
STICHTING

2e BOERHAAVESTRAAT 49

AMSTERDAM

Opera.ting °EJ~perience with ALGOL 60 •

•

*

By E. W. Dijkstra
This paper describes the circumstances under which the ALGOL 60 translator of the Mathematical
Centre, Amsterdam, has been constructed. It describes its main features, virtues and short­
comings. Furthermore, it tells how the translator has shown itself to be an inspiring tool for
a varied group of users.

For the Computation Department of the Matl1ematical
Centre, Amste1·dam, ALGOL 60 came exactly at the
right moment, i.e. some months before our new machine,
an XI produced by N.V. Electrologica, The Hague, came
into ope1·ation. And before going on I should like to
mention some of the circumstances which greatly eased
the development of our ALGOL 60 translator.

(a) As our older machine, the ARMAC, was still in
operation and taking care of the service computa­
tio11s as in the preceding years, we could give the
development of our translator the higl1est priority
as fa1· as XI machine time was concerned.

(b) Faced with a new machine we we1·e 1·elatively free
from preconceived notions as to how this machine
should be used. No traditions with regard to its
use had to be broken, becat1se such traditions had
not yet grown.

(c) As the speed of the XI was co11siderably higher
than that of the ARMAC, we had the joyous feeling
that the speed of the object program did not
matter too much. The resulting frivolousness
saved us a great amount of trouble and pain.

(d) The fact that the Xl is a fixed-point binary com­
puter enabled us to include suitable red-tape
operations in the floating-point subroutines at
little or no expense as far as run-time speed was
concerned.

* Report MR47 of the Computation Department of the Mathe­
matical Centre, 2de Boerhaavestraat 49, Amsterdam, Netherlands.

(e) Thanks to the fact that our previous machinery
was highly unsuitable for any form of a 11tornatic
programming, we did not l1ave tl1e slightest
experience in language translation. We thought
that this was a great drawback; it turned out to be
one of our greatest advantages. Again there were
no obsolete traditions to get rid of.

(./·) In contrast to the great speed of tl1e Xl its store
was small: 4,096 words of ferrite-core store and
no backing store. As a result all ''strategy
questions'' where ''space'' and ''tin1e'' had to be
weighted against one another were settled almost
automatically.

(g) As some of us, in pa1·ticular Prof. A. van Wijn­
gaarden, had been heavily involved in the creation
of ALGOL 60, ou14 group, as a whole, was
probably more tolerant with respect to its less
lucky features than wot1ld otherwise have been the
case. As a result we did not waste our time on
discussions as to subsets or modified versions, but
took the challenge as it stood.

On the other hand, the limited size of the sto1·e l1as
l1ad two undesirable effects. Firstly, we did not dare to
try a ''load-and-go translator.'' We therefore aimed at
a single-pass sequential translation, simultaneously
reading the s011rce text and punching out the object
program. (It turned out that this pass had to be pre­
ceded by a rapid so-called ''prescan'' in which identifiers
of procedures and labels are collected.)

Operc1ti11g expe1·ie11ce lt'itlz ALGOL 60

Secondly~ 11(1t bei11g su1·e whether it could be done at
all \\1 itl1 ,1 4K store, \v·e restricted ourselves to tl1e bare
n1inimum ,1nd t1mitted practically all syntax cl1ecking.

Not bei11g too st1re of tl1e reliability of the paper-tape
equipment ~ve did inclt1de, howeve1·, a great variety of
p,11·it1r (a11d otl1er) checks on the corresponding input
and output oper·ations. Without these and other
prec,1utions it is very doubtful wl1etl1er \Ve would have
succeeded in gettir1g tl1e translator into operation at a
d,1te as early <lS At1gust 1960.

Main Features of our An1sterdam ALGOL 60 System
Input of source program is via seven-hole paper tape.,

produced on a slightly adapted Flexowriter. (The code
of this Flexowri1e1· was inspired by the Flexow1·ite1· of
Regnecentralen~ Copenhage11; in particular we copied a
no11-escapi11g key \Vith underlining as its lower-case
symbol and a vertical stroke as its upper-case symbol.)
Tl1e Mathematical Centre has now four of these; another
ten are scattered over various places i11 Holland and
Western Germany.*

Fu1·tl1ermore tl1e Flexowrite1· tape-feed has been
changed to blank tc:1pe~ and the t1·anslato1· permits pieces
of bl,1nk tape to be i11serted between different ''para­
grapl1s'' of the s011rce-language program. This facility,
'v\1 l1e11 wisely used~ considerably decreases the amount of
pape1·-tape handling required for corrections.

