≥ 0,

so that Ũ(x, t) and Ṽ (x, t) are O(1) w.r.t. ε; the magnitudes r and s are a priori
unknown. The following assumption on the asymptotic behavior of the nonlinearities
H1,2(U, V ), which is the technical version of assumption (A-iii), is crucial to the
derivation of (1.4),

Hi(U, V ) = Hi(
Ũ

εr
,
Ṽ

εs
) = Ũαi Ṽ βiε−(rαi+sβi)

[

hi + ε̂H̃(Ũ , Ṽ ; ε)
]

, (1.6)
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in which ε̂ is some positive power of ε and H̃i = O(1) w.r.t. ε. Hence, it is assumed
that the growth of nonlinear terms Hi(U, V ) for U, V large is dominated by the alge-
braic expression UαiV βi . Note that this part of assumption (A-iii) is quite natural, as
are assumptions (A-i) and (A-ii) – see Remark 1.4. However, there is an additional
part to assumption (A-iii) that is more restrictive: the asymptotic decomposition
(1.6) is also assumed to be separable, in the sense that the leading order terms (for
U, V large) can be factored out of Hi(U, V ). Note that this assumption implies that
the leading order behavior for large solutions also dominates as these solutions are no
longer large. See §4.6 and Remark 1.4 for a discussion of this issue and its relation to
the (conjectured) generiticity of the Hopf dance. The magnitudes r and s of U and
V can now be determined in terms of α1, α2, β1, β2 by the assumption that (large,
singular) pulse type patterns can indeed exist as solutions of (1.5),

r =
β2 − 1

d
> 0, s = −α2

d
> 0, with d

def
= (α1 − 1)(β2 − 1) − α2β1 > 0, (1.7)

see [17]. This analysis also yields that hj > 0, for j = 1, 2, and that the parameter(s)
~µ = (µ, α1, α2, β1, β2) in (1.4) must satisfy the following conditions,

µ > 0, d > 0, α2 < 0, β1 > 1, β2 > 1. (1.8)

By introducing the spatial scale x̃ = x/ε and neglecting all tildes, equation (1.5) can
now at leading order be brought into the ‘normal form’ (1.4).

Remark 1.4 A more general model that satisfies (A-i) and (A-ii) and that general-
izes (A-iii) to non-separable nonlinearities is,

{

ε2Ut = Uxx − ε2[µU − F1(U ; ε)] + F2(U, V ; ε),
Vt = ε2Vxx − V + G(U, V ; ε).

(1.9)

Note that especially the fact that there is a spatial nonlinearity F1(U ; ε) 6= 0 dis-
tinguishes this model from the Gray-Scott/Gierer-Meinhardt types models in the
literature [13]. We will come back to this generalized model in the discussion of the
(non-)generic effect of the ‘belly dance’ in section §4.6.

4.2 Preliminaries I: The stability of periodic pat-
terns

In this section, we sketch several aspects of the literature on the stability of periodic
patterns in reaction-diffusion equations. The presentation is largely based on [35, 36,
68, 70, 71, 78]. For simplicity, we restrict ourselves to the two components setting
of (1.2). However, the ideas presented here can be readily extended to N -component
systems. Moreover, (1.2) includes all other, more specific, models considered in this
chapter.
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4.2.1 The structure of the spectrum

The spectral stability problem associated to a stationary, spatially periodic so-
lution (Up(x; k), Vp(x; k)) of (1.2) with respect to perturbations (for instance) in
BCunif(R, R2), i.e. the space of bounded and uniformly continuous functions, is ob-
tained by substitution of

U(x, t) = Up(x; k) + u(x)eλt, V (x, t) = Vp(x; k) + v(x)eλt,

into (1.4), followed by linearization. This yields the system,
{

λu = uxx + ∂UF (Up(x), Vp(x))u + ∂V F (Up(x), Vp(x))v
λv = D2vxx + ∂UG(Up(x), Vp(x))u + ∂V G(Up(x), Vp(x))v

(2.1)

Since x ∈ R, (2.1) can be written in the form of a 4-dimensional (linear) system,

φ̇(ξ) = Ap(ξ;λ,L, ε)φ(ξ), (2.2)

where φ = (u, p = Duξ, v, q = vξ)
t in the scaled spatial variable ξ = x/D and the dot

denotes differentiation with respect to ξ. Note that ξ is introduced in anticipation of
the singularly perturbed setting in which ξ represents the ‘fast’ spatial scale. For the
same reason, we introduce L as half of the wavelength of the periodic pattern (Up, Vp),
i.e., with a slight abuse of notation, (Up(x; k), Vp(x; k)) = (Up(ξ;L), Vp(ξ;L)) with
L = π/kD. Therefore, the periodic matrix Ap(ξ;λ, k) in (2.2) is given by,

Ap(ξ;λ,L) =









0 D 0 0
D(λ − ∂UF (Up(ξ;L), Vp(ξ;L))) 0 −D∂V F (Up(ξ;L), Vp(ξ;L)) 0

0 0 0 1
−∂UG(Up(ξ;L), Vp(ξ;L)) 0 (λ − ∂V G(Up(ξ;L), Vp(ξ;L))) 0









.

(2.3)
Since Ap(ξ;λ,L) is 2L periodic, solutions to (2.2) can (by Floquet theory) be assumed
to be of the form

φ(ξ) = ψ(ξ)ecξ for some c ∈ C and ψ(ξ) 2L−periodic.

However, the perturbations φ(ξ;λ) must be in BC(R, C4), so that c = ic̃ ∈ iR. Hence,

φ(ξ + 2L;λ) = γ φ(ξ;λ) for a γ ∈ S
1, (2.4)

since γ = e2ic̃L ∈ C with |γ| = 1. Note that if φ(ξ;λ) satisfies condition (2.4) in
one particular point ξ, it satisfies (2.4) everywhere. Since bounded solutions of (2.2)
can be decomposed into a combination of functions φ(ξ;λ) that satisfy (2.4) for some
γ ∈ S

1, it follows that the spectrum σ((Up, Vp)) of the stability problem associated
to the periodic pattern (Up(ξ;L), Vp(ξ;L)) entirely consists of γ-eigenvalues [35], i.e.
λ(γ) ∈ C such that there is a solution φ(ξ) of (2.2) that satisfies (2.4) for some γ ∈ S

1.
Thus, by varying γ over S

1, we may conclude that σ((Up, Vp)) is the union of – a priori
countably many – bounded curves Λ(L; ~µ) with

Λ(L; ~µ) = {λ ∈ C : λ(γ) is a γ−eigenvalue, γ ∈ S
1} (2.5)

(see [35, 70, 78]). In general, these curves can either be a smooth image of S
1 or

have a more degenerate structure. In particular, they often form closed loops that
are isolated connected components of the spectrum.
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4.2.2 Reversibility: the collapse of Λ(L; ~µ)

Due to the reversibility symmetry in both the equation (1.2) and the patterns
(Up(ξ;L), Vp(ξ;L)), the spectral loops Λ(L; ~µ) (2.5) collapse to branches with well-
defined endpoints ∂±Λ(L; ~µ). To see this, we need to be more explicit about na-
ture of these symmetries. First, we may define ξ = 0 as a reflection point for
the pattern (Up(ξ;L), Vp(ξ;L)), i.e. we may assume that (Up(−ξ;L), Vp(−ξ;L)) =
(Up(ξ;L), Vp(ξ;L)) for all ξ. Note that,

(Up(L + ξ), Vp(L + ξ;L)) = (Up(ξ − L), Vp(ξ − L)) = (Up(L − ξ), Vp(L − ξ))

by the 2L-periodicity of (Up(ξ;L), Vp(ξ;L)). Hence, (Up(ξ;L), Vp(ξ;L)), and thus
Ap(ξ;L) (2.3), is reflection symmetric with respect to all points ξ = kL, k ∈ Z. Thus,
system (2.2) is also reversible, that is, if φ(ξ) is a solution, then so is,

φ̂(ξ) = Rφ(−ξ) = (u(−ξ),−p(−ξ), v(−ξ),−q(−ξ))

(with involution R : R
4 → R

4). Now, if λ is a γ-eigenvalue, and φ(ξ) its associated
γ-eigenfunction, then (by (2.4)),

φ̂(ξ + 2L) = Rφ(−ξ − 2L) =
1

γ
Rφ(−ξ) = γφ̂(ξ),

since γ ∈ S
1. In other words, φ̂(ξ) is a γ-eigenfunction (2.4), which implies that λ is

both a γ- and a γ-eigenvalue. Hence, as γ is varied over S
1, every point λ(γ) ∈ Λ(L; ~µ)

is visited twice, except for the points λ(±1) since γ = γ for γ = ±1: the loop Λ(L; ~µ)
collapses to a branch with endpoints ∂±Λ(L; ~µ) = λ(±1)

If a branch Λ(L; ~µ) crosses through the imaginary axis as a function of ~µ, it is very
likely that one of the endpoints ∂±Λ(L; ~µ) is the first point of Λ(L; ~µ) to make con-
tact with the imaginary axis. Indeed, if this occurs, it is robust under perturbations.
However, note that this is not necessary: Λ(L; ~µ) ⊂ C is in general curved, so Λ(L; ~µ)
may be tangent to the imaginary axis at its point λ(γ) of first contact, i.e. λ(γ) may
certainly be an interior point with γ 6= ±1. Even when Λ(L; ~µ) ⊂ R, the possibility
that Λ(L; ~µ) is folded cannot be excluded, so that the first point of contact of Λ(L; ~µ)
with the imaginary axis is not necessarily an endpoint ∂±Λ(L; ~µ), but possibly an
interior point at the fold. Nevertheless, it can be expected that the ±1-eigenvalues
do play a dominant role in the stability and bifurcation analysis of reversible periodic
patterns (Up(ξ;L), Vp(ξ;L)). And thus, the bifurcations associated to these eigenval-
ues can be expected to turn up abundantly in the study of Busse balloons BB.

We therefore define µ± as the following critical value of µ, where µ represents one of
the m components of ~µ: Re[σ(Up, Vp)] < 0 for µ < µ±, Re[σ(Up, Vp)] = 0 only for a
∂±Λ(L; ~µ) ∈ σ(Up, Vp) at µ = µ± and Re[∂±Λ(L; ~µ) > 0 for µ > µ± (this situation
occurs in the Gray-Scott system, §4.3, and in the normal form model (1.4), §4.5).
A priori, we need to distinguish between two cases: Im[∂±Λ(L;µ = µ±)] = 0 and
Im[∂±Λ(L;µ = µ±)] 6= 0. However, in this chapter we focus on the latter case. We
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refer to [68] for an example at which ∂−Λ(L;µj = µ±) ∈ R initiates a saddle node
bifurcation.

The +1-eigenfunction φ(ξ;λ(+1)) associated to ∂+Λ(L;µ = µ+) is 2L-periodic (by
(2.4)). Since ∂+Λ(L;µ = µ+) induces a Hopf instability if Im[∂+Λ(L;µ = µ+)] 6= 0
[71], this means that the destabilization at µ = µ+ initiates an oscillation at which
all extrema of the pattern (Up(ξ;L), Vp(ξ;L)) move in phase. Note that description is
only based on linear data, without further analysis it is not possible to extract informa-
tion about the nonlinear, long-time, behavior beyond the bifurcation. Nevertheless,
this linear prediction agrees with the (subcritical) Hopf bifurcation destabilization of
+1-type most commonly encountered in simulations of the Gray-Scott and (classical)
Gierer-Meinhardt equations, see [16, 43, 44, 48, 49, 56, 58, 68, 97].

If γ = −1, i.e. if ∂−Λ(L;µ = µ−) /∈ R initiates the bifurcation, the linear dy-
namics are driven by a −1-eigenfunction φ(ξ;λ(−1)) that is periodic with a doubled
period 4L,

φ(ξ + 4L;λ(−1)) = −φ(ξ + 2L;λ(−1)) = φ(ξ;λ(−1))

(2.4). Thus, the Hopf instability driven by ∂−Λ(L;µ = µ−) /∈ R induces an out of
phase oscillation when the pattern (Up(ξ;L), Vp(ξ;L)) destabilizes: the initial (linear)
dynamics of (1.2) on an interval (ξ0, ξ0 +2L) are opposite to those on the neighboring
intervals (ξ0 − 2L, ξ0) and (ξ0 + 2L, ξ0 + 4L), and identical to the dynamics on the
intervals that are at a distance of 4Lk, k ∈ Z. We are not aware of any simulations in
the literature on Gray-Scott or Gierer-Meinhardt type models that exhibit this type
of behavior near a Hopf bifurcation, see however sections §4.3 and §4.5.

In this chapter, we will denote the locus if instability induced by ∂±Λ(L;µ = µ±) /∈ R

by the manifolds H±1 ⊂ ∂BB in the (~µ, k)-space.

4.2.3 An Evans function approach

It is well-known that the spectrum associated to spatially periodic patterns can be
studied by an Evans function [32, 35, 36, 64, 68]. Here we sketch the construction of
such an Evans function based on [35, 36]. First, we consider a fundamental (matrix)
solution Φ(ξ;λ) of (2.2) and define its associated monodromy matrix ML(λ) by

Φ(ξ + 2L;λ) = Φ(ξ;λ)ML(λ). (2.6)

Note that the existence of the (constant coefficients) matrix ML(λ) follows from the
fact Ap(ξ;λ,L) is 2L-periodic (2.3), so that Φ(ξ +2L;λ) also is a fundamental matrix
solution of (2.2). Now, let ~v ∈ C

4 be an eigenvector of ML(λ) with eigenvalue ρ ∈ C,
and define the solution φ(ξ) of (2.2) by φ(ξ;λ) = Φ(ξ;λ)~v, then

φ(ξ + 2L) = Φ(ξ + 2L)~v = Φ(ξ)ML~v = Φ(ξ)ρ~v = ρΦ(ξ)~v = ρφ(ξ).

Thus, φ(ξ) is a ρ-eigenfunction (2.4), and it follows that λ is a γ-eigenvalue if and
only if ML(λ) has an eigenvalue ρ = γ ∈ S

1. Therefore, we define the Evans function
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D(λ, γ;L) associated to the stability problem (2.2) by

D(λ, γ;L) = det [ML(λ) − γ Id ] , λ ∈ C, γ ∈ S
1. (2.7)

Hence, λ(γ)-eigenvalues correspond to zeroes of D(λ, γ). It is straightforward to check
that these zeroes do not depend on the choice of the fundamental matrix solution
Φ(ξ;λ). Nevertheless, the precise choice of Φ(ξ;λ) can be crucial: in the case of
singularly perturbed systems, it is possible to construct a Φ(ξ;λ) so that the zeroes
of D(λ, γ;L) can be determined analytically – see [32, 68] and §4.4.2.

4.3 A Busse balloon for the Gray-Scott model

In this section we discuss details of the (construction of the) Busse balloon, and
the larger existences balloon, for the Gray-Scott model (1.1) as presented in Fig-
ure 4.2(a). The Busse balloon consists of stationary spatially periodic solutions of the
4-dimensional (spatial) dynamical system associated to (1.1). These spatial patterns
correspond to periodic solutions of this 4-dimensional system with period, or wave-
length, L (k = 2π/L with k = the wavenumber of the patterns). In all numerical
computations we used the software Auto [10] and fixed B at 0.26, ε4 at 0.001, which
means ε ≈ 0.18, and varied A and L or equivalently k. In §4.3.5 we will bring equation
(1.1) into a form that’s comparable to the normal form model (1.4) and discuss the
similarities/differences between the models.

