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Preface 

The material in this book is based primarily on a set of lectures given 

at the University of Amsterdam in the first half of 1985. During my 1984-

85 sabbatical leave from the University of Minnesota, I was fortunate 

enough to be visiting the Centrum voor Wiskunde en Informatica in 

Amsterdam. With the encouragement of Richard Gill and Piet Groeneboom and 

the interst of some others in Holland, it was agreed that I would give some 

lectures on topics in probability inequalities to be sponsored both by the 

University of Amsterdam and the Centrum voor Wiskunde en Informatica. 

After some discussion it was decided that the lectures would highlight the 

following topics: 

(i) majorization results and their extensions to reflection groups 

(ii) association and the FKG inequality 

(iii) log concavity, Anderson's theorem, and related topics. 

To a large extent the treatment of the material is self contained, 

although the examples sometime require a bit of specialized statistical 

knowledge. In particular the canonical form of the multivariate analysis 

of variance model is assumed known in two examples. However, most examples 

can be skipped without interrupting the general development. 

This book consists of six chapters and an appendix devoted to some 

special topics in convexity. It is recommended that the reader begin with 

the appendix because the material there is assumed known in the six 

chapters. In the first and introductory chapter stochastic ordering, 

monotone likelihood ratio, and symmetric unimodality on the real line are 

reviewed as a preview to association, the FKG inequality and log concavity 

on Rn. In addition the Behrens-Fisher problem is discussed in detail as it 

provides a very natural setting in which majorization arises. 

The basic facts about majorization are established in Chapter 2 using a 

geometric approach which was outlined in Eaton (1984). This approach was 

chosen because it generalizes naturally to other group induced orderings 

such as those induced by reflection groups which are discussed in Chapter 

6. Also in Chapter 2 the Schur concave functions are characterized and the 

so-called Convolution Theorem of Marshall and Olkin (1974) is established. 
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Chapter 3 is devoted to·a number of statistical applications of 

majorization and some related ideas. Decreasing reflection functions are 

introduced and applied to ranking problems. The Composition Theorem of 

Hollander et al. (1977) is proved and is used to show certain parametric 

families have the property that expectations of Schur concave functions are 

Schur concave in a parameter vector. 

Log concavity and some of its implications are developed in Chapter 4. 

Applications in this chapter include a derivation of some new concentration 

inequalities for Gauss-Markov estimators and a discussion of the behavior 

of power functions of some invariant tests in the multivariate analysis of 

variance problem. 

Association, the FKG inequality and a variety of connected ideas form 

the bulk of Chapter 5. Two examples involving the multivariate normal 

distribution are also given. The first concerns the unbiasedness of 

certain invariant tests in multivariate analysis of variance problems 

(Perlman and Olkin (1980)), and the second shows that the coordinates of a 

multivariate normal random vector are associated iff the elements of the 

covariance are all non-negative (Pitt (1982)). 

In the final chapter, we present what appears to be a fruitful approach 

in trying to extend various majorization results to other orderings induced 

by compact groups. The theory is far from complete and in fact there are 

many interesting examples where important questions are unanswered. 

The interdependence between the chapters is roughly this. Chapter 1 is 

background for the remaining chapters. Chapters 2, 3 and 6 form a unit 

based on the common theme of group induced orderings and related topics. 

Both Chapters 4 and 5 are pretty much self contained units and can be read 

independently. As stated earlier, the Appendix contains material which is 

assumed in all chapters. 

I would like to thank Richard Gill and Piet Groeneboom for arranging 

the lectures that lead to this book. The opportunity to visit the Centrum 

voor Wiskunde en Informatica and to lecture at the University of Amsterdam 

is greatly appreciated. The sabbatical leave from the University of 

Minnesota and the supplemental salary support provided by the National 



Science Foundation under NSF Grant DMS-83-19924 are here gratefully 

ackowledged. 
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Finally, I want to thank Ann Marie Ruggles whose skill at the word 

processor made the preparation of this manuscript far less painful than it 

might have been. It was a pleasure to work with her. 

Morris L. Eaton 

February, 1986 



iv 

x' 

x1-y 

s 
p 

0 
p 

p 
n 

D 
n 

F 

F* 

R 

F 

0 

E 

i.i.d. 

N(µ,u 2) 

N (µ,J.:) 
p 

2 
xk 
W(J.:,p,n) 

L( •) 

Notation 

the real line 

Euclidean coordinate space of all n-dimensional column vectors 

the transpose of a coordinate vector x E Rn 

the vectors x and y are perpendicular--that is, x'y - 0 

the vector space of all pxp real symmetric matrices 

the group of nxn orthogonal matrices 

the group of nxn permutation matrices 

the group of nxn diagonal matrices with 

a convex cone 

the dual cone of F 

a set of reflections 

the class of Schur concave functions 

1 or -1 on the diagonal 

denotes end of proof, end of example, and end of remark 

expectation 

independent and identically distributed 
2 the univariate normal distribution with mean µ and variance u 

the p dimensional normal distribution with mean vector µ and 
covariance matrix J.:. 

a chi-squared random variable with k degress of freedom 

a Wishart distribution on S with n degrees of freedom and p expectation of TIJ.:. 

the distributional law of ". It 
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Chapter 1: Motivation 

Many of the ideas associated with multivariate probability inequalities 
have their origins in related ideas on the real line, R1 In this chapter, 
some of these ideas are reviewed with an emphasis on their extension to 

more than one dimension. A rather natural stochastic ordering exists on R1 

and is discussed in Section 1. That monotone likelihood ratio (MLR) 

implies this stochastic ordering is reviewed and an alternative 

interpretation of MLR, which has a multivariate analog, is given. 
Unimodality and related topics such as log concavity, are covered in 

Section 2. In Section 3, the Behrens-Fisher problem is used to provide 
one, of many, possible statistical motivations for the study of 

maj orization. 

Section 1: 1 Stochastic Ordering on R 

For random variables X and Y with distribution functions F and G, the 
following definition makes precise the rather intuitive idea that "X tends 
to be smaller than Y" . 

Definition 1. 1: 1 If F(x) ~ G(x) for all x E R , we say that X is 

stochastically smaller than Y, and write X Sst Y. 

The condition 

F(x) ~ G(x), x E Rl 

is easily seen to be equivalent to the condition 

F(x-) - P{X < x) ~ P{Y < x) = G(x-), x E Rl 

since the continuity points of a distribution are dense in R1 . An 

alternative formulation of (1.1) which has natural extensions to Rn 

follows. 

Proposition 1.1: The following are equivalent 

(i) X Sst Y 

(1.1) 

(1. 2) 
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(ii) Ef(X) s Ef(Y) for all non-decreasing f for which the 

expectations are defined. 

Proof: To show (ii) implies (i), take f .to be the indicator function of 

the open interval (x,m). For (i) implies (ii), first consider a non-
1 negative bounded f which is non-decreasing. For x,u e R , define H(u,x) by 

H(u,x) - { : 
if u s f(x) 

otherwise. 

Then, 

~H(u,x)du - f(x). 

Thus, 

Ef(X) - r f(x)dF{x) - ~~ H(u,x)dF{x)du. 
-m 0 -m 

Since f is non-decreasing, for each u e [0,m), H(u,•) is the indicator 

function of an interval (a,m) or [a,m). In either case, (1.1) and (1.2) 

show that 

r H(u,x)dF(x) 
-m 

s r H(u,x)dG(x) 
-m 

(1.3). 

Integrating (1.3) from 0 tom establishes (ii). For other non-decreasing 

f's, (ii) follows by truncation, translation, and taking limits--the 

details of which are left to the reader. D 

For translation families, say Fe with e e R1 , it is clear that e1 s e2 

1 implies Fe (x) ~ Fe (x) for x e R . (By a translation family, I mean Fe(x) 
1 2 1 

- F0(x-e) for x,e e R .). However, in more complicated situations, it is 



sometimes not so clear when (1.1) holds. One useful sufficient condition 

is directly related to monotone likelihood ratio (MI.R). 

Definition 1.2: 1 For two non-negative functions (p1 ,p2) on R , the pair 

(p1 ,p2) has a MI.R if x Sy implies that 

(1.4) 

3 

Remark 1.1. The terminology monotone likelihood ratio arises from the 

observation that (1.4) is equivalent to the condition that the ratio 

(p2/p1)(x) is non-decreasing--when there is no problem with p1 vanishing. 