We have only a few restrictions on the language. The
m,1in 1·estrictions a1·e a prescribed order for the declara­
tio11s at the beginning of a block and, more se1·ious, no
o,vn arrays with dynamic bounds.

Standard functions and library procedures are at the
disposal of the p1·og1·ammer in the form of procedures
wl1ic!1 he may use witl1out explicit declaration. It is as
if our system embeds each given program in a surrounding
block .. '"-1.t the beginning of which the library procedures
are declared. Tl1is growing library also contains the
procedures for input and output~ in this way inpt1t and
outpt1t have been implemented in a flexible, expandable
way \\-'ithout violation of the syntactical rules of ALGOL
60, and without the introduction of new syntactical
elements.

The translation process is fast: during translation the
Xl performs an average of 1,000 mac11ine inst1·uctions
to generate one instruction of the object p1·ogram. But
roughly 50 ~1~ of the instructions in the object program
are subroutine calls,-they activate a ''macro''-therefore
translation time should be negligible. However, due to
the slow speed of the output punch, the translation
process is output-limited by a factor of three, and our
operator told me that in some unfavourable cases
translation time became nearly equal to the time taken
by the computation proper.

A ft1rtl1er possible dec1·ease in overall efficiency of the
translation process may be caused by the amount of
paper-tape handling required from the operator. I think
rhat we 11ave been insufficiently aware of the speed of

* And there is at least one in the U.K.-at the Cambridge
University Mathematical Laboratory .-ED.

126

the machine, and that we have not paid enougl1 attention
to the reduction of the amount of tape l1andling. The
translation of a series of short programs keeps a trained
operato1· continuously busy, inserting, winding and
identifying tapes.

Somewhat to our surprise the wo1~king system proved
to be a highly efficient, convenient and inspiring tool,
efficient in particula14 for non-trivial problems. Here I
can mention one of the things which contributed greatly
to the overall efficiency: in the run-time system the
extensive facilities of the XI for parallel programming
are much more thoro11gl1ly exploited than in nearly all
machine-code programs.

Afte1· its completion our tra11slator was very well
1·eceived. In order to avoid possible misunderstanding
I should like to point out that there are some marked
differences between the computer fields in the Nether­
lands and in Great Britain.

First of all, ''Autocodes'' l1ad hardly been used in
Holland and, secondly, there is less stress on matrix
operations. So ALGOL 60 had machine code as its
main competitor and one of the objections frequently
raised against ALGOL 60 i11 the United Kingdom, viz.
the absence of mat1·ix operations, was hardly heard.

The absence of autocodes in Holland was compensated
for by rather nice machine order codes, and people were
quite used to programming in machine language. I must
say that befoi·e the creation of ALGOL 60 the need for
an autocode was sometimes felt, but we hardly felt
inclined to develop them. As I told you before, our
previous machines were very ill-suited for automatic
prog1·amming, a11d we thought the autocodes then
existing insufficiently attractive as languages to invest
much effort in their implementation. When ALGOL 60
came, we were very glad tl1at the past had allowed us to
skip the stage of the autocode.

With matrix operations it is another matter. In the
U.K. you had one or more groups that were very active
in this field, and the result was a number of powerful
coding schemes for dealing with matrices. The presence
of these schemes tends to attract computations suitable
for them, and is partly responsible for your stress on the
importa11ce of dealing with matrices. Here is a con­
siderable amount of feed-back. This must be borne in
mind when I tell you how happy we are with ALGOL 60.
If we have a feeling that it satisfies most of ot1r needs,
then this is partly due to the qualities of this language,
but undoubtedly also to the fact that we had adjusted,
unconscio·usly, our needs to the possibilities of this
language.