4.3.1 Existence region

Before describing the Busse balloon, we discuss several aspects of the existence
region in which the Busse balloon is embedded. As a consequence of the reversible
symmetry discussed in §4.2.2, the 4-dimensional ODE reduction of (1.1) is also re-
versible and we can thus apply the ‘reversible Lyapunov center theorem’ [9]. This
theorem guarantees the existence of reversible periodic orbits, or: spatially periodic
patterns, in the vicinity of an equilibrium, i.e. of a homogeneous background state
(U, V ) ≡ (Ū , V̄ ) of (1.1). To apply the theorem, we first define νj , j = 1, ..., 4, as
the eigenvalues associated to the linearization around an equilibrium – note that this
linearization corresponds to (2.1) with λ = 0 and (Up, Vp) ≡ (Ū , V̄ ). By the sym-
metry, the set of eigenvalues νj is reflection symmetric about the real and imaginary
axes – see Figure 4.3. The center theorem can be applied if νj = iη, η > 0, for some
j – see Remark 3.1 – and if all such modes are non-resonant. It states that there
exists, within the 4-dimensional phase space, a two-dimensional manifold containing
the equilibrium which is fibered by periodic orbits whose wavenumbers converges to η
as one approaches the equilibrium. Since iη is a purely imaginary spatial eigenvalue,
η corresponds to a wave number k, we therefore refer to η as a linear wavenumber.

By the Lyapunov center theorem, a natural starting point for finding symmetric
stationary spatially patterns is an unstable (Remark 3.1) background state. The
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Atur

A
Asn

V±

Figure 4.3: The branches V± as function of A of the background states (U±, V±) of
(1.1). The insets are sketches of the three qualitatively different distributions of the
associated eigenvalues νj ∈ C, j = 1, . . . , 4, one for the lower branch V−, and two for
the upper branch V+ (one to the left and one to the right of the Turing instability).

background states of (1.1) are

U0 = 1, V0 = 0, U± =
1

2A

(

A ∓
√

A2 − 4AB2
)

, V± =
1

2B

(

A ±
√

A2 − 4AB2
)

,

where the conjugate pair (U±, V±) undergoes a fold, or saddle node, bifurcation at
Asn determined by the condition A = 4B2 (i.e. Asn = 0.2704 here). Thus, three
real solutions exist for A > Asn. It can be checked that (U0, U0) is stable for all
parameter values, that (U−, U−) is always unstable, and that (U+, V+) becomes sta-
ble through a Turing bifurcation for increasing A at Atur (≈ 1.87 for the parameter
values chosen here). We refer to [56] for more (analytical and computational) details
on the Turing/Ginzburg-Landau bifurcation in the Gray-Scott model. Within the 4-
dimensional ODE reduction, the Turing bifurcation corresponds to the 1 : 1 reversible
Hopf bifurcation, see Figure 4.3.

Thus, by the Lyapunov center theorem, and by Figure 4.3, two one-parameter fam-
ilies of small amplitude periodic patterns emerge near the equilibrium (U+, V+) for
each A ∈ (Asn, Atur), one for each (non-resonant) pair of linear wavenumbers η. We
denote the positive linear wavenumbers by η±(A) ordered so that η+ > η−. At the
fold point A = Asn, we have η− = 0 and the corresponding eigenvalue becomes real
when continuing along the (U−, V−)-branch. At the Turing bifurcation, η− = η+,
and the eigenvalues move off the imaginary axis when increasing A. A single one-
parameter family emerges near (U−, V−), but these turn out to be of no interest to us.

In the (A, k)-parameter plane, the curves η±(A) provide part of the boundary of
the existence region of periodic patterns. We denote these curves in Figure 4.2(a) by
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‘equilibrium’. The aforementioned two one-parameter families of periodic patterns bi-
furcate off η±(A), respectively, so that periodic patterns exist for k < η+ and k > η−.
In fact, numerically we find that the two families are connected so that the patterns
exist for k ∈ (η−, η+) and A ∈ (Asn, Atur). Near the Turing bifurcation this is the
well-known parabola shaped ‘Ginzburg-Landau existence region’ – see section §4.3.2
and [56].

At A = Asn and k = η+(Asn), the boundary has a corner and continues as a curve
of folds, or saddle node bifurcations, of periodic orbits, denoted by ‘sn1’. While it
is entirely expected that the fold of the underlying equilibrium induces a fold of the
periodic solutions, we are not aware of any reference for a rigorous proof in the lit-
erature. The relevant existence boundary emerging from η− when decreasing A from
Atur is slightly more involved. Between Atur and A ≈ 1.3, it involves period doubling
bifurcations, but we omit details of this here as it lies outside the stability region (i.e.
the Busse balloon). For smaller values of A, the relevant boundary is the fold curve
‘sn2’.

Remark 3.1 The assumption that νj(0) ∈ iR implies that λ = 0 lies in the spectrum
associated to the background state (Ū , V̄ ) as solution of the PDE (1.2) – see section
§4.2.1. Perturbing the real part of λ away from zero, typically implies that such
purely imaginary solutions persist with an adjusted linear wavenumber. Conversely,
we locally find a curve λ(η) transversely crossing the imaginary axis. It thus follows
that under the conditions of the Lyapunov center theorem, the underlying equilibrium
is typically unstable as a solution of the PDE.

4.3.2 The Busse balloon

We continue the discussion of Figure 4.2(a), now looking at the stability bound-
aries, i.e. at the Busse balloon. Near the Turing instability we find the expected
parabola shaped Eckhaus stability region bounded by sideband instabilities. Note
that the existence and (side band) type of these boundaries has been proved rigor-
ously near the Turing bifurcation by the Ginzburg-Landau analysis presented in [56].
Here, we extended these curves beyond the (asymptotically small) Ginzburg-Landau
region, using the method described in [70]. A priori these sideband curves are only
sufficient for establishes instability, since other instabilities could occur beyond the
Ginzburg-Landau setting. However, we checked that this does not happen by finite
difference approximations of the spectrum at regular intervals along the curves. In
addition, there may in principle be an isolated region of unstable periodic patterns in
the interior of the Busse balloon, but this is not the case, at least on the grid where
we checked.

For decreasing values of k, the lower branch of sideband instabilities hugs very close to
the fold curve ‘sn2’, until it appears to merge with it. It should be noted that it is in
this region in parameter space, and in particular for parameters that cross the curve
‘sn2’ beyond the point where it has merged with the sideband curve, that the PDE
dynamics exhibit the well-known and well-studied (but still largely not understood)
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H+1

H−1k

unstable

stable: Busse balloon

Figure 4.4: The H± Hopf instabilities near the long wavelength limit of the Busse
balloon; compare to Figure 4.2(a).

phenomenon of self-replicating pulses, see [23, 48, 57, 62, 66, 67, 73].

The upper branch of sideband instabilities similarly merges with the fold curve ‘sn1’,
however the sideband curve is no longer the stability boundary here. Instead, at
A ≈ 0.041, a curve H+1 of Hopf instabilities crosses the sideband curve – which gen-
erates a co-dimension 2 corner – and becomes the stability boundary. Following this
curve for decreasing values of A we find another corner when a second curve, H−1, of
Hopf instabilities crosses the first and takes over the stability boundary. These two
curves repeatedly intersect and generate a sequence of corners in the stability bound-
ary, see Figure 4.4. This is the generic Hopf dance destabilization mechanism that
is the central theme of this manuscript. We discuss more details in the next subsection.

We continued the Hopf curves numerically up to k = 0.01 and observe a near vertical
tangency, so that we predict the limiting value to be A ≈ 0.00755. Since ε ≈ 0.18
is not very small, this compares reasonably well to the predicted value for ε → 0 of
A ≈ 0.0049 which we compute (analytically) from the results in [16, 18].

4.3.3 The Hopf dance and the rotation of the spectrum

The H±1 curves can locally be seen as graphs of functions A±(k) over the k-axis
(Figure 4.4). In Figure 4.5(a), we plot the difference A+(k) − A−(k) over the first
two crossings of H±1. We plot this same difference for a larger interval of k values
in Figure 4.5(b), where we have also blown up the difference by an ad hoc guess
for an exponential decay factor (and where we have switched to L = 2π/k for con-
venience). The result is a sinusoidal curve and we conjecture that this is the first
part of an infinite ‘Hopf dance’ as L increases. Note that this sinusoidal shape and
exponential decay of the parameter as function of the wavelength L is confirmed by
the analysis of the normal form model in section §4.5.1 (see especially Corollary 5.5).
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Figure 4.5: (a) The difference A+(k) − A−(k) for k values including the first two
crossing points of the curves H±1. The vertical lines and their labels correspond to
the k-values and the labels of the curves plotted in Figure 4.6. (b) The blown up
difference (A+(L) − A−(L)) exp(0.27L) over more intersections of H±.

Each point (A±(k), k) corresponds to a critical intersection of the spectrum σ(Up, Vp)
associated to a spatially periodic pattern (Up, Vp) with the imaginary axis. As dis-
cussed in §4.2.1, this means that there are γ-eigenvalues λ(γ±) ∈ iR such that
Re(∂γλ(γ±)) = 0. It turns out that both spectral curves stem from the continua-
tion of the same curve Λ(L) and that this is the spectral curve, denoted by Λh(L),
that shrinks to the (discrete) eigenvalue λh ∈ C associated to the homoclinic pulse
that appears in the limit L → ∞ (or k ↓ 0); Λh(L) is – by definition – parametrized
by λHo(γ;A, k or L) (see (2.5)). Moreover, we find that γ+ ≡ +1 and γ− ≡ −1 for
all k, which at least locally is not surprising, since γ = +1 and γ = −1 represent
the endpoints of the bounded curve Λh(L) (section §4.2.2), see Figure 4.6. However,
the fact that γ± are globally constant is a more subtle issue that is related to the
periodicity of the curvature of Λh(L;µ), i.e. to the ‘belly dance’.

In Figure 4.6 we plot the spectral curves Λh(L) = {λHo(γ, k) : γ ∈ S
1} for the

six values of k marked by the vertical lines in Figure 4.5(a). We also indicate the
‘+1’ endpoints, i.e, λHo(+1, k). Curve 1 of Figure 4.6 touches the imaginary axis at
γ = +1 for the k value slightly above the first crossing of the two Hopf curves. Curve
2 is slightly below this value of k and here the ‘+1’ end lies in the open left half plane
while λ+

Ho(−1, k) touches the imaginary axis. Comparing curves 1 and 2 we notice an
overall counter-clockwise rotation. This rotation continues as k is decreased further,
and at the same time the curve of spectrum straightens while decreasing in length,
see curves 3 and 4. Curves 5 and 6 are already very small, and hence magnified in the
inset. Note that curve 6 is similar to curve 1 only the linear wavenumbers γ = ±1 of
the endpoints are interchanged. Up to this change, the picture for the next two inter-
sections is qualitatively the same. In particular, the curvature of λ+

Ho(γ, k) changes
sign so that most unstable point of this part of the spectrum is either λ+

Ho(+1, k) or
λ+

Ho(−1, k). We corroborated this by computing the curve in the (A, k)-parameter
plane for which λHo(i, A, k) ∈ iR, that is, where a representative point inside the
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Figure 4.6: The spectral curves λHo(γ, k), with ‘+1’ denoting λHo(+1, k), for the six
values of k marked in Figure 4.5(a) using the same labels. The inset enlarges the
region near the arrow head.

‘belly’ of the curve of spectrum lies on the imaginary axis. We find that for given k
it has A ≤ max(A±(k)) so that it always lies in the unstable region. We discuss more
details of this belly dance in the next subsection.

4.3.4 The belly dance

As mentioned several times before, the fact that the H±1 curves always yield the
entire stability boundary is related to the change in curvature of the critical branch
of spectral curve associated to the Hopf destabilization. Instead of investigating
this along the stability boundary, we consider here A fixed at 0.01 and compare
λHo(γ, 0.01, k) for γ ∈ {+1, i,−1} as k decreases. For convenience we denote

λ∗(γ, L) := λ+
Ho(γ, 0.01, 2π/L).

We observe the same rotation and geometry as in Figure 4.6, but this choice of curve
simplifies some of the computations. In Figure 4.7(a), we plot the two curves

Re(λ∗(+1, L) − λ∗(−1, L)) exp(0.253L), Re(λ∗(i, L) − λ∗(−1, L)) exp(0.253L),
(3.1)

in blue and red, respectively. We obtain a periodic graph up to an exponential factor,
and infer that λ∗(i, L) is always more stable than either λ∗(+1, L) or λ∗(−1, L). This
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Figure 4.7: (a) Plot of the two graphs of (3.1); the first in blue, the second in red.
(b) Plot of the graph of (3.2).

is further illustrated in Figure 4.7(b) where we plot

(Re(λ∗(i, L) − max{Re(λ∗(γ, L)) : γ = ±1}) exp(0.253L), (3.2)

which clearly always is negative. Geometrically, the line connecting λ∗(+1, L) with
λ∗(−1, L), i.e. the leading order approximation of the entire spectral curve, is vertical
at the roots of the blue curve in Figure 4.7(a). This occurs at every half-cycle of the
rotation of the curve of spectrum as considered in Figure 4.6. Figure 4.7(b) establishes
that at these values of L the point λ∗(i, L) lies to the left of this line in the complex
plane. In other words, the belly of the spectral curves always points into the stable
half plane. In fact, this also implies that the belly oscillates with twice the frequency of
the rotation of the spectral curve (which can also checked directly from the numerical
data). These numerical findings are all once more confirmed by the analysis of the
normal form model presented in section §4.5.2 and especially in Figure 4.9.

4.3.5 Relation to the literature and to the normal form

In order to relate the computations presented in this section to the analytical lit-
erature on the Gray-Scott model (see for instance [16, 18, 48, 49, 56, 58]), we first
need to decide upon the asymptotic magnitudes of parameters A and B with respect
to ε. Since ε4 = 0.001, i.e. ε ≈ 0.18, and B = 0.26, it is natural to set B = bε
with b ≈ 1.46. An overlap between our computations and the analytical literature
is formed by the (de)stabilization of homoclinic and nearly-homoclinic patterns, i.e.
patterns with k = 0, or close to 0. Since the curve sn2 represents the onset of pulse
self-replication, see §4.3.1, which is known to be (just) outside the region of asymp-
totic analysis [16, 48, 57], we need to focus on the curves sn1 and H±1 in the (inset
of) Figure 4.2(a) near k = 0. Since ε4 = 0.001, it is thus natural to scale A as aε4.

As for the general model (1.5), the pulses in the Gray-Scott model do not have a
O(1) amplitude. Following [16, 18], and as we did in §4.1.2, we scale U and V in
(1.1), Ũ = U/(ε

√
ε), Ṽ (x, t) =

√
εV . Moreover, we introduce t̃ = ε and x̃ = x/

√
ε
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and obtain (after dropping all tildes),

{

ε2Ut = Uxx − aε3
√

ε(1 − ε
√

εU) − UV 2

Vt = ε2Vxx − bV + UV 2 . (3.3)

This version of the Gray-Scott model is very similar to (1.4) and therefore suitable
to explain the differences between the Gray-Scott model in the parameter range con-
sidered here and the normal form model. Of course, an a priori important difference
is the fact that the background state in (1.1) or (3.3) is not (U(x, t), V (x, t)) ≡ (0, 0).
This is – however – not significant. The fact that the slow component does not re-
main O(1) in between two ‘fast’ V -pulses is much more relevant: in (3.3) it varies
from being O(1) near a fast pulse to O(1/(ε

√
ε)) in between two fast pulses (hence

the scaling of Ũ). Moreover, the linear term in the U -equation is not of O(ε2), but
smaller, O(ε3

√
ε).