Of course, (1.4) is used in the definition so that points where p1 vanishes 

do not cause a problem. D 

Remark 1.2: It is more common for MI.R to be defined for a non-negative 

function r of two real variables--say r(x,8) for real x and 8. Then, r has 

a MlR if x1 s x2 and 81 s e2 implies 

(1.5) 

However, it is more useful for our purposes to think of 81 and o2 fixed so 

(1.5) reduces to (1.4) if we set 

Condition (1.4) has a likelihood interpretation which provides some 

motivation for a multivariate version of MI.R to be discussed in Chapter 5. 

Assume that p1 and p 2 are densities with respect to some dominating measure 

on R1 . Consider an observation pair (U,V) with U and V independent where 

one of the two following alternatives holds: 
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{ u is from p1 
A(i) 

v is from p2 

{ u is from p2 
A(ii) 

v is from p1 

To decide between A(i) and A(ii), look at the likelihood under each 

alternative. Condition (1.4) means that when U ~ V, A(i) is more likely 

and when V ~ U, A(ii) is more likely. In other words, (1.4) guarantees 

that the pairing "min(U,V) with p1 , max (U,V) with p2" is more likely. 

Proposition 1.2: Suppose p1 and p2 are densities with respect to a 

dominating measureµ defined on R1 . Let X (respectively Y) have the 

distribution determined by p1 (respectively p2). If (1.4) holds, then X 

~St Y. 

Proof: Condition (ii) of Proposition 1.1 will be verified for a non­

decreasing function f. Define s on R2 by 

s(x,y) - f(y) - f(x) 

so s(x,x) - 0 and s(x,y) - -s(y,x). Then 

6 - Ef(Y) - Ef(X) - Es(X,Y) - II s(x,y)p1(x)p2(y)µ(dx)µ(dy) -

II s(x,y)p1 (x)p2(y)µ(dx)µ(dy) +II s(x,y)p1 (x)p2(y)µ(dx)µ(dy). 

{y>x} {y<x} 

In the second integral, interchange x and y, and use the relation s(y,x) -

-•s (x, y) to obtain 

6 - II s(x,y)[p1 (x)p2(y) - p1(y)p2(x)]µ(dx)µ(dy). 

{y>x} 

But on the set {y>x}, both s(x,y) and the term in square brackets are non­

negative. Thus, 6 ~ 0. D 



Many examples of MLR arise in statistics in the form of parametric 

families as indicated in Remark 1.1. For example, 

r(x,8) - p(8)h(x)exp[8x], 
1 

x,8 ER 
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satisfies (1.5) for non-negative functions p and h. An alternative name 

for MLR is total positivity of order 2 (TP2) which will arise in its 

multivariate version in Chapter 5. Further discussion of MLR, TP2 and 

related topics can be found in Karlin (1968), Lehmann (1959), Marshall and 

Olkin (1979) and the references there in. 

Section 2: Symmetric Unimodality on R1 

Some of the most common continuous distributions on R1 such as the 

normal, Cauchy and double exponential, are symmetric and unimodal about 

their center. The following definition makes this notion precise. 

Definition 1.3: A real valued function f defined on R1 is unimodal about 

~if the function h(t) - f(x0 + t), t E R1 is non-increasing fort E [0,oo) 

and non-decreasing fort E (-oo,O]. If f is unimodal about x0 and h(t) 

h(-t), t E R1 , then f is a symmetric unimodal function about x0 . The 

function f is symmetric unimodal if f is symmetric unimodal about 0. 

When a random variable X E R1 has a density p (with respect to Lebesque 

measure) which is symmetric unimodal, our intuition suggests that for fixed 

a> 0, the function 

g(b) - P(-a+b s X S a+b) (1. 6) 

should be decreasing for b E [O,oo). That this is true is a special case of 

the following. 

Proposition 1.3 (Wintner (1938)). Suppose f 1 and f 2 are two symmetric 

unimodal functions such that the convolution 
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1 is well defined for each y ER Then g is symmetric unimodal. 

Proof: The symmetry of g is easily checked. Thus, for 0 s y1 < y2 , it 

must be shown that 

is non-positive. 

Making the change of variable x to x-c, the first integral is 

With the change of variable x to -(x-c), the second integral is 

Using the symmetry of f 1 and f 2 , we then have 

Because b > 0, the symmetric unimodality of f 1 implies that 

since lb-xl s l-b-xl for x e [O,~). Similarly, 
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for x E [O,~) 

and hence 6 s 0. O 

The above result is often paraphrased "the convolution of two symmetric 

unimodals is symmetric unimodal." It should be noted that this result is 

false without the symmetry assumption (see Gnedenko and Kolmogorov (1954), 

Appendix II). A direct application shows that g defined by (1.6) is 

symmetric unimodal. Just take f 2 to be the density p of X (assumed to be 

symmetric unimodal) and take f 1 to be the indicator function of the 

interval [-a,a]. Then, an easy calculation shows that g(b) is the 

convolution of f 1 and f 2 evaluated at b, so g is symmetric unimodal. 

A particularly interesting class of symmetric unimodal functions on R1 

is the class of symmetric log concave functions. 

Definition 1.4: 1 A function f defined on R to [O,~) is log concave if for 
1 all x,y ER and a E (0,1) 1 

(1.7) 

If (1.7) holds and if f(x) - f(-x) for x E R1 , then f is a symmetric log 

concave function. 

Proposition 1.4: A symmetric log concave function, f, is symmetric 

unimodal. 

Proof: For 0 s y1 < y2 , it must be shown that f(y1) ~ f(y2). But y1 is in 

the interval (-y2 ,y2) so y1 - a(-y2) + (l-a)y2 for some a E (0,1). Hence 

where the last equality holds since f(-y2) - f(y2). D 

The reason for writing the log concavity condition in the form (1.7) is 
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that f is allowed to take on the value 0. For example, the indicator 

function of any interval of R1 is a log concave function. When f is 

strictly positive, (1.7) just means log f is a concave function. 

There is a connection between MLR and log concavity. Schoenberg (1951) 
has shown that a non-negative function f on R1 is log concave iff 

r(x,9) - f(x-9), 

is TP2 (that is, r satisfies (1.5)). 

1 x,9 ER 

Attempts to generalize unimodality to higher dimensions have led to 

numerous results which have applications in statistics and probability. 

Some of these are discussed in Chapter 4. Of course, the extension to 

higher dimension of the definition of log concavity is immediate (just let 

x and y be vectors in Definition 1.4). This will be exploited at length in 

Chapter 4. 

Section 3: The Behrens-Fisher Problem and Majorization 

One version of the Behrens-Fisher problem goes as follows. Consider 

random variables x1 , ... 2 Xm+l which are i.i.d. N(µ 1 ,qi) and Y1 , ... , Yn+l 2 
which are i.i.d. N(µ 2 ,q2), with the X's and Y's independent. Here, µi, qi' 

i - 1,2 are unknown parameters. The problem is to provide a confidence 

statement (perhaps approximate) about µ1 - µ 2 with a specified confidence 

coefficient 1 - a. An intuitively appealing procedure is to look at X - Y 
which is N(µ1-µ 2 ,T 2) where 

To estimate 2 
T ' 

2 2 consider the sample variances s 1 and s 2 where 

2 1 m+l 2 
s - - L (X - X) 1 m 1 i 

2 with a corresponding expression for s 2 . 
2 

of qi' i = 1,2 so 

2 Then si is an unbiased estimator 



"2 
T 

is an unbiased estimator of ,,. 2 , Now, for fixed c > 0, if we could bound 

(above and below) the probability 

(1. 8) 

then we would have bounds for the confidence interval 

" " X-Y-/CT ~ µ1-µ2 ~ X-Y+/CT. (1. 9) 

The random variable 

9 

w- 2 (1.10) 
T 

2 
T 

is the ratio of the two independent random variables 

z - (1.11) 

"2 2 
and ,,. /T . Obviously Z has a chi-squared distribution with 1 degree of 

freedom. With 

-1 2 
(m+l) a1 

A - ~~--~1-2~~~~-~1~2 ' 
(m+l) a1 + (n+l) a2 

"2 2 The random variable ,,. /T is 
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"2 2 ,,. /r (1.12) 

Clearly, v1 has a x! distribution and 

Proposition 1.5: Define weights wi, i - 1, ... , m+n by 

i - l, ... , m 

i - m+l, ... , n+m. 

Then W given in (1.10) has the same distribution as 

2 where Z, u1 , ... , Um+n are i.i.d. random variables each with a x1-
distribution. 