Experience with the System

I should like to split the description of our operating
experience into two parts, viz. the educational activities
and the actual experience at the machine.

Our programming course on ALGOL 60 is given on
f ot1r consecutive days. Each day consists of lectures in
the morning and the afternoon') and exercises and
demonstrations in the evening.

Operati1zg expe1·ie11ce lvith ALGOL 60

In these courses we cove1· tl1e wl1ole of ALGOL 60,
including a thorough discussion of ''Jensen's Device',
and of recursiveness (or, more generally, nested activa­
tions of the same procedure). I mention this, because it
is sometimes pointed out that tl1ese ''advanced features
of ALGOL 60'' will frighten and repel potential users.
Our experience quite definitely points in the opposite
direction: tl1e audience was thrilled by them every time
the cou1·se was given. In practical computations these
f eatu1·es are not too freq t1ently used, but tl1e bare fact
that the programmers could use them if they wanted to
made the language very appealing.

We have given the course four times, with a total
number of about 240 participants, and one may ask how
many machine users have been created in this way. For
our own installation it is about thirty people, fifteen of
whom are to be considered as regula1· machine users; the
other fifteen turn up at less freqt1ent intervals. I consider
this a very good result, because these thirty people had
to be rec1·uited from those attendants that did not have
thei1· own machine at their disposal. At least one
half of the participa11ts were from other computing
centres.

Actual use of our ALGOL 60 system is steadily
increasing. I cannot give figures f 01· other X 1 installa­
tjons, whicl1 l1ave 1·eceived copies of ou1· translator.
At the installation at the Matl1ematical Centre we started
with 20 % machine time spent on ALGOL programs;
in the meantime this has been increased to 50 %-

Omission of syntactical checking in translation has
proved to have been a grave error. Every user finds that
his first program contains a number of silly, clerical errors.
This number of errors per program decreases very fast
as the p1·ogrammer gets more experience, and it is there­
fore my impression that it is hardly worth the trouble to
let tl1e translator look for the next error after the first
one has been found. The omission of syntactical checking
is tl1e more regretful as it could have been incorporated
at so little expense.

Furthe1·more, we find that tl1e program for a particular
problem is often processed in a couple of successive
versions. Roughly: the first version is just plainly
wrong, because it contains some logical errors, neg~ect
of some exceptional cases, etc. The second version

wo1·ks, but tl1e programmer is 11ot satisfied with its per­
formance. In the third version the programmer, who
in the meantime undet·stands his problem better,
improves his strategy, and in a fourth version he improves
on tl1e programming. This is more or less the back­
ground of the fact that our ~'irregular users'' suddenly
turn up four times within a period of, say, two weeks;
then we don't see them for quire a long time, but usually
they return sooner or later ... with their next problem.
This experience is very encouraging.

The run-time system has no additional diagnostic
facilities. We could include them, but from the fact
tl1at we have not done so one can deduce that the need
for them is regarded as insufficiently urgent. In the case
of longer programs it is quite usual to insert some con­
ditional output statements in the earlie1· versions of the
program. If they are enclosed between two pieces of
blank tape on the input tape it is a trivial operation to
remove them in the final version.

Furthermore, there is no possibility of a ''post­
mortem dump.'' There is no point in just printing out
the contents of the store: as storage allocation is fully
dynamic these data would be too hard to interpret. If
a post-mortem dump were to be of any value it would
have to produce the values of variables in store together
with their identifiers in source language. This, however,
would imply the availability of the complete ''identifier
table," but this is nowhere available in its entirety, not
even during translation (this is only account of storage
limitations).

The translator gives no print-out of the object progran1,
again because there is no point in it. Tl1e structure of
the object program has so little in common with that of
handwritten programs that with a thorough knowledge
of just ALGOL 60 on the one hand and just the XI on
the other, the print-out of the object program still won't
be very l1elpful. As a consequence, all modifications
and corrections must be made in the source-language
program: we have made it virtually impossible to correct
or to modify the object program, and we have done so
on purpose. Some people like to have this possibility in
order to avoid retranslation, but we regard this as an
obsolete technique, which is not to be encouraged.
Quite the contra1~y.

UNWlN BROTHERS LlMITED, \\lQKING AND LONDON