Together, these two differences between (3.3) and (1.4) have as effect that the distance
between two successive fast V -pulses is much longer in (3.3) than in (1.4). In (1.4),
Uxx = ε2U between two fast (stationary) pulses (V is exponentially small). Since
the total variation in U is O(1), this implies that the natural wavelength of periodic
patterns is O(1/ε) – i.e. O(1/ε2) in the fast spatial scale ξ, see §4.4 and especially
Theorem 4.1. In contrast, in the normalized Gray-Scott model (3.3), Uxx = ε7/2U to
leading order, while the variation in U must be O(ε−3/2), hence the wavelength is of
a periodic pattern in (3.3) is O(ε−5/2) ≫ O(ε−1).

Thus, the Gray-Scott model (3.3) is singular in the sense that the wavelength of
‘typical’ periodic patterns is much larger than in the ‘normal’ case (1.4). As a con-
sequence, the length of the spectral branches Λ associated to the stability of the
periodic patterns is much smaller than in the normal case, see §4.4 and §4.5. In fact,
the branches Λh, i.e. the ones that are responsible for the Hopf dance (§4.5), are
not of O(1) (as is the case for (1.4)), but asymptotically small in ε. In the Evans
function approach to the stability of singular spatially periodic patterns developed in
[68], the effect of the higher order corrections has been proved to be asymptotically
small, and thus no attention has been paid to the higher order terms. However, this
means that in the context of the ‘singular’ Gray-Scott model (3.3), the approach of
[68] only gives the leading order position of the branch Λh as a point (a point that
was already determined by the formal analysis presented in [16]). Thus, the leading
order methods of [68] do not give any information on the geometry of the spectral
branch Λh for the ‘singular’ Gray-Scott system, contrary to the ‘normal’ system (1.4)
in which both the Hopf dance and the belly dance can be deduced analytically from
the general frame work developed in [68].

The fact that the singular Gray-Scott system nevertheless exhibits the same Hopf
dance behavior as the normal form model is another strong indication that the Hopf
dance, i.e. snaking of the two Hopf bifurcation curves H±1 near the homoclinic tip of
a Busse balloon, indeed is a very robust phenomenon.
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Remark 3.2 We refer to [16, 56, 48, 49] for analytical results on the existence and
stability of spatially periodic patterns in the Gray-Scott model and their relations
with explicit numerical simulations.

4.4 Preliminaries II: Periodic patterns in the nor-
mal form model (1.4)

In this section, we formulate the results on the existence and stability of a (class of)
periodic pattern solutions to (1.4) that have originally been obtained in [22] and [68].

4.4.1 The existence of periodic pulse patterns

Stationary spatially periodic patterns in (1.4) correspond to periodic solutions in
the 4-dimensional system,















u̇ = εp
ṗ = −εuα1vβ1 + ε3µu
v̇ = q
q̇ = v − uα2vβ2

(4.1)

where the dot denotes the derivative with respect to the fast spatial coordinate ξ =
x/ε. The fast reduced limit,

u = ū, p = p̄, v̈ = v − ūα2vβ2 ,

has the homoclinic solution,

vr
h(ξ; ū) = ū− α2

β2−1 wr
h(ξ) with wr

h(ξ) =

(

β2 + 1

2

)
1

β2−1
(

sech

(

1

2
(β2 − 1)ξ

))
2

β2−1

.

(4.2)
For large ξ, v and q = v̇ are exponentially small. In that case, the (spatial) dynamics
are driven by the (linear) slow reduced system,

v = q = 0, ü = ε4µu. (4.3)

We can now state the main existence theorem, where we introduce the parameter
ℓ = ε2L.

Theorem 4.1 [22] Let µ, α1, α2, β1, β2 satisfy (1.8). Then, there is an ε0 > 0 such
that for all 0 < ε < ε0, (4.1) possesses a family of periodic orbits γp(ξ;L) parametrized

by their wavelength L
def
= 2ℓ/ε2, with

ℓ ∈ [ℓsn,∞) and ℓsn =
1√
µ

arccosh

√

β2 − 1 + d

d
+ O(ε)

(1.7), (1.8). The solutions γp(ξ;L) have positive up- and vp-coordinates and two
internal reflection symmetry points at distance L = 2ℓ/ε2 apart (in ξ) at which pp =
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qp = 0. They consist of a slow pieces on which γp(ξ;L) is exponentially close to a
cosh-type solution of (4.3), alternated by fast parts in which γp(ξ;L) is O(ε) close to
(ūℓ, 0, vr

h(ξ; ūℓ), v̇
r
h(ξ; ūℓ)) (4.2), with

ūℓ = (2
√

µ tanh
√

µℓ)
β2−1

d

(∫ ∞

−∞
(wr

h(ξ))β1dξ

)− β2−1

d

.

In the limit ℓ → ∞, γp(ξ;L) merges with the solution γh(ξ) that is homoclinic to
(0, 0, 0, 0); γp(ξ;L) undergoes a saddle node bifurcation at ℓ = ℓsn.

The orbits γp(ξ;L) correspond to a family of stationary, symmetric, spatially peri-
odic patterns (Up(ξ;L), Vp(ξ;L)) in (1.4) parametrized by their wavelength L.

This theorem is proved in [22] by the methods of geometric singular perturbation the-
ory. It should be noted that there are many more families of periodic patterns in (1.4),
see [22]. The patterns (Up(ξ;L), Vp(ξ;L)) described here correspond to the A-type
patterns studied in [68] and are the only periodic patterns among those constructed in
[22] that may be stable as solutions of (1.4) [68]. Except for the obvious fact that the
slow cosh-type U -pieces have their minimums (and not their maximums) in between
two successive fast V -pulses, the (Up(ξ;L), Vp(ξ;L))-patterns are very similar to the
Gray-Scott patterns presented in Figure 4.1.

4.4.2 Stability by the Evans function approach

The spectral stability analysis of the periodic patterns (Up(ξ;L), Vp(ξ;L)) given
by Theorem 4.1 completely follows the lines sketched in §4.2. Thus, the stability
is determined by an Evans function D(λ, γ;L). Based on the direct linearization of
(1.4) about the periodic pattern (Up(ξ;L), Vp(ξ;L)) of Theorem 4.1 in the fast spatial
coordinate ξ,

{

uξξ = −ε2
[

α1U
α1−1
p V β1

p u + β1U
α1
p V β1−1

p v
]

+ ε4 (µ + λ)u
vξξ +

[

β2U
α2
p V β2−1

p − (1 + λ)
]

v = −α2U
α2−1
p V β2

p u
, (4.4)

the spectral problem can be written in the form (2.2). As for the existence problem,
a central role is played by the fast reduced limit problem associated to (4.4),

u ≡ û, vξξ +
[

β2(w
r
h(ξ))β2−1 − (1 + λ)

]

v = −α2û(ūℓ)
−α2+β2−1

β2−1 (wr
h(ξ))β2 , (4.5)

that is obtained by taking the limit ε → 0 in (4.4) using (4.2) and Theorem 4.1. We
denote

L(ξ;β2) = β2(w
r
h(ξ))β2−1 − 1.

Since (4.4) is a linear problem, we can choose the value of û (by scaling). There
are only two significant choices possible, û = 0, or û = 1. In the former case, (4.5)
corresponds to the stability of the singular pulse solution vr

h(ξ; ūℓ) (4.2) as solution

to the scalar reduction of (1.4) in the fast field, Vt = Vξξ −V + ūα2

ℓ V β
2 . This problem,

(L(ξ;β2) − λ)v = 0, has essentially been solved in [17]: there are J + 1 eigenvalues
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λr
j = λr

j(β2), j = 0, ..., J , with λr
0 = 1

4 (β2 − 1)2 − 1, λr
1 ≡ 0, λr

j ∈ (−1, 0) for j ≥ 2
and λr

j+1 < λr
j . Moreover, the general solutions, and thus the eigenfunctions vr

j (ξ) for
λ = λr

j , can be determined explicitly; there also is an explicit expression for J = J(β2)
[17]. This also means that the Evans function associated to this problem, which we
denote here in terms of a transmission function tf (λ), can be considered as a known
expression [17].

If û 6= 0, we scale it to 1 and introduce win(ξ;λ) as the bounded solution of the
inhomogeneous problem,

(L(ξ;β2) − λ)w = (wr
h(ξ))β2 , (4.6)

which is obtained from (4.5) by an appropriate scaling of v. Note that win(ξ;λ) =
(L(ξ;β2) − λ)−1(wr

h(ξ))β2 is uniquely determined for λ 6= λr
j and can be computed

explicitly (using the general solutions of the homogeneous problem [17]). Moreover,
it is straightforward to show that L(ξ;β2) − λ cannot be inverted for λ = λr

j , j even,
and that win(ξ;λ) exists, but is non-unique, if λ 6= λr

j and j odd [17].

Finally, we need one additional ingredient to formulate the main result of [68] that
describes the spectrum σ((Up, Vp)) associated to the stability of the periodic patterns
(Up(ξ;L), Vp(ξ;L)) of Theorem 4.1: for δ > 0, the region Cr ⊂ C is defined by

Cr(δ) = C\
{

{λ ∈ C : Re[λ] < max(−1,−µ) + δ, |Im[λ]| < δ}
⋃

{∪j=0,...,J−1B(λr
j , δ)}

}

.

(4.7)
Thus, Cr is C, except for δ-neighborhoods of the reduced eigenvalues λr

j and of {λ ∈
R : λ < max(−1,−µ)} – the spectrum associated to the stability of the trivial state
(0, 0) (and thus the essential spectrum of pulse type solutions of (1.4)).

Theorem 4.2 [68] Let µ, α1, α2, β1, β2 satisfy (1.8) and let ℓ > ℓsn. There is a δ0 > 0
and an ε0 = ε0(δ) > 0 such that for all 0 < δ < δ0 and 0 < ε < ε0(δ), D(λ, γ;L) 6= 0
for λ ∈ {C\Cr} ∩ {Re[λ] > 0}, i.e. there are no unstable γ-eigenvalues outside Cr.
For λ ∈ Cr (and 0 < δ < δ0, 0 < ε < ε(δ)), the Evans function D(λ, γ;L) associated
to the spectral problem (2.2) for the patterns (Up(ξ;L), Vp(ξ;L)) of Theorem 4.1 can
be decomposed into a product of a ‘fast’ and a ‘slow’ Evans function,

D(λ, γ;L) = Df (λ, γ;L)Ds(λ, γ; ℓ), λ ∈ Cr, γ ∈ S
1,

where,

Df (λ, γ;L) = −γtf (λ) e2L
√

1+λ(1 + O(ε)), (4.8)

in which tf (λ) is the transmission function associated to the limit problem (4.5) with
û = 0, and,

Ds(λ, γ; ℓ) = γ

[

2γr −
(

1

E(λ, ℓ)
t11(λ, ℓ) + E(λ, ℓ)t22(λ, ℓ) + O(ε)

)]

(4.9)

with γr = Re[γ] ∈ [−1, 1],

E(λ, ℓ;µ) = e−2ℓ
√

µ+λ ∈ C, (4.10)
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and ℓ = 1
2ε2L = O(1) as in Theorem 4.1. Moreover,

t11(λ, ℓ;µ) = 1 − S(λ;µ) tanh ℓ
√

µ, t22(λ, ℓ;µ) = 1 + S(λ;µ) tanh ℓ
√

µ, (4.11)

with the analytic functions (for λ ∈ Cr),

S(λ;µ) =

√
µ√

µ + λ
[α1 − α2β1R(λ)] , (4.12)

and

R(λ;β1, β2) =

(∫ ∞

−∞
win(ξ;λ)(wr

h(ξ))β1−1dξ

)/(∫ ∞

−∞
(wr

h(ξ))β1dξ

)

, (4.13)

(4.2), (4.6), that can be computed explicitly [17].

The proof of this result is given in [68]. It is based on the NLEP method developed in
[17] for the decomposition and explicit approximation of the Evans function associ-
ated to the stability of homoclinic patterns (Uh(ξ), Vh(ξ)) in (1.4) that appear as the
limit for L → ∞, i.e. k ↓ 0, from the periodic patterns (Up(ξ;L), Vp(ξ;L)) (Theorem
4.1).

Note that tf (λ) 6= 0 for λ ∈ Cr (by the definition of Cr (4.7)). Thus, it follows
from this theorem that the stability of (Up(ξ;L), Vp(ξ;L)) is determined by the so-
lutions λ(γ) of Ds(λ, γ; ℓ) = 0 (4.9). Moreover, Theorem 4.2 also establishes that
the spectrum σ(Up, Vp) cannot cross through λ = 0 as a parameter is varied (since
D(λ, γ;L) 6= 0 for λ in the positive half plane δ-close to 0). Hence, except for the
saddle node bifurcation at ℓ = ℓsn (Theoreom 4.1), the pattern (Up(ξ;L), Vp(ξ;L))
can only be (de)stabilized by a Hopf bifurcation. Due to the ‘collapsed’ character
of the spectral branches Λ(L, µ) (§4.2.2), this implies that the ±1-type Hopf bifur-
cations will play an important role in the bifurcation analysis of (Up(ξ;L), Vp(ξ;L)),
especially near the homoclinic limit.

4.5 Near the homoclinic pulse: patterns with long
wavelengths

In this section we consider the stability and bifurcations of the periodic patterns
(Up(ξ;L), Vp(ξ;L)) of Theorem 4.1 for ℓ = ε2L large. It follows from [36, 77, 78]
that for every discrete eigenvalue λh,j ∈ C of the spectral stability problem associated
to the limiting homoclinic pattern (Uh(ξ), Vh(ξ)) = (Up(ξ;∞), Vp(ξ;∞)), there must
be a spectral branch Λh(L) ∈ C of the stability problem associated to the periodic
pattern (Up(ξ;L), Vp(ξ;L)) that approaches λh,j as L → ∞ (see Remark 5.1). By the
results of Theorem 4.2, we can explicitly approximate the branch Λh(L) for ℓ large,
and thus obtain detailed information on the spectrum σ((Up, Vp)) for large ℓ.
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To investigate the structure of Λh for large ℓ, we introduce a second small parame-
ter, δ, by setting ℓ = 1

δ – note that this is a slight abuse of notation, this δ is not
related to the δ introduced in Theorem 4.2. We assume that δ = O(1) w.r.t. ε, i.e.
0 < ε ≪ δ ≪ 1. In fact, we will consider all correction terms in ε – see Theorem 4.2 –
as higher order effects in this section (and thus not even refer to these terms). Since
a central expression as E(λ, ℓ;µ) is exponentially small in δ in absolute value (4.10),
this implies that we implicitly assume that ε is much smaller than exponentially small
terms in δ in the forthcoming analysis. Note that this is mostly a technical issue, it
does not influence the essence of our results.

Remark 5.1 In fact, the results in [78] also establish the exponential decay rate of
σ((Up, Vp)) as L → ∞. Moreover, in [78] an expansion similar to the forthcoming one
is given for the ‘small’ spectrum σ((Up, Vp)), i.e. the part of the spectrum that
is connected to the origin (and thus is associated to the translational eigenvalue
λ(+1) = 0). Here, we consider the part of the spectrum associated to a ‘nontrivial’
eigenvalue of the homoclinic limit, more specifically, an eigenvalue associated to a
Hopf instability.