2 . Proof: Since the xk distribution can be represented as the k-fold 

(1.13) 

2 "2 2 convolution of the x1 distribution, (1.12) shows that r /r has the same 
...m+n distribution as ~l wiUi. The result of the proposition now follows from 

the expression (l.10) for Wand (1.11) for Z. D 

The above proposition shows that to bound (1.8), it is necessary to 
study 

(1.14) 

where c > 0 is a fixed constant and the vector w has coordinates w1 , ... , 

wm+n which satisfy 0 < wi < l, :Ewi - 1. 

Proposition 1.6: The function~ in (1.14) satisfies 



(i) ~ is a symmetric function of its arguments 

(ii) ~ is concave. 

Proof: That (i) holds is clear since u1 ; ... , Um+n are i.i.d. For (ii), 

first observe that for t > 0, the distribution function of Z, say 

F(t) - P(Z ~ t), 

11 

is concave since the density of Z is decreasing on (0,=). Therefore, for a 

e (0,1), for fixed u1 , ... , Um+n' and for weight vectors wand v in the 

domain of ~. 

Taking the expectation of this inequality over u1 , ... , Um+n yields 

~(aw + (1-a)v) ~ a~(w) + (1-a)~(v) 

which is just the concavity of ~. o 

One consequence of Proposition 1.6 can be described as follows. Let 

Pm+n be the group of (m+n)x(m+n) permutation matrices (see the Appendix for 

the definition of a permutation matrix). For a weight vector w, let C(w) 

denote the convex set generated by all the gw where g e Pm+n' For any 

vector v e C(w) the claim is that 

~(v) ~ ~(w). 

To see this, observe that if v e C(w), then 

v-l:agw 
g 

(1.15) 

where the sum extends over Pm+n and the non-negative weights ag add up to 

1. Since ~ is concave, 
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.,P(v) - t/J(lli gw) <!: lli t/J(gw). g g 

But .,P(gw) - .,P(w) by (i) of Proposition 1.6. Hence 

lli .,P(gw) - .,P(w)lli - .,P(w) g g 

so (1.14) holds. In particular, if 

g e Pm+n' 

then v has all its coordinates equal to l/(m+n) which shows that (1.14) is 

maximized when all the wi are equal to l/(m+n). Of course, this provides a 

tight upper bound for (1.8). 

Lower bounds for (1.8) also follow from (1.15), but a discussion of 

this is postponed until Chapter 3. The important observation at this point 

is that v e C(w) implies (1.15). This suggests a monotonicity property of 

.,P relative to some partial ordering defined on the weight vectors. In 

fact, the above argument suggests that we define a relation among weight 

vectors given by v s w iff v e C(w). This relation "S" is exactly the 

definition of majorization adopted in the next chapter. Much of the 

material in Chapter 2 is devoted to characterizing and understanding the 

relation "S". In Chapter 3, the lower bounds for (1. 8) are given together 

with other applications and extensions of the results in Chapter 2. 

A number of authors have written papers concerned with bounding (1.8) 

and related problems. Let F denote a random variable with and F-p,q 
distribution with (p,q) degrees of freedom. The argument above shows that 

P(Fl s c} <!: 6 ,m+n 

where 6 is given in (1.8)--in other words, the random variable W of (1.10) 

is stochastically larger than Fl,m+n· This result was originally obtained 
by Hsu (1938) along with the companion result that W is stochastically 

smaller than F1 where r - min(m,n}. ,r (This result will be established in 

Chapter 3). Hajek (1962) extended Hsu's work using an argument very 

similar to the one given above. Mickey and Brown (1966) independently 
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established Hajek's results with Hajek-type arguments. This work was 

generalized in Lawton (1965,1968) and later extended and modified in Eaton 

and Olshen (1972). The arguments in this last work use the full force of 

majorization. 





Chapter 2: Majorization. Basic Results 

Three basic topics in majorization are discussed in this chapter. 

First, majorization is defined geometrically and is then characterized in 

an analytically useful way. Next the functions which are decreasing in the 

majorization ordering are described. Finally, the so called convolution 

theorem (Marshall and Olkin (1974)), which has many applications, is 

proved. 

Before beginning with the formal discussion, it should be noted that 

the development given here is somewhat different than in other treatments. 

A geometric definition (Definition 2.1) is used because it has very natural 

extensions to many other cases of interest (see Chapter 6). However, 

unlike the traditional analytic definition, the geometric definition is 

hard to check in practice. (The equivalence of the two definitions is 

established in this chapter). But, the most convincing argument for using 

the geometric definition is that the general theoretical development 

following from this geometric point of view also carries over to other 

important cases with only minor modifications. This geometric treatment of 

majorization is similar in spirit to the development in Rado (1952). For a 

discussion and history of majorization, the reader is referred to Chapter 1 

of Marshall and Olkin (1979) where the traditional analytic definition of 

majorization (due to Hardy, Littlewood and Polya (1934)) is used. 

Section 1: Majorization: Definition and Properties 

The setting for our discussion is Euclidean n-dimensional space Rn 

whose elements are represented as column vectors. If x E Rn, then x' 

denotes the transpose of x. Let Pn denote the group of nXn permutation 

matrices g (see the Appendix for a discussion of Pn). For x E Rn, the set 

{gxlg E P ) is the permutation orbit of x--often called the orbit of x when n 
the context is clear. Thus, the orbit of x is just the set of vecters 

obtained by permuting the coordinates of x. When the coordinates of x are 

distinct, the orbit of x contains n! points. 

For x E Rn, C(x) denotes the convex hull of the orbit of x. Hence u E 

C(x) iff u has a representation 
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u-}:agx 
g g 

where the sum is over P and the real numbers a , g e P , satisfy n g n 

r a - i. 
g g 

The convex set C(x) is permutation invariant (u e C(x) iff gu e C(x)) and 
satisfies 

C(x) - C(gx), x E Rn, g E pn (2.1) 

since the orbit of x is the same as the orbit of gx for any g e Pn. 

Definition 2.1: A point x is majorized by y if x e C(y). Equivalently, y 
majorizes x when x e C(y). 

When x is majprized by y, we write x s y. Here are some basic 
properties of the· relations. 

Proposition 2.1: The following are equivalent: 

(i) x s y 

(ii) C(x) ~ C(y) 

(iii) g1x s g2y for some g1 ,g2 E Pn. 

Proof: That (ii) implies (i) is clear since x e C(x). For (i) implies 
(ii), observe that x s y means that x e C(y) so that gx e C(y) forge Pn. 
Thus, the convexity of C(y) implies that all convex combinations of the gx, 
g e Pn are in C(y)--that is, C(x) ~ C(y). That (i) and (iii) are 
equivdlent follows from (2.1) and the permutation invariance of C(u) for u 
E Rn. 0 

Proposition 2.2: The relations is transitive--that is, x s y and y s z 
implies x s z. If x s y and y s x, then x is in the orbit of y, and 
conversely. 
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Proof: By (ii) of Proposition (2.1), x s y and y s z implies C(x) ~ C(y) ~ 

C(z) so x s z. For the second assertion, we have C(x) - C(y) from (ii) of 

Proposition 2.1. But the set of extreme points of C(x) is just the orbit 

of x. Since C(x) - C(y), x must be an extreme point of C(y), so x is in 

the orbit of y. The converse is obvious. D 

Now, we turn to the problem of giving an analytic description of the 

relations. In what follows, s is often called an ordering because of its 

geometric interpretation and the transitivity given in Proposition 2.2. 

The first observation is that x E C(y) iff 

u'x s sup u'gy 
gEPn 

for all u E Rn. (2.2) 

This equivalence follows directly from Proposition A.3 in the Appendix with 

A taken to be the orbit of y and B - C(y). Thus the function 

m[u,y] - sup u'gy 
gEPn 

is important in understanding s. 

Proposition 2.3: 

(i) 

(ii) 

(iii) 

For all u,y E Rn, the function m in (2.3) satisfies 

m[u,y] - m[y,u] 

m[g1u,g2y] - m[u,y] for g1 ,g2 E Pn 

m[u,•] is convex for each u. 

Proof: For (i), note that 

u'gy - y'g'u. 

(2.3) 

(2.4) 

-1 Since Pn is a group and g' - g taking the sup over Pn of both sides of 

(2.4) yields (i). For (ii), we have 
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sup(g1u)'gg2y -
g 

sup u'gigg2y - sup u'gy - m[u,y] 
g g 

since as g ranges over Pn' so does gigg2 because Pn is a group. To prove 
(iii), first observe that for u and g fixed, the function 

y ~ u'gy, ye Rn 

is linear in y and hence convex. Since the supremum of convex functions is 
again convex, (iii) follows. O 

That m completely characterizes s is the content of the next result. 

Proposition 2.4: The following are equivalent: 

(i) x s y 

(ii) m[u,x] s m[u,y] for all u e Rn 

Proof: If (i) holds, then (2.2) yields 

u'x s m[u,y] for all u e Rn. 

Substituting g'u for u gives 

u'gx s m[g'u,y] - m[u,y] (2.5) 

where the last equality follows from (ii) of Proposition 2.3. Taking the 
sup over g E Pn of (2.5) yields (ii). Conversely, if (ii) holds, then 
clearly (2.2) holds so x e C(y). Hence x s y by definition. O 

Remark 1.1: For y fixed, m[•,y] is easily seen to be the support function 
of C(y)--see Rockafeller (1970), p. 28 for the definition of the support 
function. That inequality (ii) in Proposition 2.4 is equivalent to C(x) ~ 
C(y) is well known and a proof can be found in Rockafeller (1970) (Section 
13). However, results in this chapter will be proved directly rather than 
relying on other sources. O 



The result in Proposition 2.4 shows that m completely characterizes 
majorization. In addition, (ii) of Proposition 2.3 shows that m is 
determined by its values on the quotient space Rn/P (with points being n 
identified iff they are in the same orbit). Thus, to describe 
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majorization, it is sufficient to calculate m explicitly on some convenient 
representation of the quotient space Rn/Pn. It is this which is behind the 
technical development which follows. 

Let F ~Rn be the set of x whose coordinates, say a 1 , ... , an' satisfy 
a 1 ~ ... ~ an. Thus F consists of all vectors whose coordinates are ordered 
(from largest to smallest). Also, let r be the function on Rn to F which 
maps any point u into the vector whose coordinates are the ordered 
coordinates of u. Since r(u) - u for all u e F, the map r is onto. Of 
course, given u E Rn, there is age Pn such that gu - r(u). Hence the 
orbit of every point in Rn has a non-empty intersection with F. 

Proposition 2.5: For x,y E Rn, the following are equivalent: 
(i) x s y 

(ii) r(x) s r(y) 

(iii) m[r(u),r(x)] s m[r(u),r(y)] 

Proof: After noting that r(v) is in the orbit of v for each v e Rn, the 
equivalence of (i), (ii), and (iii) follows easily from Propositions 2.2, 
2.3 and 2.4. D 

The above result shows that if m can be calculated explicitly on F, 
then the majorization ordering can be characterized. To this end, we have 

Proposition 2.6: For u,v e F, 

sup u'gv - u'v 
gePn 

(2.6) 

Proof: This result (due to Hardy, Littlewood and Polya (1934)) is proved 
by induction. For n - 2, let u have coordinates a 1 ~ a 2 and v have 
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coordinates p1 ~ p2 . Since P2 has only two elements, the assertion (2.6) 
is 

or equivalently that 

But this latter inequality is true since a1-a2 ~ 0 and p1-p2 ~ 0. 

n+l. 

Assume the result is true fork - 2, ... , n and consider the case of 
n+l For u,v e F ~ R with coordinates a1 ~ ... ~ an+l and p1 ~ ... ~ Pn+l' 

and for g e Pn+l' we have 

n+l 
u'gv - rap (2.7) 1 i i 

where p1 , ... , Pn+l is some permutation of p1 , ... , Pn+l" Let j be the 
smallest index such that pj - p1 . If j - 1, then 

n+l 
u'gv - a1P1 + L aipi 

2 

and the induction hypothesis gives 

which yields (2.6). If j > l, the case of n - 2 shows that 

Hence (2.7) is bounded above by 



n+l 
E aip .. 

i-2 l. 

i .. j 

Applying the induction hypothesis yields 

n+l 
E aipi :S 

i-2 
i .. j 

which implies (2.6). D 

Proposition 2.7: For x,y E F, the following are equivalent: 

( i) x :S y 

(ii) u'(y-x) ~ 0 for all u E F. 
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Proof: Suppose (i) holds. Then for all u E F, Proposition 2.6 shows that 
m[u,x] u'x and m[u,y] - u'y. Thus, by Proposition 2.4, u'x :S u'y for all 
u E F so (ii) holds. Conversely, if (ii) holds, then 

m[u,x] - u'x :S u'y - m[u,y] for all u e F. 

Since m is bi-invariant, 

m[gu,x] - m[u,x] :S m[u,y] - m[gu,y] 

for all g E Pn and u E F. But, as granges over Pn and u ranges over F, gu 
ranges over Rn. Hence 

m[v,x] :S m[v,y] for all v E Rn 

which implies x :S y. D 

An alternative way to state Proposition 2.7 is in terms of the dual 

* cone to F which is denoted by F . Recall (see the Appendix) that 
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F* - twlu'w l!: 0 for all u e F) . 

Proposition 2.8: For x,y e F, the following are equivalent 

(i) 

(ii) 

x :S y 

* y - x e F . 

Proof: Just use Proposition 2.7. o 

To translate Proposition 2.8 into a useable analytic criterion for x :S 

y when x and y are in F, recall Example A.2 from the Appendix. In the 
notation of that example, ti is the vector whose ith coordinate is 1, whose 
(i+l)th coordinate is -1, and the remaining coordinates are 0, i - 1, ... , 
n-1. Thus 

F - txltix l!: 0, i - 1, ... , n-1) 

and (t1 , ... , tn-l) - Tisa frame for F* Also, ei is the vector in Rn 
whose first i coordinates are 1 and the remaining coordinates are 0, 
i - 1, ... , n. As shown in Example A.2, the set (e1 , ... , en,-en) - Eis a 
frame for F. 

Proposition 2.9: Define the set B by 

* Then B - F . 

B - txleix l!: 0, i - 1, ... , n-1, e~x - OJ. 

Proof: First observe that eitj - oij for i - 1, ... , n and j - 1, ... , n-1. 
* n-1 * If x e F , then x - ~l biti with bi l!: 0 since T is a frame for F Thus, 

ejx - bj l!: 0 for j - 1, ... , n-1 and e~x - 0 so x e B. Conversely suppose x 
e B. Since {t1 , ... , t 1 ,e } is a basis for Rn and e'x - 0, x can be 

n-l n- n n 
written as x - ~l aiti' for some real numbers a1 , ... , an-l" But 0 :S ej'x -

* * aj so the aj are non-negative. Hence x e F . Thus B - F . D 

Proposition 2.10: Let x,y be elements of F with coordinates a1 ~ ... ~an 



and p1 ~ ... ~ Pn· The following.are equivalent: 
(i) 

(ii) 

* Proof: For x,y E F, it has been shown that x s y iff y-x E F . From 
* Proposition 2.9, y-x E F iff 

ei(y-x) ~ 0, i - 1, ... , n-1 and e~(y-x) - 0. 

These n conditions are exactly those given in (ii). D 

The equivalence of Definition 2.1 and the classical definition of 
majorization is now an easy consequence of Proposition 2.10. Consider 
vectors x and yin Rn with coordinates a1 , ... , an and b1 , ... , bn. Let 

a(l) ~ ... ~ a(n) denote the coordinates of r(x) E F and b(l) ~ ... ~ b(n) 
denote the coordinates of r(y) E F. 

Theorem 2.1.;L: For x,y E Rn, the following are equivalent: 
(i) x s y 

(ii) ~~a(i) s ~~(i)' k - l, ... ,n-1 and ~~a(i) - ~~(i)' 

Proof. Since x s y iff r(x) s r(y), the equivalence follows immediately 
from Proposition 2.10. O 
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Condition (ii) of Theorem 2.11 provides an easily verifiable condition to 
determine whether or not x s y. This condition is most useful in examples. 

Section 2: The Path Lemma: Decreasing Functions 

Many inequalities can be established by proving a certain function 
defined on Rn is decreasing (equivalently, Schur concave) in the 
majorization ordering. Here is the formal definition. 

Definition 2.2: A real valued function f defined on Rn is decreasing in 
the majorization ordering if x s y implies that f(x) ~ f(y). 
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In what follows, we will simply say f is decreasing when the context is 
clear. Other writers call decreasing functions Schur concave functions 
because of Schur's basic contributions to the theory and applications of 
majorization (see Marshall and Olkin (1979) for a discussion). A function 
is increasing (Schur convex) if -f is decreasing. 