4.5.1 The Hopf dance

Since λ(γ) must be a zero of Ds(λ, γ; ℓ), it follows from the expression (4.9) in
Theorem 4.2 that a spectral branch Λ = {λ = λ(γ) : γ ∈ S

1} ∈ C (§4.2.1) is implicitly
determined by

t11(λ, ℓ) = 2 γrE(λ, ℓ) − E2(λ, ℓ) t22(λ, ℓ), (5.1)

(at leading order in ε). By (4.10), this condition reduces to t11(λ, ℓ;µ) = 0 as ℓ → ∞.
Moreover, by (4.11),

lim
ℓ→∞

t11(λ, ℓ;µ) = 1 − S(λ;µ) = t2(λ;µ). (5.2)

Here t2(λ;µ) is in fact the slow transmission function that was shown in [17] to govern
the stability of the homoclinic pulse pattern (Uh(ξ), Vh(ξ)). Hence, we have explicitly
recovered the above mentioned general results of [36, 78]. In fact, we have obtained
a bit more: every spectral branch Λ ⊂ Cr, see (4.7), associated to a periodic pat-
tern (Up(ξ;L), Vp(ξ;L)) limits on a non-zero eigenvalue λh associated to the limiting
homoclinic pattern (Uh(ξ), Vh(ξ)) as ℓ → ∞. Note that it follows from (5.2) that
S(λh;µ) = 1.

As mentioned above, the homoclinic pulse (Uh(ξ), Vh(ξ)) can only be (de)stabilized
by a pair of complex conjugate eigenvalues λh(µ), λh(µ) /∈ R, with by definition
Im[λh(µ)] > 0. At the bifurcation, the pulse must thus be destabilized by a Hopf
instability. In this section we study the spectral curves that limit on these Hopf bifur-
cation eigenvalues for large but bounded ℓ. The associated critical values of parameter
µ and λh are defined by,

λh(µH) = λh,H = iλh,H,i ∈ iR with λh,H,i > 0. (5.3)
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Thus, by definition,
S(λh(µ);µ) ≡ 1. (5.4)

Since we have assumed that ℓ = 1
δ ≫ 1, it follows that |E(λ, ℓ;µ)| is exponentially

small in δ (4.10). Therefore, we define

Eh = Eh(ℓ;µ) = E(λh, ℓ;µ) = e−2ℓ
√

µ+λh , E0 = E0(ℓ;µ) = E(0, ℓ;µ) = e−2ℓ
√

µ.
(5.5)

and obtain the following expansion,

tanh ℓ
√

µ = 1 − 2E0 + 2E2
0 + OE(3), (5.6)

where the OE(N) notation indicates the order in |E|, OE(N) = OE(|E|N ) – note that
this notation is somewhat ambiguous, since the magnitude of |E| strongly depends
on the values of λ and µ – see (5.11), (5.12) below. Since we know that λ must be
close to λh, we expand S(λ;µ) as a Taylor series in (λ − λh),

S(λ;µ) = 1 + (λ − λh)S ′(λh;µ) +
1

2
(λ − λh)2S ′′(λh;µ) + OE(3), (5.7)

where we anticipate the forthcoming result that λ − λh = OE(|E|). The expression
E(λ;µ) can be expanded in terms of both Eh and (λ − λh),

E(λ, ℓ;µ) = Eh − ℓ(λ − λh)
1√

µ + λh
Eh + OE(3), (5.8)

where we have implicitly used that ℓk|Em+1
h | ≪ |Em

h | for all k ≥ 0. Substitution of
the OE(1) parts of these expansions into (5.1), using (4.11), yields a leading order
approximation of Λh,

−(λ − λh)S ′(λh) + 2E0 = 2Ehγr + OE(2).

We have thus obtained the following lemma.

Lemma 5.2 There is a δ0 > 0 such that for all ℓ > 1/δ0, the spectral branch Λh(ℓ;µ)
is given by,

Λh(ℓ;µ) =

{

λ(γ, ℓ;µ) = λh(µ) +
2

S ′(λh;µ)
(E0(ℓ;µ) − γrEh(ℓ;µ)) + OE(2), γ ∈ S

1

}

.

(5.9)
Thus, to leading order, Λh(ℓ;µ) is a straight interval at a distance of |2E0(ℓ;µ)/S ′(λh;µ)|
from λh. Both this distance and the length of the interval decrease exponentially fast
with ℓ. The endpoints of Λh(ℓ;µ) are given by

∂±Λh(ℓ;µ) = λh(µ) +
2

S ′(λh;µ)
(E0(ℓ;µ) ∓ Eh(ℓ;µ)) . (5.10)

Recall that ∂+Λh(µ) corresponds to the H+1−Hopf bifurcation, in which all extrema
of the pattern (Up(ξ;L), Vp(ξ;L)) start to oscillate exactly in phase at the bifurcation,
and ∂+Λh(µ) to the H−1−Hopf bifurcation, in which extrema that are one period
(= 2L) away from each other begin to oscillate exactly out of phase (§4.2.2).
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Remark 5.3 A result similar to Lemma 5.2 has been presented in [68] (Lemma 6.1).
However, there the presence of the term E0(ℓ;µ) in (5.9) has been overlooked.

Next we infer more geometric information about Λh. By the lemma, the length of Λh

is to leading order given by 2|Eh/S ′|, and the distance to λh is to leading order given
by 2|E0/S ′|. The relative magnitude of these quantities is thus determined by

|Eh(ℓ;µ)/E0(ℓ;µ)| = e−2ℓ(Re
√

µ+λh−
√

µ), (5.11)

which is exponentially small in δ if µ > 0 and λ = λr + iλi are such that

2µλr + λ2
i > 0. (5.12)

Note that this is satisfied if λr ≥ 0. Since λh(µH) = iλh,H,i with λh,H,i > 0 due to
(5.3), (5.12) also holds near the bifurcation at which (Up(ξ;L), Vp(ξ;L)) destabilizes.
Hence, near the destabilization, and in general when (5.12) holds, the length of Λh is
much shorter than its distance to λh. On the other hand, the orientation of Λh with
respect to λh is to leading order governed by

Eh(ℓ;µ)

S ′(λh;µ)
=

e−2ℓνh,r

ρh
[cos (2ℓνh,i − θh) − i sin (2ℓνh,i − θh)] , (5.13)

in which

νh(µ)
def
= +

√

µ + λh(µ) = νh,r + iνh,i with arg [νh(µ)] ∈ (0, π),

S ′(λh;µ)
def
= ρh(µ)eiθh(µ) with ρh ∈ R

+, θh ∈ [0, 2π)
(5.14)

(Lemma 5.2). Combined, the above observations imply that

Re[λ(γ)] ≷ Re[λh] for all γ ∈ S
1 ⇔ Re[S ′(λh;µ)] ≷ 0 (5.15)

if (5.12) holds – see Figure 4.8. It thus follows that the homoclinic pattern (Uh(ξ), Vh(ξ))
is the last ‘periodic’ pattern to destabilize if and only if Re[S ′(λh,H;µH)], the value
of Re[S ′(λh;µ)] at the Hopf bifurcation (5.3), is positive. Or, vice versa, there ex-
ist stable periodic patterns (Up(ξ;L), Vp(ξ;L)) with L = 2ℓ/ε2 and ℓ = 1/δ, when
(Uh(ξ), Vh(ξ)) has already been destabilized if Re[S ′(λh,H;µH)] < 0 – see again Figure
4.8.

Remark 5.4 It has been conjectured by Wei-Ming Ni in [60] that the homoclinic
solution (Uh(ξ), Vh(ξ)) is the last pattern to become unstable in the generalized Gierer-
Meinhardt equation (1.4) as µ approaches a Hopf bifurcation value. Here, we have thus
shown that Ni’s conjecture reduces to a conjecture on the sign of Re[S ′(λh,H;µH)]. It
follows from the analysis of the expression S ′(λh;µ) in [17] that Re[S ′(λh,H;µH)] > 0
for the classical Gierer-Meinhardt case (α1 = 0, β1 = 2, α2 = −1, β2 = 2), hence it
follows that Ni’s conjecture holds for this case. For a general proof of Ni’s conjecture
one needs to analyse Re[S ′(λh,H;µH)] as function of the parameters α1, α2, β1, β2.
It is to be expected that one will encounter behavior that differs significantly from
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Figure 4.8: (a) A schematic picture of a spectral branch for the case that
Re[S ′(λh,H;µH)] > 0 for some fixed µ > µH: the homoclinic pattern is the last
periodic pattern to destabilizes as µ ↓ µH. (b) The case that Re[S ′(λh,H;µH)] < 0 for
some fixed µ < µH: the homoclinic limit is unstable, while there still exist stable long
wavelength periodic patterns.

that of the classical case. In fact, in [24] the character of λh as function of µ for
the special case α1 = 5/4, β1 = 2, α2 = −3, β2 = 2 has been considered (as an
example): in this case Re[λh(µ)] changes signs twice as µ increases from 0, i.e. there
are two (homoclinic) Hopf bifurcations, at µH,1 and µH,2: (Uh(ξ), Vh(ξ)) is stable
for µ ∈ (µH,1, µH,2). It is straightforward to check from the information in [24]
that Re[S ′(λh(µH,1);µH,1)] > 0 and Re[S ′(λh(µH,2);µH,2)] < 0. Hence, there still
exist stable periodic patterns (Up(ξ;L), Vp(ξ;L)) as (Uh(ξ), Vh(ξ)) is destabilized by
µ crossing through µH,2 (in the case α1 = 5/4, β1 = 2, α2 = −3, β2 = 2). However,
this example not necessarily disproves Ni’s conjecture, since one could argue that
Ni’s conjecture concerns only the first bifurcation (for increasing µ) at which stable
patterns are created (i.e. µ = µH,1 at which Re[S ′(λh(µH,1);µH,1)] > 0).

The Hopf bifurcation curves H±1 = {µ = µ±(ℓ) ∈ C} are determined by the values
of ℓ and µ at which the endpoints ∂±Λh(ℓ;µ) cross through the imaginary axis, i.e.
by the condition

Re [∂±Λh(ℓ;µ±(ℓ))] = 0. (5.16)

Since we have seen that Λh(ℓ;µ) is exponentially close to λh, we expect that both
µ±(ℓ) are exponentially close – i.e. O(|E|) = OE(1) – to µH (5.3). Therefore, we
expand λh(µ) around µH,

λh(µ) = λh,H + (µ − µH)λ′
h(µH) +

1

2
(µ − µH)2λ′′

h(µH) + OE(3), (5.17)
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once more anticipating on the expectation that µ − µH = OE(1). Note that λ′
h(µH)

and λ′′
h(µH) can be expressed in terms of S ′(λh,H;µH) and S ′′(λh,H;µH) (5.7) by a

straightforward expansion of (5.4). For instance,

λ′
h(µH) = − 1

S ′(λh,H;µH)

∂S
∂µ

(λh,H;µH) = −1

2

λh,H

µH(µH + λh,H)S ′(λh,H;µH)
, (5.18)

where we have used that

∂S
∂µ

(λ;µ) =

[

∂

∂µ

√
µ√

µ + λ

]

[α1 − α2β1R(λ)] =
1

2

λ

µ(µ + λ)
S(λ;µ)

(4.12), and that S(λh,H;µH) = 1. The derivation of the expression for λ′′
h(µH) is

similar, but more involved. The combination of (5.17) with Lemma 5.2 (5.9) yields
the following leading order approximation of Λh(ℓ;µ)) for µ OE(1) close µH,

λ(γ, ℓ;µ) = λh,H +(µ−µH)λ′
h(µH)+

2

S ′(λh,H;µH)
(E0(ℓ;µH) − γrEh(ℓ;µH))+OE(2).

The application of condition (5.16) implies that,

0 = (µ± − µH)Re [λ′
h(µH)] + Re

[

2

S ′(λh,H;µH)
(E0(ℓ;µH) ∓ Eh(ℓ;µH))

]

+ OE(2),

since λh,H ∈ iR (5.3). Hence by (5.5) and (5.14),

µ±(ℓ) = µH − 2

Re [λ′
h(µH)]

e−2ℓ
√

µHRe

[

1 ∓ e−2ℓ((νh,r(µH)−√
µH)+iνh,i(µH))

S ′(λh,H;µH)

]

+ OE(2),

where λ′
h(µH) is determined by (5.18). The above analysis can be summarized as

follows.

Corollary 5.5 There is a δ0 > 0 such that for all ℓ > 1/δ0, the Hopf bifurcation
curves H±1 are to leading order given by

µ±(ℓ) = µH−
2

ρh(µH)Re [λ′
h(µH)]

e−2ℓ
√

µH

[

cos θh(µH) ∓ e−2ℓ(νh,r(µH)−√
µH) cos (2ℓνh,i(µH) − θh(µH))

]

.

with ρh(µ), θh(µ), νh,r(µ), and νh,i(µ) as defined in (5.14) and λ′
h(µH) given by (5.18).

The curves H±1 ‘snake’ among each other and have infinitely many intersection points
as ℓ → ∞ that accumulate on µH. These intersection points represent co-dimension
2 bifurcations, they are given by µ = µ+1(ℓ2(k)) = µ−1(ℓ2(k)) with

ℓ2(k) =
π + 2θh(µH)

4νh,i(µH)
+

π

2νh,i(µH)
k >

1

δ0
, k ∈ N.

Thus this corollary confirms the structure of the the sinusoidally oscillating and ex-
ponentially converging snaking curves H+1 and H−1 as found numerically for the
Gray-Scott problem in section §4.3.
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It should be noted that one could also define the curves H(γ), γ ∈ S
1, that de-

scribe the relation between µ and ℓ for which the point λ(γ) on the spectral branch
Λh(ℓ;µ) crosses the imaginary axis (5.9). It is straightforward to check that these
curves are all inside the (infinitely many) regions bounded by H±1. This implies that
neither of these curves can correspond to a (de)stabilizing Hopf bifurcation, and thus
reconfirms the fact that all bifurcations near µH must be of H±1−type. Moreover, it
also implies that all H(γ) curves pass through the co-dimension 2 intersection points
determined by H+1 ∩ H−1. This is of course a very degenerate but also artificial
phenomenon, it is caused by the fact that the spectral branch Λh(ℓ;µ) is to leading
order a straight interval that coincides with the imaginary axis at the intersection
points H+1 ∩H−1. A more accurate approximation of Λh(ℓ;µ) will show that it is in
general bent, as we shall show in the upcoming section. Note that the orientation of
the associated ‘belly’ with respect to the imaginary axis decides whether the pattern
(Up(ξ;L), Vp(ξ;L)) indeed may undergo a co-dimension 2 bifurcation caused by both
H+1 and H−1, or whether there is no co-dimension 2 bifurcation since it is preceded
by and ‘interior’ H(γ)−bifurcation, as described in §4.2.2.