Here are a couple of elementary facts. 

Proposition 2.12: If f is decreasing, then f is Pn-invariant--that is, 
f(x) f(gx) for all x e Rn and g e Pn. If f is Pn-invariant and concave, 
then f is decreasing. 

Proof: The first assertion follows by noting that x s gx s x for all x e 
Rn and g e P • Hence if f is decreasing, n 

f(x) ~ f(gx) ~ f(x) 

so f is Pn-invariant. For the second assertion, consider x s y so x has 
the representation 

x-};agy 
g g 

where the non-negative weights a add up to l; that is, x is a convex g 
combination of the gy, g e Pn. The concavity of f implies 

f(x) ~La f(gy). 
g g 

Since f is P -invariant, f(gy) - f(y) for g e P and since the a add up to n n g 
l, we have f(x) ~ f(y). D 

A primary goal of this section is to provide some useful necessary and 
sufficient conditions that a function f be decreasing. Under a minor 
continuity assumption, the results of Marshall, Walkup and Wets (1967) 
discussed in the Appendix (see Theorem A.6) are directly applicable. To 
see this, first observe that decreasing functions f must be Pn-invariant 



and hence f is completely determined by its values on the convex cone F 
defined above. But on F (this is the convex set Bin Theorem A.6), the 
majorization ordering is the same as the partial cone ordering defined by 
the convex cone F* (Proposition 2.8). In other words, for x,y E F, x s y 

* iff y - x E F . Si~ce F has a non-empty interior, Theorem A.6 yields 
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Proposition 2.13: Suppose f 1 defined on Rn is Pn·invariant and let f be 
the restriction of f 1 to F. Assume f 1 is continuous at the boundary of F. 
The following are equivalent 

(i) 

(ii) 

f 1 is decreasing 

For each frame vector ti' i = 1, ... , n-1 of F* and for each x 

' f(x+ftti) is decreasing for ft ~ 0 as E F, the function ft 

long as x+ftti E F. 

Proof: If (i) holds, then f is decreasing on F and Theorem A.6 gives (ii). 
Conversely, given (ii), Theorem A.6 implies that f is decreasing on F. 
Since f 1 is Pn·invariant, this implies f 1 is decreasing on Rn. O 

Proposition 2.14: (Ostrowski (1952)). Suppose f 1 defined on Rn is Pn­
invariant and let f be the restriction of f 1 to F. Assume that.f1 has a 
differential on Rn. The following are equivalent 

(i) f 1 is decreasing 

(ii) For each x in the interior of F, say Fo, 

aaf(x) s ~a af (x), i - 1, ... , n-1. 
xi xi+l 

Proof: First assume (i). 0 For each x E F , and for each i, f(x+ftti) is 
decreasing in ft for ft in some non-degenerate interval [0,E), and p ~ 
f(x+pti) is defined and differentiable in some interval (o,E) with 5 < 0 < 
E. Thus 

Hence (ii) holds. Conversely, if (ii) holds, we have that ft~ f(x+ftti) is 
0 decreasing in ft for x E F as long as x+ftti is in F. Thus, if x s y with 
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0 x,y e F, f(x) ~ f(y). Since f 1 has a differential, f 1 is continuous so f 
0 is continuous on F. Thus, for any x,y e F with x s y, consider u e F so 

x+Au and y+Au are both in FO for A > 0. Since x+Au s y+Au, the above 
argument gives 

f(x+Au) ~ f(y+Au) for A > 0. 

Letting A ... 0 yields f(x) ~ f(y) so f is decreasing on F. 
invariance of f 1 implies that f 1 is decreasing. D 

The P -n 

Slightly sharper results than those above concerning the decreasing 
functions can be obtained via a more detailed analysis of the majorization 
ordering. To motivate this analysis, recall the "path argument" used in 
the proof of Theorem A.6. In the present context, this "path argument" 

0 shows that if x s y are both in F (the interior of F), then there exists 
0 vectors z0 ,z1 , ... , zm all in F with z0 - x, zm -

where ~i > 0 and ui e T - {t1 , ... , tn_ 1}--a frame 
* zi+l since zi+l - zi e F . In fact, if we define 

zi+l(/3) 

y and z. 1 - zi + ~.ui * 1.+ 1. 
for F . Obviously zi s 

for i - 0, ... , m-1, then for 131 s132 , zi+l(/31) s zi+l(/32). Thus, zi+l(/3) 
defines a line segment connecting zi and zi+l' and as f3 increases, zi+l(/3) 
increases in the majorization ordering. Denoting this "path" from x to y 
by z0 -> z1 -> ...... zm, we have a "monotone" path from x to y which lies in F. 
An important point is that the path remains in F. It is F where the 
ordering has been characterized. It was this path construction which 
provided Theorem A.6. 

The above path construction fails when x and y are in the boundary of F 
with x s y. For example, taken - 4 and consider 

y - u l x - [ 
1/3 l 1/3 
1/3 

-1 

Then x s y by Theorem 2.1 and x,y e F. But, it is easy to see that x+~ti, 



i - 1, 2, 3 is not in F for any "f. > 0. Thus, there can be no "path" in F 
from x to y if we are only allowed to start the path with vectors of the 

* form x+7ti' 7 > 0 where ti is a frame vector for F . The construction 
below provides a path from x to y, which is in F, by enlarging the set of 
frame vectors. The technical details follow. 

For integers i and j, with 1 s i < j s n, let tij be the vector whose 
ith coordinate is 1, whose jth coordinate is -1, and whose remaining 
coordinates are zero. Observe that the nxn matrix 

(2.8) 

is the element of Pn with permutes the ith and jth coordinate of x e Rn. 
Further, let A be the set of all the ti'' 1 s i < j s n. It is easy to 

J* check that each u e A is an element of F . 

Proposition 2.15: Consider x,y e F with x ~ y and x s y. Then there 
exists a u e A and a 7 > 0 such that 

(i) x s x+7u s y 

(ii) x+7u e F 
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(iii) The number of coordinates of y - x which are zero is at least 
one less than the number of coordinates of y-(x+7u) which are 
zero. 

Proof: Let the coordinates of x and y be a1 ~ ... ~an and b1 ~ ... ~bn so 

~ai s ~i' 

2:~ai l~i 

a - 1,. . ., n-1 

(2.9) 

Let j be the smallest index such that aj < bj and let k be the largest 
index such that ~ > bk. Such indices exist because x ~ y and because of 
(2.9). From the definition of j and because of (2.9), ai - bi for i 
1, ... , j-1. Also, we claim that 

ai - bi for i - k+l, ... , n (2.10) 
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To verify this claim, ~~serve that the definition of k implies ai s bi for 

i - k+l, ... , n. But ~lai s ~~i so if ai >bi for some i - k+l, ... , n, we 

obtain a contradiction to ~~ai - ~~i· Hence (2.10) holds. Now, define 1 

by 

and pick u - tjk e 6. With these choices for 1 and u, and the above 

remarks, it is now routine to verify (i), (ii) and (iii). o 

Proposition 2.16: Consider x,y E F with x ~ y and x s y. Then there 

exists vectors z0 ,z1 , ... , zm in 

(i) x - z0 s z1 s ... s 

(ii) zi+l - zi + 1iui 
(iii) ms n-1. 

F such that 

zm - y 

with 1i > 0, ui e 6 for i - 0, ... , m-1 

Proof: First apply Proposition 2.15 to x and y to yield (with z0 - x) 

satisfying (i), (ii) and (iii) of Proposition 2.15. If z1 - y, we are 

done. If not, apply Proposition 2.15 to the pair z1 ,y to yield 

satisfying (i), (ii) and (iii) of Proposition 2.15. Continuing this 

procedure until we have zm - y yields the claimed sequence of z's. Because 

of (iii) o~ Proposition 2.15, the procedure takes at most n steps. But, in 

fact, the procedure takes at most n-1 steps because x s y implies that y -

x cannot have n - 1 zero coordinates; the sum of the coordinates of x and 

y are the same. o 

The proof of Proposition 2.15 is a minor modification of the 

construction of so called T-transforms used by Muirhead (1903) and Hardy, 



Littlewood and Polya (1934). For a more complete discussion of T­

transforms, see Marshall and Olkin (1979, p. 21). 
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It is now possible to give an alternative characterization of the 

decreasing functions. Recall that the vector t 12 e ~has first coordinate 

l, second coordinate -1, and the remaining coordinates are zero. 

Proposition 2.17: Let f be a P -invariant function defined on Rn. 
n 

following are equivalent: 

(i) f is decreasing 

The 

(ii) for each vector v which is perpendicular to t 12 (that is, 

v't12 - 0), the function 

(2.11) 

is decreasing on [0,a>), 

Proof: First assume f is decreasing and consider v perpendicular to t 12 
(which we write as v i t 12 in what follows). For 0 s p1 s p2 , it must be 

shown that 

(2.12) 

But the matrix R12 defined in (2.8) is an element of Pn and satisfies 

Since 0 s p1 s p2 , we see that v+p1t 12 is a convex combinat~on of v+p2t 12 
and R12 (v+p2t 12 ) - v-p2t 12 . Thus, v+p1t 12 is in C(v+p2t 12 ) and since f is 

decreasing, (2.12) holds. 

Conversely, assume that (ii) holds and consider x and y with x s y. It 

must be verified that 

f(x) ~ f(y). (2 .13) 

Since f is Pn-invariant, we can assume x and y are in F. Now, let z0 = x, 
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z1 , ... , zm - y be the vectors given in Proposition 2.16. Since zi s zi+l' 
it suffices to show that 

for i - 0, ... , m-1. But from (ii) of Proposition 2.16, zi+l - zi + 1iu 
where u e a and 1i > 0 so it suffices to show that 

(2.15) 

is decreasing in 1 for 1 e [0,oo), Since u ea, u - tjk for some integers 
j ,k with 1 s j < k s n. Write zi as 

(2.16) 

where v i .l tjk' Since zi e F, 0 s tjkzi - 26 so 6 <:!:: 0. Therefore, 1lJ given 
in (2.15) is 

(2.17) 

where vi .l tjk' Now, let g be an element of Pn such that gtjk - t 12--such 
a g clearly exists. Since f is invariant 

Because vi is perpendicular to tjk and g is an orthogonal transformation, 
gvi is o~thogonal to gtjk - t 12 . By (ii) with v - gvi' 

is decreasing for p E [0,oo), Since 6 ~ 0, this implies 1lJ is decreasing on 
[O,oo), and the proof is complete. D 

If f is Pn·invariant, then for v .l t 12 the function 
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(2.18) 

1 is always symmetric on R . This follows from 

as in the proof of Proposition 2.17. Thus, another way to state this 

proposition is that f is decreasing iff w given in (2.18) is unimodal 

(about 0)--the symmetry of w is automatic when f is invariant. Since v .l 

t 12 , the first two coordinates of v are the same, say a. Let a 3 , ... , an be 

the remaining coordinates of v.. Then (2.18) is just 

and (ii) is that w is decreasing on [O,oo). Of course, when f has a 

differential, we have 

(2.19) 

Proposition 2.18: Suppose f is Pn-iRvariant and f has a differential. The 

following are equivalent 

(i) f is decreasing 

(ii) at at -(x) s -(x) 
axl ax2 

for all vectors x with x1 ~ x2 where x has 

coordinates x1 , ... , xn. 

Proof.: Obvious from Proposition 2 .17. D 

We close this section with a few comments about doubly stochastic 

matrices which are discussed in the appendix. An early result in the 

development of majorization is 

Proposition 2.19 (Hardy, Littlewood and Polya (1929)). The following are 

equivalent: 

(i) x :S y 

(ii) x = Qy for some doubly stochastic matrix Q. 

Proof: That (i) implies (ii) is obvious from Definition 2.1 because a 
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convex combination of permutation matrices is doubly stochastic. The 
converse is a direct consequence of Birkhoff's Theorem in the Appendix. 
However a direct proof can also be given using the characterization of s 
given in Theorem 2.11. For this direct proof, see the proof of Theorem A.4 
in Marshall and Olkin (1979, p. 20). O 

Section 3: The Convolution Theorem: 

To motivate the main result of this section, suppose that f is a 
density function on Rn which is decreasing in the sense of Definition 2.2. 
Examples of such densities (which are most easily shown to be decreasing by 
using Proposition 2.17 or Proposition 2.18) are: 

(i) f(x) - hCllxll 2> where h is decreasing on [0,co) 

(ii) 

(iii) 

n 1 
f(x)·- Il k(xi) where k is a density on R which is log concave 

1 
f corresponds to a normal distribution with mean 0 and covariance 
~which satisfies uii - u11 for i - 1, ... , n and uij - u12 for 
i ,. j, i,j - 1, ... , n. 

Consider a rectangular subset of Rn given by 

A - {xjc s xi S d, i - 1, ... , n) 

so A is permutation invariant and convex. Then the function 

w(9) - J f(x-9)dx (2.20) 
A 

is the probability of A as a function of the translation parameter 9 e Rn. 
For example, A might be the acceptance region of a test designed to test 9 

- 0 in which case 1 - w(9) is the power function of the test. The problem 
is to say something about the behavior of the function w as 9 varies. 
Since A is Pn·invariant and convex, it follows easily that the indicator 
function of A, say IA, is a decreasing function on Rn. Thus, 

w(9) - J IA(x)f(x-9)dx - J IA(x)f(-(9-x))dx 



which we recognize as the convolution of the two decreasing functions IA 

and f 1 defined by f 1 (x) - f(-x). That f 1 is again a density and is 

decreasing is easily checked. Hence it seems natural to ask if w, being 

the convolution of two decreasing functions, is itself a decreasing 

function (compare to the conclusion of Proposition 1.3). That this is in 

fact true was established in Marshall and Olkin (1974). This result 

immediately yields useful inequalities for the function w. For example, 

over the set of 8's which satisfy ~Bi= l, w is maximized when 8 = 80 all 
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-1 of whose coordinates are n This is a consequence of 80 ~ 8 for all O's 

whose coordinates add up to 1 and the fact that w is decreasing. 

Here is the formal statement of one version of the convolution theorem. 

Theorem 2.20: (Marshall and Olkin (1974)). Suppose f 1 and f 2 are Lebesgue 

measurable functions defined on Rn which are both decreasing in the sense 

of Definition 2.2. Suppose that f 2 ~ 0 and is integrable and suppose that 

f 1 is bounded. Then the convolution 

(2.21) 

is also decreasing. 

Proof: The idea of the proof is to use Proposition 2.17 and Wintner's 

Theorem (Proposition 1.3). For simplicity of notation, sett - t 12;J2 
where t 12 is the vector in Proposition 2.17. 

First observe that h is Pn·invariant since because f 1 and f 2 are and 

each g E Pn preserves Lebesgue measure. More specifically, 

The second equality follows from the invariance of f 1 , the third from 

the invariance of f 2 , and the fourth because Lebesgue measure is invariant 
-1 under the change of variable x ~ g x. Thus, to show h is decreasing it 

must be verified that for each vector v ~ t, the function 
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{J -+ h(v+{Jt) (2.22) 

is decreasing on (0,..,). 

Let M be the linear subspace of Rn which is perpendicular to t, so Rn 
can be written as the orgthogonal direct sum 

Rn - M + span{t}. 

Thus, each x E Rn can be written uniquely in the form 

x - w + -yt, 1 w E M, -y E R 

(2.23) 

where w ~ t since w e M. Since the transformation from x to (w,t) is an 
orthogonal transformation, we have 

(2.24) 

where "dw" means Lebesgue measure on M. Since f 1 and f 2 are decreasing, 
Proposition 2.17 shows that for each z e M, 

(2.25) 

is a symmetric unimodal function on R1 for i - 1,2. 
Now, for v fixed, consider the function 

K(w,{J) - ~ f 1 (v-w+({J--y)t)f2(w+-yt)d-y. _.., 

By assumption, the integral in (2.24) is well defined, so except for w in a 
Lebesgue null set N ~ M, K{w,{J) is a finite number. For w ~ N, (2.25) 
shows that K(w,•) is in fact the convolution on R1 of two symmetric 
unimodal functions since v-w EM and w EM. Thus, by Proposition 1.3, for 
w ~ N, K(w,•) is a symmetric unimodal function on R1 . Hence 
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h(v+pt) - J K(w,p)dw - J K(w,p)dw. 
M MnNC 

For we MnNc, K(w,p) is a decreasing function for p e [0,oo) and hence so is 

the integral over MnNc. Thus, the function given in (2.22) is decreasing 

on [0,ro) and the proof is complete. D 

It should be emphasized that the key to the above proof is Wintner's 

Theorem together with the characterization of the decreasing functions 

given in Proposition 2.17. This technique is used again in a more general 

setting in Chapter 6. 