4.5.2 The effect of bending: the belly dance

To study the next order parabolic correction to Λh(ℓ;µ), we need to determine
the next order correction to expression (5.9) in Lemma 5.2. As in §4.5.1, we first
consider the spectral branch Λh(ℓ;µ) for general µ, i.e. µ not necessarily close to µH.
By (4.10), (5.8), (4.11), (5.6), (5.7),

E2(λ, ℓ;µ) t22(λ, ℓ;µ, 0) = [Eh(ℓ;µ)+OE(2)]2[1+(1+OE(1))(1+OE(1))] = 2E2
h(ℓ;µ)+OE(3),

and we thus find as next order approximation to (5.1),

−(λ − λh)S ′(λh) = 2γrEh − 2E0 − 1
2 (λ − λh)2S ′′(λh;µ) − 2E0(λ − λh)S ′(λh)

+ 2E2
0 − 2(λ − λh) ℓ√

µ+λh
Eh − 2E2

h + OE(3),

where we have once again used (4.10), (4.11), (5.6), (5.7), and (5.8). We can now
substitute the leading order approximation of (λ − λh) (5.9) into the right hand side
of this identity, to obtain

(λ − λh)S ′(λh) = 2(E0 − γrEh) + 2(E2
h − E2

0) + 4 ℓ
S′(λh)

√
µ+λh

γrEh(E0 − γrEh)

+ 4E0(E0 − γrEh) − 2 S′′(λh)
(S′(λh))2 (E0 − γrEh)2 + OE(3).

We have thus obtained,

Lemma 5.6 There is a δ0 > 0 such that for all ℓ > 1/δ0, the spectral branch Λh(ℓ;µ)
is given by the quadratic approximation,

Λh(ℓ;µ) =
{

λ(γ, ℓ;µ) = λh(µ) + G0(ℓ;µ) + G1(ℓ;µ) γr + G2(ℓ;µ) γ2
r + OE(3), γ ∈ S

1
}

,
(5.19)
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with

G0(ℓ;µ) = 2
S′(λh)

[

E0 +
(

1 − S′′(λh)
(S′(λh))2

)

E2
0 + E2

h

]

+ OE(3),

G1(ℓ;µ) = − 2
S′(λh)

[

1 + 2
(

1 − ℓ
S′(λh)

√
µ+λh

− S′′(λh)
(S′(λh))2

)

E0

]

Eh + OE(3),

G2(ℓ;µ) = − 2
(S′(λh))2

[

2ℓ√
µ+λh

+ S′′(λh)
S′(λh)

]

E2
h + OE(3).

(5.20)

Of course, Λh(ℓ;µ) is at leading order still an interval that rotates as function of ℓ,
its rotation is to leading order still determined by (5.13). Nevertheless, as function
of γr ∈ [−1, 1], Λh(ℓ;µ) is a parabola (up to corrections of OE(3)). Moreover, up
to a non-rotating factor, the orientation of the parabolic belly is to leading order
determined by,

(

Eh(ℓ;µ)

S ′(λh;µ)

)2

=
e−4ℓνh,r

ρ2
h

[cos (4ℓνh,i − 2θh) − i sin (4ℓνh,i − 2θh)] .

(5.20). Thus, the parabolic belly indeed ‘dances’ around the leading order linear ap-
proximation of Λh(ℓ;µ) with a frequency that is twice the frequency of the rotation
of Λh(ℓ;µ) (5.13). More precisely: in a coordinate frame that rotates along with
the linear leading order approximation so that Λh(ℓ;µ) remains vertical, the OE(2)
parabolic correction indeed performs a ‘belly dance’ from left to right. This is in full
agreement with the numerical observations for the Gray-Scott model in section §4.3.

In general, the parabolic correction will not have an influence on the destabilization
of the periodic pattern (Up(x;L), Vp(x;L)), it will be caused by one of the endpoints
∂±Λh(ℓ;µ) = λ(±1, ℓ;µ) (5.19), (5.10). However, near the co-dimension 2 points,
where Λh(ℓ;µ) is almost vertical and Re[∂+Λh(ℓ;µ)] and Re[∂−Λh(ℓ;µ)] are close to
0, the parabolic ‘belly’ may play a role: the orientation of the parabola with respect
to the imaginary axis determines whether and endpoint ∂±Λh(ℓ;µ) is the first to cross
through the imaginairy axis, or an interior point. Note that Λh(ℓ;µ) would be tangent
to the imaginary axis in this latter case, i.e. Re[λ(γint

r , ℓ;µ)] = 0 for some γint
r 6= ±1,

while Re[λ(γint
r , ℓ;µ)] < 0 for all γr ∈ [−1,+1]\{γint

r , γr
int}. However, this does not

happen.

Corollary 5.7 Let (Up(x;L), Vp(x;L)) be a periodic pattern, let ℓ = ε2L = 1/δ be
large enough, and assume that (Up(x;L), Vp(x;L)) is destabilized by Λh(ℓ;µ) as µ
crosses through the critical value µdest = µdest(ℓ). This destabilization either is a
Hopf bifurcation of H+1− or H−1−type, i.e. the destabilization must be caused by
one of the endpoints ∂±Λh(ℓ;µ), or it is a co-dimension 2 bifurcation, i.e. µdest

corresponds to an intersection of the H+1− and H−1−curves.

Note that this corollary establishes that the boundary of the Busse balloon near a
homoclinic tip indeed must be formed by the two ‘snaking’ H+1− and H−1−curves
– see Figure 4.10(a).
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Since the parabolic correction to Λh(ℓ;µ) only is of OE(2) (Lemma 5.6), (Up(x;L), Vp(x;L))
must be destabilized by a Hopf bifurcation of H±1−type if Λh(ℓ;µ) is not OE(1) close
to being vertical. The corollary can thus be proved by only considering the near-
vertical case, with Λh(ℓ;µ) in the stable part of the complex plane. It will be shown
that in this case the parabolic belly is pointing away from the imaginary axis.

Proof. In leading order, the orientation of Λh(ℓ;µ) is determined by (5.9) and espe-
cially by (5.13). It follows that Λh(ℓ;µ) is vertical up to OE(1) corrections if

Eh(ℓ;µ)

S ′(λh;µ)
= iQ + OE(1),Q ∈ R (Q 6= 0),

Thus, by (5.13), 2ℓνh,i − θh = 1
2π + kπ + OE(1), with k ∈ Z and k large enough.

Hence, Λh(ℓ;µ) is to leading order vertical for ℓ OE(1) close to

ℓvert(µ) =
π + 2θh

4νh,i
+

π

2νh,i
k. (5.21)

By (5.20), (5.13), and (5.21), the quadratic deformation of Λh(ℓ;µ) is determined by
G2(ℓvert, µ)γ2

r (5.19), with

G2(ℓvert, µ) =
2

ρ2
h

[

2ℓvert√
µ + λh

+
S ′′(λh)

S ′(λh)

]

e−4ℓvertνh,r + OE(3), (5.22)

The assumption ℓ = 1
δ ≫ 1, implies that the orientation of the parabolic ‘belly’ with

respect to its leading order vertical configuration is determined by the real part of
1/
√

µ + λh.

Since Im[λh] > 0 by definition (5.3), it follows that arg[µ + λh] ∈ (0, π), so that
arg[

√
µ + λh] ∈ (0, 1

2π) (see (5.14)) and arg[1/
√

µ + λh] ∈ (− 1
2π, 0). Hence, Re[1/

√
µ + λh] >

0, so that
Re[G2(ℓvert, µ)γ2

r ]|γr=±1 > Re[G2(ℓvert, µ)γ2
r ]|γr=0 = 0,

which implies that the parabolic belly of Λh(ℓvert, µ) points to the left, that is, away
from the imaginary axis if Λh(ℓvert, µ) is contained in the stable complex half plane.
Therefore, it is impossible for interior points of Λh(ℓ, µdest) to cross through the imag-
inary axis before the endpoints ∂±Λh(ℓ, µdest) do. Since Λh(ℓ, µ) rotates as function
of ℓ, there must be values of µdest(ℓ) for which both endpoints ∂±Λh(ℓ, µdest) are on
the imaginary axis. Such situations correspond to the co-dimension 2 bifurcation at
which H+1 and H−1 intersect.

Finally, we note that the higher order, non-quadratic, corrections to the shape of
Λh(ℓ, µdest) – see Lemma 5.6 – cannot have an effect on the above considerations. ¤

The fact that the parabolic belly always points away from the imaginary axis in-
deed is quite intriguing. In Figure 4.9, a sketch is given of the combined Hopf and
belly dance: the belly ‘dances’ with twice the frequency of the rotation of the spectral
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(a) (b) (c)

(d) (e) (f )

Im Im Im

Im ImIm

Re Re Re

Re ReRe

Figure 4.9: A sketch of the combined Hopf and belly dances of the spectral curve Λh

for values of µ and k inside the Busse balloon. Wavenumber k decreases in a series of
snapshots from (a) to (f), the picture shows a series of snapshots of Λh. The arrow
indicate the direction of the rotation. Notice that this sketch does not include the
exponential decay of the scale of the curve as k decreases and that (the higher order
effect of) its bending has been exaggerated. Compare to Figure 4.6.

curve. The belly dances causes the boundary of the Busse balloon to be as sketched
in Figure 4.10(a). Although we have just shown that this does not occur in equations
of the type (1.2)/(1.4), it would a priori have been natural to expect that also the
situation as presented in Fig 4.10(b) could occur. Here the boundary of a Busse bal-
loon is sketched in the hypothetical situation that parabolic belly is oriented towards
the imaginary axis near the bifurcation: (O(1)) close to the intersections of H+1 and
H−1 there is a small region in which the pattern (Up(ξ;L), Vp(ξ;L)) is destabilized
by an ‘internal Hopf bifurcation’ at γint

r 6= ±1. In the final section we discuss whether
this scenario indeed is impossible (especially in the light of Remark 1.4).

4.6 Discussion

In this chapter we have found, by numerical means, that the Busse balloon associ-
ated to periodic patterns in the Gray-Scott model (with ε4 = 0.001 and B = 0.026)
has a fine structure consisting of a Hopf dance of snaking bifurcation curves H±1

with many co-dimension 2 intersections. This phenomenon has been established as a
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Busse−balloon
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µµH
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Figure 4.10: A typical sketch of the snaking curves H+1 and H−1.(a) The situation
as established by the analysis: the belly of Λh always points into the stable half plane
near the intersections of H± (b) The hypothetical scenario in which the belly would
be oriented towards the unstable half plane: there are no co-dimension 2 bifurcations
near the homoclinic tip, but the intersection of H±1 are preceeded by ‘interior’ Hopf
bifurcations as the spectral branch Λh crosses the imaginary axis for some γ-eigenvalue
with γ 6∈ {±1}.

generic destabilization mechanism by a detailed analysis of the destabilization of long
wavelength, nearly localized, stationary, reversible spatially periodic patterns in the
class of two component, singularly perturbed reaction-diffusion systems represented
by the normal form model (1.4).

The main open question of course is: ‘Does the Hopf dance destabilization mechanism
persist beyond the range of singularly perturbed two component reaction-diffusion sys-
tems?’ We strongly believe that this is the case. Since the destabilization mechanism
concerns the behavior of nearly homoclinic patterns, it is expected that it is possible
to establish the validity of the Hopf dance mechanism for non-singularly perturbed
N -component reaction-diffusion equations by extending the methods developed in
[36, 78]. We do have to be a careful, though. A first look into the applicability of
the methods of [36, 78] to this problem suggests that it is possible to establish the
persistence of the stretching and rotating behavior of the (collapsed) spectral curves
near the homoclinic limit. By the general theory presented in section §4.2, this would
imply that the Hopf dance mechanism indeed also appears as a generic feature is this
much larger class of systems.

However, at this point it is not at all clear whether or not the belly dance also persists,
and more importantly: in what way it persists. We expect that the boundary of the
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Busse balloon near the homoclinic limit does not necessarily have to be of the type
sketched in Figure 4.10 (a), i.e. the structure associated to the Gray-Scott system
and to the normal form. This feature may be related to the character of the models
(1.1) and (1.4). It follows from a detailed re-examination of the proof of Corollary
5.7 that the orientation of the belly is in essence determined by the exponential terms
E(λ, ℓ) in the expression for the Evans function given in Theorem 4.2. In general,
we do not expect such exponential terms in the Evans function associated to the
stability of stationary patterns. In fact, it is for this reason to be expected that the
belly dance may already change orientation in the class of singularly perturbed two
component models presented in Remark 1.4: the results to be presented in [13] seem
to imply that the role of the exponential expressions E(λ, ℓ) may be taken over by
more general expressions. These expressions may cause the orientation of the belly
in the Hopf dance to change. Note that this (so far quite formal) observation does
not ‘destroy’ the generiticity of the Hopf dance, it only shows that the orientation of
the belly dance may change if one considers a larger class of models. In fact, it shows
that the two Hopf dance scenarios shown in Figure 4.10 may both occur (and thus
not only the one given in Figure 4.10(a)). Of course, this all is at present not yet
established as a rigorous mathematical result: it is the subject of work in progress.



Chapter 5

Outlook for ecologists

In ecology, we are interested in many features of semi-arid ecosystems, not the least
among which are pattern formation from a homogeneously vegetated state and early-
warning signs for desertification [41, 46, 74, 91]. For example, for the GKGS-model
(0.5) we have derived parameter combinations for which the homogeneously vegetated
state (U+, V+) destabilizes and a patterned state appears. Since the Ginzburg-Landau
equation serves to describe the patterns if the precipitation rate is slightly below
threshold, we can perfectly describe the appearance of patterns in the GKGS-model
(0.5). On the other hand, in this thesis we did not at all consider the determination
of early warning signs captured by the GKGS-model.

More generally, despite recent field studies that revealed a power-law in the patch-
size distribution of the vegetation [45] that were successful in explaining the distribu-
tion by the use of cellular automata, profound insight in ecological signs of imminent
desertification is basically lacking. Moreover, although reaction-diffusion(-advection)
models are used extensively to model semi-arid ecosystems, early warning mechanisms
have neither been consistently described nor studied by these models.

This chapter aims at describing the relevant ecological consequences of the results
of this thesis, as well as at a description of possible future work. It will be argued
that the Busse balloons that have been constructed in chapter 3 will be of vital im-
portance in further analyses of desertification in the GKGS-model.

5.1 Discussion of results

In original nondimensional parameters, the GKGS-model reads

ut = uxx + νux + a − Lu − Muv2

vt = dvvxx − bv + Nuv2 (1.1)

with u(x, t), v(x, t) : R × R+ → R and a, b, ν ≥ 0, dv ≥ 0. Now, u can can be
directly interpreted as the water infiltration and w is the vegetation density. No-
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tice that, following the results of chapters 2 and 3, we model the spread of wa-
ter infiltration with diffusion and not with porous media flow / nonlinear diffusion.
From [46] we quote estimates for the case that the vegetation consists of grass: ν =
365 m year−1 (it increases from 0 m year−1), a = 250 to 750 kg H2O m−2 year−1,
L = 4 year−1, M = 100 kg H2O m−2 year−1 kg dry mass m−2, b = 1.8 year−1,
dv = 1.0 m2 year−1, N = 0.3 kg dry mass m−2 year−1.

The three homogeneous background states or equilibria from system (1.1) can now
be written as

u± =
1

2
[a ±

√

a2 − 4b2] and v± =
1

2b
[a ∓

√

a2 − 4b2] (1.2)

and the desert state (u0, v0) = ( a
L , 0). Of course, just as in the GKGS-system (0.5),

the desert state (u0, v0) and the vegetated equilibrium (u+, v+) are stable with respect
to homogeneous perturbations; the vegetated equilibrium (u−, v−) is always unstable.