Before extending Theorem 2.20 to functi~ns ft which are unbounded, it 

is useful to discuss the class F of all f:R ~ R which are decreasing. A 

subset B ~ Rn is called monotone if the indicator function IB is in F. 
Hence a monotone set is necessarily invariant under permutations. Also, if 

B is Pn-invariant and convex, it follows easily that IB E F. 

Proposition 2.21: 

(i) A set B is monotone iff for each x E B, C(x) ~ B. 

(ii) A function f is decreasing iff for each k e R1 , the set 

Bk - <xlf(x) ~kl is monotone. 

Proof: The first assertion follows immediately from the definition of 

monotone. For the second assertion, first assume Bk is monotone for each 

k. To show f is decreasing, consider x s y and pick k = f(y). By (i), x e 

C(y) ~Bk as ye Bk when k = f(y). Thus, 

f(x) ~ k - f(y) 

so f is decreasing. Conversely, when f is decreasing, consider Bk and let 

u E Bk. Then f(u) ~ k so each x E C(u) satisfies f(x) ~ f(u) ~ k. 

C(u) ~Bk and by (i), Bk is monotone. D 

Hence 

Now, observe that F is a convex cone of functions which is closed under 

minimum and maximum. That is, if k1 , k2 are in F, then h1(x) = 
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max(k1 (x),k2(x)) and h2 (x) - min{k1 (x),k2(x)) are also in F. Hence if f 1 e 
F, then form - 1,2, ... , 

is bounded in absolute value by m, is in F, and 

f 1 (x) - lim fim)(x). 
m-+<o 

To extend Theorem 2.20, consider a non-negative integrable function f 2 and 
assume that f 1 satisfies 

(2.26) 

for each y E Rn. With fim) as defined above, Theorem 2.20 shows that 

is in F. Assumption (2.26) and the Dominated Convergence Theorem yield 

lim hm(y) - J f 1 (x)f2 (y-x)dx - h(y). 
m-+<o 

Since F is closed under the taking of pointwise limits, it follows that h E 

F. Thus, Theorem 2.20'holds when (2.26) holds. 

Section 4: Maiorization on Subsets of Rn 

In this section, we briefly discuss the validity of some of the 
previous results when majorization is restricted to a non-empty subset X ~ 
Rn. It is assumed that X is a Pn·invariant set--that is, x e X implies gx 
e X for all g e Pn. A particularly important example of such an X is the 
set of all vectors in Rn whose coordinates are integers. 

The first observation is that all the results and discussion in Section 
1 are valid for any set X because these results concern only the meaning of 



"x ~ y" which does not involve X. In other words, the discussion in 

Section 1 concerns two vectors x and y and the meaning of "x ~ y". 

However, there should be a minor modification in Proposition 2.3 because 

the appropriate domain of definition for m is Rnx.X so (ii) of Proposition 

2.3 needs to be interpreted appropriately. With this one provision, 

Propositions 2.1 through and including Proposition 2.11 remain true as 

stated. 

Now, again let X be a P -invariant subset of Rn and let f be a real 
n 

37 

valued function defined on X. As in Definition 2.2, f is decreasing (on X) 

if for x,y EX, x ~ y implies f(x) ~ f(y). However, much care must be 

taken with regard to the validity of Propositions 2.12 through 2.18. In 

the next few paragraphs, some of the issues regarding these propositions 

will be discussed. 

Since X is Pn invariant, the validity of the first assertion of 

Proposition 2.12 is clear. For the second assertion, X must be a set where 

concavity makes sense. For example, if X is a convex set, then the second 

claim is certainly true. 

In the context of Proposition 2.13, the appropriate domain of 

definition of f is XnF which is non-empty since X is non-empty and Pn 

invariant. However, XnF must be convex and have a non-empty interior in 

order that Theorem A.6 apply. When XnF does satisfy these assumptions, the 

argument used to prove Proposition 2.13 is valid since Theorem A.6 applies. 

The function f in Proposition 2.14 is assumed to have a differential, 

and for this to make sense on X, the most natural assumption is that X is 

an open set. However, Proposition 2.13 is used in the proof of Proposition 

2.14 and to use this, XnF must be convex and have a non-empty interior. It 

may be possible to assume less than this, but things need to be checked 

very carefully. 

The key idea in Propositions 2.15, 2.16 and 2.17 is the construction of 

a path from x toy which stays in F (when x ~ y). For the case at hand, 

the path must be constructed so that the nodes of the path (the vectors zi 

in Proposition 2.16) stay in XnF. This depends crucially on the structure 

of X and needs to be checked in particular cases. But, there is one 

special case of great interest where these results are valid--namely when X 

is the set of all vectors in Rn whose coordinates are all integers (this X 
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- n is often called the integer lattice in R ). The checking of the arguments 
in these Propositions for this particular X is routine and is left to the 
reader. 

A discussion of Proposition 2.18 for·a general set X is omitted. 
Proposition 2.19 is valid as it only involves a statement about x s y. 

We close this discussion with some remarks about the Convolution 
Theorem when X is the integer lattice in Rn. In this case X is an abelian 
group and counting measure on X is an invariant measure. That is, if µ 

denotes the measure which assigns measure 1 to each point of the countable 
set X, then for any subset B ~ X, 

µ(B+x) - µ(B), X EX. 

Let f 1 be a bounded function on X and let f 2 ~ 0 be integrable on the 
measure space (X,µ). The appropriate definition of the convolution is 

(2.27) 

Suppose further that f 1 and f 2 are decreasing. The question is whether or 
not h need be decreasing. The answer is yes and a proof consists of 
"mimicking" that given for Theorem 2.20. The idea is to use the 
appropriate modification of Proposition 2.17 for the integer lattice and 
show that the function 

(2.28) 

is decreasing on (0,1,2, ... ) for each vector v e X which is perpendicular 
to t 12 . The details are much the same as in the proof of Theorem 2.20, 
with one important exception. Namely, a discrete version of Wintner's 
Theorem is needed. Thus, suppose k1 and k2 are two symmetric real valued 
functions defined on Z - (0,±1,±2, ... ) which are decreasing on (0,1,2, ... ). 
Then the convolution 

k3(y) - L k1(y-x)k2(x) 
x 
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is also symmetric and decreasing on (0,1,2, ... ). The proof of this is much 

the same as the proof of Wintner's Theorem adapted to the case at hand. We 

note that an alternative proof of the Convolution Theorem for the integer 

lattice X is given in Chapter 3 as an application of the so called 

Composition Theorem. 





Chapter 3: Majorization: Appfications and Extensions 

Many applications of majorization in statistics and probability provide 
at least partial solutions to the following rather general problem. 
Consider a parametric family of probability densities f 1 (xlO) on a space X 
(densities with respect to a fixed a-finite measure µ) with 0 E 9 and let 
h1 be a real valued function. The problem is to "describe" the behavior of 
the function 

(3.1) 

Naturally, "solutions" to this problem require further assumptions and 

special structures on X and 9. The convolution theorem (Theorem 2.20) is 
an example of a solution when X - 9 - Rn, f 1 (x!O) - f 0 (x-0) is a 

translation family and both h1 and f 0 are decreasing functions. In this 

case, w1 is a decreasing function which provides some information 
concerning the behavior of w1 . 

A related problem, which is connected to the discussion of the Behrens­
Fisher problem given in Chapter 1, concerns linear combinations of real 

valued random variables. For example, suppose X is a random vector in Rn 

with a distribution function F. 

R1 , consider 

Given a real valued function h2 defined on 

(3.2) 

0 . 
n 

where X has coordinates x1 , ... , Xn and 0 E Rn has coordinates o1 , ... , 
Again, the problem is to describe the behavior of w2 under various 

assumptions on F when 0 ranges over some set of interest. When x1 , ... , Xn 
are i.i.d. random variables, and when h 2 is concave, the argument given to 
prove Proposition 1.6 shows that w2 is concave. Of course, this implies 

that w2 is decreasing in the sense of majorization. 

Much of this chapter is devoted to results which use majorization and 
related notions to provide at least partial solutions to problems 

resembling those above. In Section 3.1, the Behrens-Fisher problem, 
introduced in Chapter 1, is discussed together with some related material. 