Just as before, the stable periodic patterns appear at a supercritical Turing-Hopf bi-
furcation at a = aTH(ν). Near the Turing-Hopf bifurcation at aTH, they form an Eck-
haus band of stable patterns. When the condition 0 < aTH − a ≪ 1 breaks down, we
can no longer derive a modulation equation to obtain insight in the dynamics of (1.1)
and we have to resort to continuation methods. So, we have constructed two Busse
balloons for (1.1), one for ν = 0 m year−1 and one for ν = 365 m year−1 with the fur-
ther parameters drawn from [46]: a = 250 to 750 kg H2O m−2 year−1, L = 4 year−1,
M = 100 kg H2O m−2 year−1 kg dry mass m−2, b = 1.8 year−1, dv = 1 m2 year−1,
N = 0.3 kg dry mass m−2 year−1. However, we have to choose a rate for the diffusion
coefficient du as well (Klausmeier’s model does not include diffusion of water). We
assume dv = 1000. This way, the diffusion coefficients of both dv and du differ by
a factor 1000. Though it may at first sight seem as if with this choice the diffusion
of water (dv = 1000) outranges the advection of water (ν = 365), this is not the
case. To see this, we rescale dv to dv = 1. This can be done by rescaling x with
x =

√
1000 x̃, which gives rescaled parameters d̃v = 1 and ν̃ = 11.5 and d̃u = 0.001,

as is the standard setting in chapter 2. Thus, advection clearly dominates diffusion.
The constructed Busse balloons are shown in Figures 5.1(a) and 5.1(b) and 5.2.

5.2 Ecological interpretation of results

From Figure 5.1, one derives that aTH(0) ≈ 1.05 · 103 kg H2O m−2 year−1 and
aTH(365) ≈ 1.13 · 103 kg H2O m−2 year−1. Therefore, we deduce that the back-
ground state (u+, v+) destabilizes at a (slightly) higher precipitation rate when the
gradient slope of the terrain is steeper. We interprete this as follows: on terrains
with a nontrivial gradient slope, the water runs downhill without infiltrating the soil.
Therefore, the homogeneous vegetation state (u+, v+) at terrains with a nontrivial
gradient slope destabilizes into a patterned state at a higher precipitation rate than
homogeneous vegetation on flat terrains, where water slowly infiltrates the soil with-
out running off.
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(a) (b)

Figure 5.1: (a) Busse balloon for the GKGS-system in ecologically meaningful parameters
(1.1) with ν = 0 m year−1 and b = 1.8 year−1. An enlargement of the indicated rectangle is
presented in Figure 5.2. (b) Busse balloon for the GKGS-system in ecologically meaningful
parameters (1.1) with ν = 365 m year−1 and b = 1.8 year−1. Both Busse balloons have been
depicted on the same scale.

5.2.0.1 Near desertification An other striking fact observed in the Busse bal-
loons for the GKGS-model (1.1) is that the upper branch of sideband instabili-
ties crosses the a-axis for positive a > 0, both for ν = 0 m year−1 and for ν =
365 m year−1. Notice that this is a difference with the Busse balloons that we found
for the GKGS-system in the scaling of (0.5) that have been constructed in chapter
3, where the critical value of a quickly dropped to 0 for ν increased slightly above
0 (see section 4.3.2). Numerical checks for other ν have confirmed that for each ν,
there exists a precipitation rate a = a−

0 (ν) > 0 such that there is no spatially periodic
pattern (for any wavenumber κ).

When a is smaller than aTH, the boundary of the Busse balloons in Figure 5.1 consists
of sideband instabilities. For ν = 0 m year−1, the upper curve of sideband instabilities
is crossed by the Hopf dance that has been discussed in chapter 4. See Figure 5.1(a)1.
Therefore, spatially periodic patterns on a flat terrain destabilize into the desert state
through a Hopf instability, while, at the other hand, spatially periodic patterns on
a terrain with a nontrivial gradient slope destabilize into the desert state through a
sideband instability. This yields one of the most intriguing ecological questions in-
duces by our mathematical analysis: is it possible to observe from a patterned state
whether it is close to a sideband instability or whether it is close to a Hopf instability?

Also, a−
0 (ν) is a decreasing function of ν: if the gradient slope increases, there

are stable spatially periodic patterns for ever smaller precipitation rates. From
Figure 5.1 we deduce that a−

0 (0) ≈ 8.8 · 101 kg H2O m−2 year−1 and a−
0 (365) ≈

1In Figure 5.1(a), we have traced out an ‘approximate’ Hopf dance: the Hopf curve depicted in
Figure 5.1(a) does not consist of γ-eigenvalues for fixed γ
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a

κ

sideband

Hopf

Figure 5.2: Hopf curve for the GKGS-system in ecologically meaningful parameters with
ν = 0 m year−1 and b = 1.8 year−1. Enlargement of the inset of the Busse balloon from
Figure 5.1)(a).

5.0 · 101 kg H2O m−2 year−1. Loosely formulated, this means that desertification for
systems with a nontrivial gradient slope happens at a lower precipitation rate than
for systems that are flat. This may be understood by the following arguments. If the
precipitation rate is small, then in the bare areas soil tends to dry out and becomes
impermeable for water infiltration, so that precipitation that falls down in the bare
areas eventually evaporates. The (scarce) vegetated areas are penetrated by roots
that moisturize the soil, which entails that water from precipitation that falls down in
vegetated areas infiltrates the soil. In systems with a nontrivial gradient slope, water
runs downhill until it reaches a vegetated spot where it is taken up by the roots. In
a flat system, water cannot run and will evaporate in the course of time, leaving only
the water that falls on the vegetated areas to be taken up by plant roots. Therefore, if
the precipitation rate is low, in flat systems there is more stress on vegetation growth
than in systems that have nontrivial gradient slope.

Thus, we conclude that a steeper gradient considerably increases the total area of
the Busse balloon: for each wavenumber κ, there is a considerable larger interval
(a−

κ , a+
κ ) for which stable spatially periodic patterns exist (compare Figure 5.1(a) to

5.1(b)).

An initially stable spatially periodic pattern will for decreasing a in principle not
change its wavenumber, as long as (a, κ) remains inside the Busse balloon. When an
initially stable pattern gradually approaches the boundary of the Busse balloon, it
will, at a further decrease of the precipitation rate a, eventually destabilize. However,
at the lower precipitation rate a the specific shape of the Busse balloon depicted in
Figure 5.1 generally allows for stable periodic patterns with a smaller wavenumber.
See Figure 5.3. Therefore, if the decrease in a is not too fast, it is expected that the
original stable spatially periodic pattern is adapted such that its wavenumber becomes
smaller. Note that this mechanism of decreasing the wavenumber as a consequence
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O

Figure 5.3: Part of a (schematic) Busse balloon for slowly changing parameters. Schematic
depiction of a path that a spatially periodic pattern may follow during decreasing precipita-
tion, after it crosses the boundary of the Busse balloon.

of decreasing a cannot work if the left boundary kl(a) of the Busse balloon is not an
increasing function of a. It is remarkable that all Busse balloons constructed in this
work have a boundary kl(a) that is an increasing function of a up to the point where
k achieves its maximal value. Now, since the left boundary of the Busse balloons for
the GKGS-system have this specific shape (see Figure 5.1), the internal dynamics will
force the pattern to decrease its wavenumber a little and cross the boundary of the
Busse balloon for this smaller wavenumber, so that a new (stable) spatially periodic
pattern with a smaller wavenumber appears. This is confirmed by numerical simula-
tions [87].

See Figure 5.1. Homoclinic patterns come as limit cases for spatially periodic pat-
terns for small wavenumbers (homoclinic patterns have wavenumber κ = 0). From
the Busse balloons in Figure 5.1 one deduces that also for the GKGS-system (1.1)
in realistic parameters, the homoclinic pattern is the last pattern destabilizing for
decreasing a. This once more confirms Ni’s conjecture [60] that has been discussed
in chapter 5. Therefore, we conclude that ‘oasis’-like patterns, i.e. small patches
of vegetation without any other vegetation in a large area surrounding, are the last
remaining vegetated patterns and can no longer adapt to any other pattern at the
rim of desertification.2 On the other hand, it is in principle possible that oasis-like
patterns are not at the edge of desertification, as there exists a range (a−

0 (ν), a+
0 (ν))

of precipitation rates for which homoclinic patterns exist. Since homoclinic patterns
are stable for each a ∈ (a−

0 (ν), a+
0 (ν)), oasis-like patterns appear naturally in realis-

tic settings (although we are aware that there are many other mechanisms that may
explain the appearance of oasis states – such as the existence of a local water well).

2See also the discussion in §5.3.
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5.3 Future work

The Busse balloons depicted in Figure 5.1 give a complete overview of the stable
spatially periodic patterns described by the GKGS-model (1.1). By depicting all
wavenumbers for all possible choices of a system parameter, they are in fact a graphi-
cally displayed parametrization of all stable spatially periodic patterns that solve the
system under study. Their boundaries are associated to destabilization mechanisms
of the (stable) spatially periodic patterns. By a (numerical) scrutiny of the spectrum
associated to the linearization of a solution at the boundary of the Busse balloon, one
generally specifies the type of instability that the pattern undergoes when it crosses
the boundary.

One crucial assumption made throughout this thesis is that all other3 parameters
of the system are constant in time. In reality, of course, this is never the case. For
example, the evaporation rate L in (1.1) depends on temperature, humidity and other
environmental factors that are not constant in time, even not when one averages over
longer periods of time, and therefore L itself is not constant in time.

As indicated in section 5.2.0.1, when a pattern with some fixed wavenumber reaches
the boundary of the Busse balloon while the precitation rate a is slowly decreasing, it
will change to a stable pattern with a smaller wavenumber. Exactly how this happens
is not completely clear and needs further analysis.

If the precipitation rate L decreases even further, and the wavenumber of the pat-
tern has been adapted several times, the pattern gradually aproaches the axis κ = 0.
Future research should at least in part focus on the specific characteristics of the dy-
namics at the boundary of the Busse balloon that lead to desertification. This way,
one may be able to deduce early warning signals if desertification is imminent.

An other very relevant question arises when we add a second spatial coordinate y
to the model. Notice Klausmeier’s original model naturally incorporates two spa-
tial coordinates x and y. In the GKGS-model with two spatial coordinates, a more
realistic description of vegetation patterns can be given. Two-dimensional spotted
patterns, striped patterns and other coherent structures may then be described, as
well as their instabilities.

3That is, all parameters different from the one used to construct the Busse balloon.



Chapter 6

Derivation of the
Ginzburg-Landau Equation

In this appendix, we outline the derivation of the Ginzburg Landau Equation for the
amplitude A of the pattern that appears at the Turing-Hopf bifurcation. Each of the
four different cases of Figure 1.1 can be derived from the expressions given in this
appendix by considering either γ = 1 or c = 0, or both.

In §6.0.1 we derive the Ginzburg-Landau Equation for the special case that γ = 1

and c =
√

2
3b which was presented in §2.1.5.3.

The Ginzburg-Landau Ansatz for patterns that emerge at the Turing-Hopf instability
can, for the rescaled GKGS-system (1.38), be written as

+ ε

„

X02

Y02

«

+ . . .

„

U

V

«

= A
„

2b

ηγ,c

«

ei(k∗x+ω∗t) + ε

„

X12

Y12

«

ei(k∗x+ω∗t) + ε2

„

X22

Y22

«

e2i(k∗x+ω∗t) + c.c. + . . .

+ ε

„

X13

Y13

«

e
i(k∗x+ω∗t) + c.c. + . . . (0.1)

where A and Xij are functions of ξ = εx and τ = ε2(x − cgt) and cg the group
velocity defined by (1.26). Substituting this expansion in the GKGS-system (1.38)
and collecting terms of equal powers of ε and the Fourier modes ei(k∗x+ω∗t), we derive
expressions for X02,12,22,13 and Y02,12,22,13 subsequently. Notice that the scaling in
(1.38) has the advantage that the terms of order ε2 only play a role in the equations
for X13 and Y13.

As mentioned in paragraph 2.1.4, the solvability condition can be applied to solve an
equation of the form

Miω∗
(a∗, k∗, c)x = y. (0.2)
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The equations for X1j , Y1j , j = 2, 3 are of this form, with

Miω∗
(a∗, k∗, c) =





−Γk2
∗ − a2

∗

b2 + ick∗ −2b

a2
∗

b2 −k2
∗ + b − iω∗



 . (0.3)

We briefly point out the construction of the set of solutions for (0.2). The construction
for c = 0 differs from that for c 6= 0.

If c 6= 0, the matrix in (0.3) has two eigenvalues, λ+ = 0 and

λ− = −Γk2
∗ −

a2
∗

b2
+ ick∗ − k2

∗ + b − iω∗. (0.4)

If y ∈ RgMiω∗
(a∗, k∗, c) and c 6= 0, the set of solutions to (0.2) is given by

x =
1

λ−
y + ker Miω∗

(a∗, k∗, c).

On the other hand, if c = 0, we know from Proposition 1 in section 2.1.3 that

aγ+1
∗ = γgb2γ+1 and k2

∗ =
1

2
(1 − g).

It is then straightforward to show that

Miω∗
(a∗, k∗, 0) =





− 1
2 (g − 7)

(

gγ
b

)
2

γ+1 b2 −2b

(

gγ
b

)
2

γ+1 b2 1
2b(1 + g)



 , (0.5)

and that λ− = 0 if γ = 1. It is also straightforward to show that both columns of
Miω∗

(a∗, k∗, 0) span the range. We call the second column v1. So if y from (0.2) lies
in the range, there exists an α ∈ R such that y = αv1. Hence, if c = 0, the set of
solutions to (0.2) can be presented as

x = α ·
(

0
1

)

+ ker Miω∗
(a∗, k∗, 0). (0.6)

By plugging in the expansion (0.1) into (1.38) one obtains at order O(ε) an equation
for (X02, Y02)

T ,

(

X02

Y02

)

=

[

−2
b4

a3
∗
|ηγ,c|2 − 8

b2

a∗
Re(ηγ,c)

] (

1
0

)

|A2|. (0.7)

We will use shorthands x02, y02 for X02 = x02|A|2, Y02 = y02|A|2. The values for x02

and y02 can be read from (0.7). At order O(εE), we find equations of the form

Miω∗
(a∗, k∗, c)

(

X12

Y12

)

=

(

x12

y12

)

Aξ
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which can be solved if (x1j , y1j)
T ∈ RgMiω∗

(a∗, k∗, c). We find

x12 = [−4biΓk∗ − 2bc]/λ−;
y12 = [−ηγ,ccg − 2ik∗ηγ,c]/λ−. (0.8)

It can be checked that, indeed, (x1j , y1j)
T ∈ RgMiω∗

(a∗, k∗, c). At order O(εE2) we
find

(

X22

Y22

)

=

(

x22

y22

)

A2.

with

x22 =
(

b
a∗

)2

(4k2
∗ + 2iω∗ − b)y22 −

(

b
a∗

)2

( b2

a∗

η2
γ,c + 4a∗ηγ,c)

y22 =
b2

a∗
η2

γ,c+4a∗ηγ,c+8b2k2
∗
γ(γ−1)

“

b2

a∗

”γ−2

+( b
a∗

)
2

“

b2

a∗
η2

γ,c+4a∗ηγ,c

”“

−4Γk2
∗
−( a∗

b )
2
+2ick∗

”

“

b2

a∗

”2

(4k2
∗
+2iω∗−b)

“

−4Γk2
∗
−( a∗

b )
2
+2ick∗

”

−2b

(0.9)

At order ε2E, we obtain equations for X13 and Y13. These equations can be written
as

Mω∗
(a∗, k∗, c)

(

X13

Y13

)

=

(

I1

I2

)

, (0.10)

The right-hand sides I1, I2 are built up by several terms. The nonlinear terms from
the reaction kinetics generate:

2
a∗
b

UV → 2
a∗
b

[2by22 + ηγ,cx02 + η̄γ,cx22]

b2

a∗
V 2 → b2

a∗
[2η̄γ,cy22]

UV 2 → 4b|ηγ,c|2 + 2bη2
γ,c

We define Ltot as the sum of these expressions:

Ltot := (2η̄γ,c
b2

a∗
+ 4a∗)y22 + 2

a∗
b

(ηγ,cx02 + η̄γ,cx22) + 2b(2|ηγ,c|2 + η2
γ,c) (0.11)

The nonlinear terms that appear from working out the nonlinear diffusion terms
generate:
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UxxU → −2bk2
∗(x02 + 5x22)γ(γ − 1)

(

b2

a∗

)γ−2

(Ux)2 → 8bk2
∗x22γ(γ − 1)

(

b2

a∗

)γ−2

1

2
UxxU2 → −12b3k2

∗γ(γ − 1)(γ − 2)

(

b2

a∗

)γ−3

(Ux)2U → 8b3k2
∗γ(γ − 1)(γ − 2)

(

b2

a∗

)γ−3

Uxx → −2bk2
∗

From this we define:

LNLD = −2bk2
∗(x22 + x02)γ(γ − 1)

(

b2

a∗

)γ−2

− 4b3k2
∗γ(γ − 1)(γ − 2)

(

b2

a∗

)γ−3

LA,NLD = −k2
∗γ(γ − 1)

2b

a∗

(

b2

a∗

)γ−2

.

We then obtain for the right-hand side of the system

I1 = (−4
a∗
b

− LA,NLD)A + (Ltot − LNLD)|A|2A− (cx12 + 2bΓ + 2ik∗Γx12)Aξξ

I2 = 4
a∗
b
A− Ltot|A|2A− (cgy12 + ηγ,c + 2ik∗y12)Aξξ + ηγ,cAτ (0.12)

To derive the Ginzburg-Landau Equation, we impose the solvability condition (1.42)
to (0.10):

2bI2 − (k2
∗ + iω∗ − b)I1 = 0, (0.13)

and obtain,

2bηγ,cAτ =
[

2b(cgy12 + ηγ,c + 2ik∗y12) − (k2
∗ + iω∗ − b)(cx12 + 2bΓ + 2ik∗Γx12)

]

Aξξ

−
[

4a∗

b (k2
∗ + iω∗ + b) + (k2

∗ + iω∗ − b)LA,NLD

]

A
+

[(

k2
∗ + iω∗ + b

)

Ltot −
(

k2
∗ + iω∗ − b

)

LNLD

]

|A|2A.

6.0.1 The special case that γ = 1 and c =
√

2
3b

In this section we present the expressions for xij , yij , ij = 02, 12, 22 for the special

case that γ = 1 and c =
√

2
3b. In Proposition 2 we computed that for γ = 1 and

c =
√

2
3b one has
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k2
∗ =

1

3
b, a2

∗ =
1

3
b3, ω∗ = −1

3
b
√

2 and cg = −
√

2

3
b.

Also, one computes the second component of a basis vector of the kernel of Mω∗
(a∗, k∗, c)

and the nonzero eigenvalue of Mω∗
(a∗, k∗, c) as

η
1,
√

2
3
b

=
1

3
b
(

−2 + i
√

2
)

and λ+ =
2

3
bi
√

2.

These values are used to derive

x02 = 4b
√

b
3

y02 = 0

x12 = − 1
2

√
6b (2 − i

√
2)

y12 = 1
2

√
6b

x22 = 2
33b

√

b
3 (23 + 26i

√
2)

y22 = − 2
33b

√

b
3 (20 + 14i

√
2)

The nonlinear terms from the reaction kinetics are

2
a∗
b

UV → − 4

99
b3(82 + 31i

√
2)

b2

a∗
V 2 → 48

99
b3(1 + 4i

√
2)

UV 2 → 4

9
b3(7 − 2i

√
2)

The sum of these expressions is

Ltot :=
4

99
(7 − 5i

√
2).

The nonlinear diffusion terms are, of course, zero, so LNLD = LA,NLD = 0. We get
for the right hand components as in equations (0.10):

b
3I1 = −4

√

3
b A + 4

33b2(7 − 5i
√

2)|A|2A + (6 + 3i
√

2)Aξξ

b
3I2 = 4

√

3
b A − 4

33b2(7 − 5i
√

2)|A|2A + (5 − 4i
√

2)Aξξ − (2 − i
√

2)Aτ

These give the Ginzburg-Landau Equation in (1.51):

Aτ =
1

3
(8 + i

√
2)Aξξ +

2

9

√

3

b
(5 + i

√
2)A− 2

33
(5 − 2i

√
2)b2|A|2A.
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6.0.2 Derivation of the Ginzburg-Landau equation for the GKGS-
system with c = 0

In this section we present the expressions for xij , yij , ij = 02, 12, 22 for the special
case that c = 0. In Proposition 1 we computed that for c = 0 one has

k2
∗ =

1

2
(1 − g)b, and aγ+1

∗ = gγb2γ+1.

Also, one computes the second component of a basis vector of the kernel of Mω∗
(ac, kc, c)

and the nonzero eigenvalue of Mω∗
(ac, kc, c) as

ηγ,0 =
1

2
(g − 7)

a2
∗

b2
and λ− =

1

2
(g − 7)

a2
∗

b2
+

1

2
(1 + g)b

These values are used to derive

x02 = 4a∗

y02 = 0

x12 = 0

y12 = 2i(6 − g)
a2
∗

b3 k∗

x22 = 2
9 [9 − 2(3 + g)γ]a∗

y22 = − 4
9 (5 − g)γ

a3
∗

b3

The sum of the nonlinear terms from the kinetics is

Ltot :=

[

8

9
(18 − 2g)γ + 6(5 − g)

]

a4
∗

b3
.

And we have

LNLD = −2bk2
∗(x02 + x22)γ(γ − 1)

(

b2

a∗

)γ−2

− 4b3k2
∗γ(γ − 1)(γ − 2)

(

b2

a∗

)γ−3

LNLD,A = −(1 − 5g)(γ − 1)a∗

b

This gives the Ginzburg-Landau Equation in (1.49):

Aτ = 2
√

2Aξξ + b1(γ)A + L1(γ)|A|2A

with

b1(γ) =
[

−39 + 27
√

2 + (41 − 29
√

2) γ
] (

gγ
b

)
1

γ+1

L1(γ) = − 1
9 (2 −

√
2)

[

18(3 + 2
√

2) + 12(2 +
√

2)γ + (−8 + 3
√

2)γ2
] (

gγ
b

)
2

γ+1 b3



107

6.0.3 Derivation of the Ginzburg-Landau equation for the case c ≫ 1:
the Klausmeier model and the GKGS-model for c ≫ 1

This appendix to §2.1.6 deals with three themes: first, we give an elaborate account on
the scalings introduced in 2.1.6 that were used to derive the Klausmeier system (1.53)
from the GKGS-system. Secondly, we derive the GLE for the Klausmeier system
(0.33).

Scaling analysis for the Klausmeier system as a limit case of the GKGS
system. We remark that the equilibria for both systems (0.5) and (1.53) are the
same. Patterns close to the equilibrium (U+, V+) can be described as

U = δ2β−α(Û+ + εÛ(x, t));

V = δα−β(V̂+ + εV̂ (x, t)).
(0.14)

Substitution of these expansions in (0.5) gives the leading order formulation (1.38).
We are interested in the behaviour of the GKGS-model for 0 < 1/

√
c ≪ ε ≪ 1. Since

we know from Proposition 2 that ac = O(
√

c), we put a∗ = ā∗
√

c and obtain for
(1.38),

δ3β−2αUt = c−
1
2
(γ−1)γ

(

b2

ā∗

)γ−1

Uxx + cUx − [c
ā2
∗

b2 U + 2bV ]

+ ε

[

γ(γ − 1)
(

b2

ā∗

√
c

)γ−2

[UxxU + (Ux)2] − b2

ā∗

√
cV 2 − 2 ā∗

b

√
cUV

]

+ ε2

[

γ(γ − 1)(γ − 2)
(

b2

ā∗

√
c

)γ−3

[U(Ux)2 + 1
2U2Uxx]

+ γ(γ − 1) 1
ā∗

√
c

(

b2

ā∗

√
c

)γ−1

Uxx + 2r ā∗

b2
√

cU − UV 2

]

Vt = Vxx +
[

ā2
∗
c

b2 U + bV
]

+ ε
[

b2

ā∗

√
c
V 2 + 2 ā∗

b

√
cUV

]

− ε2
[

2r ā∗

b2
√

cU − UV 2
]

.

(0.15)
In order to derive the Klausmeier model, we must scale the components U and V
such that the diffusion coefficient in the first component of (1.38) is of higher order
in 1/

√
c than the other terms in the equations. The other terms must balance at the

same, highest order. In order to obtain this, we scale U , V and r such that

U =
Ū√
c
, V =

√
cV̄ and r = r̄

√
c. (0.16)

With these scalings we obtain for (0.15), by neglecting higher orders of δ and 1/
√

c,

0 = Ūx̃ − [
ā2
∗

b2 Ū + 2V̄ ]

−ε
[

b2

ā∗

V̄ 2 + 2 ā∗

b Ū V̄
]

+ ε2
[

2r̄ ā∗

b2 Ū − Ū V̄ 2
]

V̄t̄ = V̄x̄x̄ + [
ā2
∗

b2 Ū + V̄ ]

+ε
[

b2

ā∗

V̄ 2 + 2 ā∗

b Ū V̄
]

− ε2
[

2r̄ ā∗

b2 Ū − Ū V̄ 2
]

.

(0.17)
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We can now scale out b by putting

Ū = Ũb3/4; V̄ = b̃1/4V ; āc = ãcb
5/4;

x = b−1/2x̃; t = b−1/4t̃; r̄ = r̃b5/4,
(0.18)

and obtain, to leading order in ε and neglecting higher order terms of δ and 1√
c
,

0 = Ũx̃ − [ã2
∗Ũ + 2Ṽ ]

−ε
[

1
ã∗

Ṽ 2 + 2ã∗Ũ Ṽ
]

+ ε2
[

2r̃ã∗Ũ − Ũ Ṽ 2
]

Ṽt̃ = Ṽx̃x̃ + [ã2
∗Ũ + Ṽ ]

+ε
[

1
ã∗

Ṽ 2 + 2ã∗Ũ Ṽ
]

− ε2
[

2r̃ã∗Ũ − Ũ Ṽ 2
]

.

(0.19)

This system is the one presented in (1.55).

Derivation of the GLE for the Klausmeier system: the regime 0 < 1/
√

c ≪
ε ≪ 1. From (0.19) one derives the dispersion relation associated to the linearization
about the background state (U+, V+) in the Klausmeier model, neglecting higher
orders of ε,

detMλ(ã∗, ik̃) := det

(

−ã2
∗ + ik̃ −2

ã2
∗ 1 − k̃2 − λ̃

)

= 0. (0.20)

We apply conditions (1.7) to derive critical parameters. Working out the dispersion
relation (0.20) using condition (1.7)1,

iω̃ã2
∗ + ik̃(1 − k̃2) = 0;

ω̃k̃ + (k̃2 − 1)ã2
∗ + 2ã2

∗ = 0.
(0.21)

From these relations one derives

k̃2(k̃2 − 1) + ã4
∗(k̃

2 + 1) = 0. (0.22)

and by solving equation (0.21)1 for ω̃ we get

ω̃∗ = k̃∗(k̃
2
∗ − 1)

1

ã2
∗
, (0.23)

and thus

∂ω̃

∂k̃
=

1

ã2
∗
(3k̃2 − 1). (0.24)

Differentiating (0.24) with respect to k̃ and substituting equation (0.21)2 into the
result, we get

2k̃2 − 1 + ã4
∗ = 0. (0.25)

Solving (0.22) and (0.25) for ã and k̃ then gives
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ã2
∗ =

√
2 − 1 and k̃2

∗ =
√

2 − 1, (0.26)

which are the expressions for large c that we had derived in Proposition 2. From these
expressions for ã∗ and k̃∗ we further derive the critical frequency and the group speed

ω̃∗ = −
√

2
√√

2 − 1;

c̃g = −∂ω̃
∂k̃

|k=k∗
= −2 +

√
2.

(0.27)

From (0.20) it follows that the kernel and range of the linearization about the equi-
librium (Ũ+, Ṽ+) equal

kerMiω̃∗

(ã∗, k̃∗) =

(

2
−ã2

∗ + ik∗

)

(0.28)

and

RgMiω̃∗

(ã∗, k̃∗) =

( −2

1 − k̃2
∗ − iω̃∗

)

From the expression for the range of Miω̃∗

(ã∗, k̃∗) we derive that the equations

Miω̃(ã∗, k̃∗)x = f

can be solved for x if and only if f ∈ RgMiω̃∗

(ã∗, k̃∗), that is, if f fullfills the
solvability condition

2f2 + [1 − k̃2
∗ − iω̃∗]f1 = 0. (0.29)

Since DetMiω̃∗

(ã∗, k̃∗) = 0, it follows that the unique solution to the equation

Miω̃∗

(ã∗, k̃∗)x = f is

x =
1

λ−
f

with λ− the nonzero eigenvalue of Miω̃∗
(ã∗, k̃∗),

λ− := TrMiω̃(ã∗, k̃∗) = −ã2
∗ + ik∗ + 1 − k̃2

∗ − iω̃∗. (0.30)

By using (0.28), the expansion (U, V ) that describes the pattern near its onset (i.e.
for ã = ã∗ − r̃ε2) can be written out as

(

U
V

)

= A(ξ, τ)

(

2
η

)

ei(k̃∗x+ω̃∗t) + c.c. + h.o.t., (0.31)

with the shorthand

η := −ã2
∗ + ik̃∗.

As pointed out in at the begin of Appendix 6, in the Ginzburg-Landau formalism
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one subsequently derives equations of the form X02 = x02A2, Y02 = y02A2,X12 =
x12Aξ, Y12 = y12Aξ,X22 = x22|A|2, Y22 = y22|A|2. The formulas for xij and yij are
derived by substituting the expansion (0.31) in the leading order system (0.19) and

collecting terms of order εj−1Ei (with shorthand E = ei(k̃cx+ω̃ct)) and solving them
for Xij and Yij :

x02 = −2 1
ã3
∗

|η|2 − 4 1
ã∗

(η̄ + η)

y02 = 0

x12 = −2
λ−

y12 = 1
λ−

(ηcg − 2ηik̃c)

x22 =
2ik̃∗[ 1

ã∗
η2+4ã∗η]

[−ã2
∗
+2ik̃∗]·[4k̃2

∗
+2iω̃∗−1]−2ã2

∗

y22 = 1
ã2
∗

[4k̃2
∗ + 2iω̃ − 1]x22 − 1

ã2
∗

[ 1
ã∗

η2 + 4ã∗η]

(0.32)

The Ginzburg-Landau Equation that describes the onset of patterns in the Klausmeier
system (0.19) reads

2ηAτ = −[2(vgy12 − η − 2ik̃∗y12) − x12(1 − k̃2
∗ − iω̃∗)]Aξξ

− 4r̃ã∗ [1 + k̃∗ + iω̃]A + [1 + k̃∗ + iω̃]Ltot |A|2A
(0.33)

with

Ltot =
2η̄

ã∗
y22 + 4ã2

∗y22 + 2ã∗ηx02 + 2ã∗η̄x22 + 4|η|2 + 2η2.

If one works out the parameter values for ã2
∗ =

√
2 − 1 and k̃2

∗ =
√

2 − 1, the leading
order system (0.19) becomes

0 = Ũx̃ − [(
√

2 − 1)Ũ + 2Ṽ ]

−ε

[

1√√
2−1

Ṽ 2 + 2
√√

2 − 1Ũ Ṽ

]

+ ε2
[

2r̃
√√

2 − 1Ũ − Ũ Ṽ 2
]

Ṽt̃ = Ṽx̃x̃ + [(
√

2 − 1)Ũ + Ṽ ]

+ε

[

1√√
2−1

Ṽ 2 + 2
√√

2 − 1Ũ Ṽ

]

− ε2
[

2r̃
√√

2 − 1Ũ − Ũ Ṽ 2
]

.

(0.34)

The matrix that describes the linear leading order part of this system is then

Mλ(ã∗, k) :=

(

−
√

2 + 1 + i
√√

2 − 1 −2√
2 − 1 2 −

√
2 + i

√
2
√√

2 − 1

)

, (0.35)

Working out the levels for the different expressions (0.32), we get
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x02 = (4 − 2
√

2)
√√

2 − 1

y02 = 0

x12 = − 1
41

[

10 − 3
√

2 − i(40 + 29
√

2)
√√

2 − 1
]

y12 = 1
82

[

78
√

2 − 96 + i(16
√

2 − 108)
√√

2 − 1
]

x22 = 1
69

[

(61
√

2 + 40)
√√

2 − 1 + 2i(67
√

2 − 13)
]

y22 = − 2
69

[

(10
√

2 + 42)
√√

2 − 1 + i(5
√

2 − 2)
]

(0.36)

and

Ltot = −44 + 32
√

2 + i[−20 + 18
√

2]

√√
2 − 1.

The Ginzburg-Landau equation then becomes

−2[
√

2 − 1 + i
p√

2 − 1]Aτ = − 1
41

[594 − 416
√

2 + i(330 − 304
√

2)
p√

2 − 1]Aξξ

− 4r̃
h√

2
p√

2 − 1 − i(2 −
√

2)
i

A

+ 4
69

h

−885 + 637
√

2 + i(183 − 170
√

2)
p√

2 − 1
i

|A|2A

or equivalently,

Aτ = 1
41

h

(66 − 56
√

2) − i(63 − 23
√

2)
p√

2 − 1
i

Aξξ

+ r̃
h

4
p√

2 − 1 + i(4 − 2
√

2)
i

A

+ 4
69

h

−807 + 534
√

2 + i(418 − 286
√

2)
p√

2 − 1
i

|A|2A

The GLE for the GKGS model for c ≫ 1: the regime 0 < ε ≪ 1/
√

c ≪ 1.
As in the previous section, we scale the leading order system of the GKGS model
according to (1.54). We then obtain the leading order system (1.57). To first order
in ε, the leading order system (1.57) reads

Mc
λ(ã∗, ik̃) :=

(

−γa1−γ
∗ c−

1
2
γb

3
4
γ− 1

4 k̃2 + c1/2[ik̃ − ã2
∗] −2c1/2

ã2
∗ 1 − k̃2 − λ̃

)

. (0.37)

First, we remark that for γ ≥ 1 the linear part of the nonlinear diffusion in the GKGS-
model is in leading order ≤ O(c−1/2). Secondly, we remark that to leading order in
c, it holds that

detMc
λ(ã∗, ik̃) = c1/2Mλ(ã∗, ik̃) + O(c

1
2
(1−γ))
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with Mλ(ã∗, ik̃) as defined in (0.20). Therefore, the critical k̃∗, ã∗, ω̃∗ and c̃g are to
leading order in c as in (0.26) and (0.27).

The solvability condition is as in (0.29). Using the leading order system (1.57), we
compute

x02 = −2 1
ã3
∗

|η|2 − 4 1
ã∗

(η̄ + η)

y02 = 0

x12 = l0·c−
1
2

γ−2
λ−

y12 = 1
λ−

(ηcg − 2ηik̃c)

x22 = 1
ã2
∗

[4k̃2
∗ + 2iω̃ − 1]y22 − 1

ã2
∗

[ 1
ã∗

η2 + 4ã∗η]

y22 =
−l1c−θ1−l2c−θ2 1

ã∗
η2+4ã∗η+ 1

a2 [−l3c−θ2−a2+2ik̃][ 1
a η2+4aη]

[l4·c−θ4−ã2
∗
+2ik̃∗]·[4k̃2

∗
+2iω̃∗−1]−2ã2

∗

(0.38)

In (0.38) it is understood that all li, i = 0, . . . , 4 do not depend on c and that θi ≥ 0
for i = 0, . . . , 4. We have not computed the li and θi explicitly. This gives for the
GLE of the GKGS-model in general form

2ηAτ = −
[

2(cgy12 − η − 2ik̃∗y12) − (x12 + const · c− 1
2
γ)(1 − k̃2

∗ − iω̃∗)
]

Aξξ

−
[

4r̃ã∗(1 + k̃2
∗ + iω̃) + (k̃2

∗ + iω̃ − 1)LA,NLD

]

A

+
[

(1 + k̃2
∗ + iω̃)Ltot − (k̃2

∗ + iω̃ − 1)LNLD

]

|A|2A
(0.39)

with

LNLD = −k̃2
∗(x22 + x02) · const · c− 1

2
(1+γ) − 4k̃2

∗ · const · c− 1
2
(1+γ)

LA,NLD = −k̃∗ · const · c− 1
2
γ

We have not bothered about calculating the constant denoted by “const”, since for
asymptotically large c the associated expressions only play a role at higher order.
That is, for asymptotically large c ≫ 1 it is immediate that (0.39) reduces to (0.33).
Using the expressions (0.38) for k̃, ã, ω̃ and cg one obtains the GLe for the Klausmeier
system (0.33).
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Summary

Semi-arid ecosystems, ecosystems with an annual precipitation between 250 mm and
500 mm, cover about 30% of the earth’s crust. In the fifties, when the first pictures
of the earth’s surface were taken from outer space, one discovered patterns in many
of these ecosystems. Because of their scale, they were often hard to see from the
ground. During the last twenty years, theoretical ecologists have become convinced
that these vegetation may reveal the imminent threat of desertification – a process
that has dramatic ecological and humanitarian consequences.

In 1999, C.A. Klausmeier proposed a model to describe the water infiltration and
the vegetation density of semi-arid ecosystems. His model was a reaction-advection-
diffusion-system. This thesis generalizes this model and studies the existence and
stability of periodic patterns. We call it the generalized Klausmeier-Gray-Scott model,
since it is a generalization of the Gray-Scott system as well as of the Klausmeier sys-
tem. The generalized Klausmeier-Gray-Scott system is a so-called partial differential
equation: the components that are described by it depend on time as well as on space.

More precisely, the generalized Klausmeier-Gray-Scott model describes two compo-
nents that both depend of time and space: the vegetation density and the water
infiltration. The change in time of each of the components depends on different
mechanisms. Some of these describe the nonlinear diffusion of water or the ‘diffusion’
of the vegetation density, an other describes the advection of water, and others de-
scribe the uptake of water through the roots of plants. Despite the existence of other
(linear) mechanisms that may influence the change of the components in time, these
systems are called reaction-advection-diffusion systems.

This thesis contributes to the study of periodic patterns described by the Klausmeier-
Gray-Scott model. It mainly consists of three parts. The first part deals with the
appearance (‘rise’) of these patterns in a Turing(-Hopf) bifurcation when a system
parameter (such as the rainfall or the grazing pressure we mostly consider the rain-
fall) passes a critical value. The second part deals with the disappearance (‘fall’) of
periodic patterns when the system parameter decreases considerably. The third part
describes a novel destabilization mechanism for a class of reaction-diffusion equations.

The appearance of periodic patterns from a homogeneous state can be dealt with
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by the derivation of a so-called modulation equation that describes the slow spatial
and temporal variation of the amplitude of the periodic patterns near the critical
value. The modulation equation that describes this behaviour is called the Ginzburg-
Landau equation. In this thesis a Ginzburg-Landau equation is derived for the full
Klausmeier-Gray-Scott system with nonlinear diffusion (see chapter 2). We show
that the Turing(-Hopf) bifurcation is supercritical for some parameter values of the
parameter describing nonlinear diffusion, while it is subcritical for other parameter
values. However, the values for which the Turing(-Hopf) bifurcation is supercritical,
are not realistic.

The description of periodical patterns when the system parameter is no longer asymp-
totically close to the critical value for the Turing(-Hopf) bifurcation, can, so far, only
be done by very limited analytical methods. However, a thorough study of the in-
stabilities of periodical patters can be done by the application of recently developed
numerical methods (see chapter 3). These methods enable us to determine the spec-
trum of periodic patterns locally near the origin. In this thesis we set out to construct
so-called Busse balloons. A Busse balloon is an area in (parameter, wavenumber)-
space that consists of stable patterns. The limits are drawn by the instabilities of the
periodic pattern. In this thesis we demonstrate that the boundary of Busse balloons
for the generalized Klausmeier-Gray-Scott system always consists of either sideband
instabilities or Hopf bifurcations, and only in the case of the model for flat ecosystems
(no incline) it can also be a fold.

In the third section of this thesis (chapter 4) we deal with the so-called Hopf dance, a
novel destabilization mechanism that destabilizes periodical patterns for small values
of the rainfall parameter, such that the desert is the only stable state. The Hopf
dance is a type of instability that consists of two intertwining Hopf bifurcations. We
show that the Hopf dance can be constructed numerically in the Gray-Scott model,
and we prove the existence of the Hopf dance in the case of the Gierer-Meinhardt
system.



Samenvatting

Semi-aride ecosystemen, ecosystemen met een jaarlijkse regenval tussen de 250 mm
en de 500 mm, bedekken 30% van het landoppervlak van de aarde. Toen in de jaren
vijftig de eerste luchtfoto’s vanuit de ruimte gemaakt werden, ontdekte men dat de
vegetatie van veel van deze ecosystemen patronen vertoont, die door de soms grote
schaal lastig te zien is op de grond. In laatste decennia zijn theoretisch ecologen er
steeds meer van overtuigd geraakt dat deze patronen kunnen wijzen op woestijnvorm-
ing – een proces dat zowel ecologisch als humanitair grote gevolgen heeft.

In 1999 formuleerde C.A. Klausmeier een model om de hoeveelheid water en de ho-
eveelheid biomassa in deze ecosystemen te beschrijven. Het model dat hij voorstelde
valt binnen de klasse van reactie-advectie-diffusie systemen. In dit proefschrift wordt
dit model gegeneraliseerd, en vervolgens bestuderen we de existentie en stabiliteit van
periodieke patronen die dit model beschrijft. Het gegeneraliseerde model noemen wij
het generalized Klausmeier-Gray-Scott model, omdat het zowel een generalisatie is van
het Gray-Scott systeem als van het Klausmeier systeem. Het generalized Klausmeier-
Gray-Scott systeem is een zogenaamde partiële differentiaalvergelijking : de groothe-
den die door het systeem beschreven worden hangen af van zowel de tijd als de ruimte.

Preciezer geformuleerd, het generalized Klausmeier-Gray-Scott model beschrijft twee
componenten of grootheden, die beide van tijd en ruimte afhangen: de vegetatiedicht-
heid en de water infiltratie. De verandering van elk van deze componenten in de tijd
hangt af van verschillende bijdragen. Sommige hiervan beschrijven de niet-lineaire
diffusie van water of de ‘diffusie’ van vegetatiedichtheid, een andere beschrijft de ad-
vectie van water, en weer andere bijdragen beschrijven de opname van water door
de wortels van de planten. Omdat de lineaire termen die voor de verandering van
de componenten een rol spelen, voor het gemak even vergeten worden, heten deze
systemen daarom reactie-advectie-diffusie-systemen.

In dit proefschrift valt de studie van de periodieke patronen die beschreven worden
door het generalized Klausmeier-Gray-Scott model grosso modo uiteen in drie delen.
Het eerste deel betreft het ontstaan van deze patronen in een Turing(-Hopf) bifurcatie
als een systeemparameter (bijv. de regenval of de begrazingsdruk – in dit proefschrift
met name de regenval) een kritische waarde passeert. Het tweede deel heeft van doen
met het verdwijnen van de periodieke patronen als deze parameter vervolgens (veel)
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verder afneemt. Het derde deel beschrijft een nieuw instabiliteitsmechanisme voor
een klasse van reactie-diffusie vergelijkingen.

Het ontstaan van de periodieke patronen uit een homogene toestand wordt behandeld
door het afleiden van een zogenaamde modulatievergelijking die het langzaam variëren
van de amplitude van de ontstane patronen beschrijft asymptotisch dichtbij de kritieke
waarde. De modulatievergelijking die dit gedrag beschrijft heet de Ginzburg-Landau
vergelijking. In dit proefschrift wordt een Ginzburg-Landau vergelijking afgeleid voor
het volledige Klausmeier-Gray-Scott systeem met niet-lineaire diffusie (zie hoofstuk
3). We laten zien dat de Turing(-Hopf) bifurcatie voor sommige waarden van de
parameter voor niet-lineaire diffusie superkritisch is en voor andere waarden van de
parameter voor niet-lineaire diffusie subkritisch. Echter, de waarden voor gamma
waarvoor de Turing(-Hopf) bifurcatie superkritisch is, zijn niet realistisch.

Het beschrijven van periodieke patronen als de systeemparameter niet langer asymp-
totisch dicht bij de kritieke waarde voor de Turing(-Hopf) bifurcatie is, kan voorals-
nog maar zeer beperkt middels analytische methoden plaatsvinden. Een grondige
studie van de instabiliteiten van periodieke patronen kan echter wel gedaan worden
door het aanwenden van recent ontwikkelde numerieke methoden (zie hoofdstuk 3).
Deze methoden stellen ons in staat om lokaal (dat wil zeggen, in de buurt van de oor-
sprong) het spectrum van periodieke patronen te bepalen. In dit proefschrift leggen
wij ons toe op de constructie van zogenaamde Busse ballonnen. Een Busse ballon
is een gebied in (parameter, golfgetal)-ruimte dat bestaat uit stabiele patronen. De
grenzen ervan worden gevormd door instabiliteiten van de periodieke patronen. In
dit proefschrift laten we zien dat de instabiliteiten die de rand vormen van Busse
ballons voor het generalized Klausmeier-Gray-Scott system altijd ofwel sideband in-
stabiliteiten zijn ofwel Hopf bifurcaties, en alleen in het geval van het model voor
vlakke ecosystemen (geen helling) ook een fold.

In derde deel van dit proefschrift (hoofdstuk 4) behandelen we de zogenaamde Hopf
dans, een type instabiliteit waardoor periodieke patronen kunnen destabiliseren bij
lage regenval, zodat de woestijn de enige stabiele toestand is. De Hopf dans is een type
instabiliteit dat bestaat uit twee in en uit elkaar vlechtende Hopf bifurcaties. We laten
zien dat de Hopf dans numeriek geconstrueerd kan worden in het Gray-Scott model
en we bewijzen het bestaan van de Hopf dans in het geval van het Gierer-Meinhardt
systeem.
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