An important generalization of the decreasing functions is introduced 
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in Section 3.2 where the definition of the so called decreasing reflection 

(DR) functions is motivated. Some basic results concerning DR functions 

are given in Section 3.3 and a variety of applications appear in Section 

3.4. 

Many of the results and techniques presented here and in the previous 

chapter have extensions. Some of these extensions are treated, although 

rather incompletely, in Chapter 6. Thus, if some definitions and results 

appear to be phrased or formulated in what appears to be an unusual manner, 

the reader should keep in mind that the style of the presentation here has 

been selected with these extensions in mind. 

Section 3.1. The Behrens-Fisher Problem and Related Topics 

Recall that the problem introduced in Section 1.3 involved the study of 

a function 

m+n 
w(w) - P(Z ~ c I wiUi} 

1 
(3.3) 

where z,u1 , ..• , Um+n are i.i.d. chi-squared random variables with one 

degree of freedom, c is a fixed positive constant and the weights wi' i 

1, ... , m+n are defined in Proposition 1.5. The problem is to give upper 

and lower bounds on w. An immediate consequence of Proposition 1.6 is 

Proposition 3.1: The function win (3.3) is decreasing (in the sense of 

Definition 2.2) on the set of w's which satisfy 0 s wi for i - 1, ... , m+n 

and w ~ 0. 

Proof: The proof of Proposition 1.6 shows that w is Pn-invariant and 

concave on the given set of w's. The result follows from Proposition 

2.12. 0 

Sharp bounds for (3.3) can now be had easily. 

Proposition 3.2: Assume (without loss of generality) than ms n. For any 

set of weights w1 , ... , wm+n as defined in Proposition 1.5, the following 



43 

double inequality is valid: 

m m+n 
P(Z s cm" 1 I Ui} s w(w) s P(Z s c(m+n)-l I Ui}. (3.4) 

1 1 

Proof: Consider the weight vectors w(l) and w( 2) defined by: w(l) has its 

first m coordinates equal to m" 1 and its remaining coordinates zero; w( 2) 

has all its (m+n) coordinates equal to 

(3.4) follows once it is verified that 

(m+n) -l. Si ffi i d i nee ~ s ecreas ng, 

w( 2) s w s w(l) (3.5) 

for all weight vectors w as given in Proposition 1.5. However, the 

verification of (3.5) is routine if one uses Proposition 2.10. Thus (3.4) 

holds. D 

The bounds given in (3.4) are obviously tight in the sense that there 

are weight vectors w under consideration which achieve both the upper and 

lower bounds. In this sense, Proposition 3.2 provides a complete solution 

to the problem posed in Chapter 1. The two inequalities in (3.4) are 

originally due to Hsu (1938). 

A cursory examination of the proof of Proposition 1.6 immediately 

yields further results on decreasing functions. Recall that a random 

vector X E Rn has an exchangeable distribution (or X is exchangeable) if X 

and gX have the same distribution for all g E Pn. Here is a result due to 

Marshall and Proschan (1965). 

Proposition 3.3: Suppose X E Rn, with coordinates x1 , ... , Xn' is 

exchangeable and let H: Rn~ R1 be P -invariant and concave. For each 
n 

vector w E Rn with coordinates w1 , ... , wn let 

(3.5) 

Then W is Pn·invariant and concave, and hence decreasing. 
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~: For each w, let D(w) .denote the nXn diagonal matrix with diagonal 

elements w1 , ... , wn. For each g e Pn' it is easily verified that 

D(gw) - gD(w)g' 

and 

D(aw+bv) - aD(w) + bD(v) (3.6) 

1 n for a,b, e R ; w,v e R . Now, (3.5) can be written 

w(w) - EH(D(w)X) (3.7) 

Using the symmetry ·of H and the exchangeability of X, we have 

W(gw) - EH(D(gw)X) - EH(gD(w)g'X) -

- EH(D(w)g'X) - EH(D(w)X) - w(w) 

so W is invariant. The concavity of w follows from (3.6) and the concavity 

of H--i.e., for w,v e Rn and a e (0,1), 

w(aw + (1-a)v) - EH(D(aw + (1-a)v)X) 

- EH(aD(w)X + (1-a)D(v)X) 

~ aEH(D(w)X) + (1-a)EH(D(v)X) - aw(w) + (1-a)w(v). 

Thus w is concave so by Proposition 2.10, w is decreasing. D 

In Proposition 3.3, w need not be defined for all w E Rn, but only in 

some symmetric convex subset of Rn·-just so long as the expressions 

involved are well defined. The above argument remains valid. In fact, 

x1 , ... , Xn need not even be real valued random variables, but can be random 

vectors--see Eaton and Olshen (1972) for an application. A particularly 

interesting function H is 
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where x has coordinates x1 , ... , xn and his a concave function on R1 . That 
this H satisfies the asswnptions of Proposition 3.3 is easily checked. 

Both the convolution theorem and Proposition 3.3 provide sufficient 
conditions that certain expectations of functions of a random vector be 

decreasing functions of a vector of parameters. In the convolution 
theorem, the parameters are translation parameters while in Proposition 3.3 
the vector w is not a "traditional parameter", but in the context of 

Proposition 3.2, w is a vector of scale parameters. Before beginning the 

discussion of more general conditions under which the function defined in 
(3.1) is decreasing, we pause here to mention the problem of "coordinate 

systems." To wit, even though a Pn·invariant function >Ir(O) may not be 
decreasing in 0 E Rn, it is sometimes possible to introduce a new 

coordinate system say 0 - h(f]) with 'I e Rn, so that the function 

g(f]) - >It(h(f])) 

is decreasing. An example will suffice. 

Example 3.1: Consider independent random variables Y1 and Y2 with 
densities on [O,oo) 

f(ylOi) - !. exp[-y/Oi]' y ~ 0 
l. 

where Oi > 0, i = 2. Consider 

for Oi > 0, i = 1,2. P. Diaconis has shown (unpublished work of 1976) that 
for o1 + o2 ~ 1, >It is decreasing, but for o1 + o2 s 2/3, >It is increasing. 
The method of proof is the verification of the derivative conditions in 

Proposition 2.18 and is not given here. However, if we set Xi = log Yi' i 

- 1,2, 'Ii - log oi' i - 1,2, and 
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a bit of calculation shows that: 

(i) The density of xi is h(x-qi)' i - 1,2 where 

(ii) The function g is given by 

where 

2 ul u2 
B-{ueRle +e :Sl}. 

But, since B is a convex symmetric set, IB is a decreasing function on R2 

Also, since h is a log concave function, it follows that x ~ h(x1)h(x2) is 
also decreasing on R2 . Since g is the convolution of two decreasing 
functions, g is decreasing. Obviously, this argument can be extended to 
more variables and other cases. The point of the above example is that 
sometimes a change of variable can yield a decreasing function from one 
which was not decreasing. The change of variable in this example was 
fairly obvious, but this is certainly not the case in general. 

Section 3.2: Decreasing Reflection Functions: Motivation 
In this section, we discuss an estimation problem which is intended to 

motivate the definition of a Decreasing Reflection Function given in the 
next section. In addition to having applications in ranking problems (see 
Eaton (1967)), these DR function play a role in showing functions of the 
form (3.1) are decreasing when neither Theorem 2.20 nor Proposition 3.3 are 
applicable. These applications are discussed in detail in the following 
two sections. 

Consider independent random variables Xi' i - 1, ... , n with L(Xi) -
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N(6i,l) i - l, ... n--that is, the distribution of Xi is normal with mean Oi 
and variance 1, i - 1, ... , n. Let X and 6 be n-vectors whose coordinates 
are respectively xl'' .. 'xn and 61'' .. , en. Then, the density of x given 0 
is 

(3.8) 

where x an 6 are in Rn. The vector 9 E Rn is assumed unknown and an 
observation x E Rn is available. The problem is to "estimate the order of 
the coordinates of 9 •II In other words, after seeing x, we are supposed to 
announce our guess concerning which coordinate of 6 is largest, second 
largest, ... , smallest. A more precise mathematical description of this 
problem is useful. In the notation of Chapter 2, let F ~Rn be the convex 
cone of vectors u whose coordinates satisfy u1 ~ ... ~ un. Each parameter 
vector 6 can be written 

8 - kri; T/ E F and k E P . n (3.9) 

Hence, T/ is the vector of ordered coordinates of 0 and k-l - k' is a 
permutation matrix which puts the coordinates of 9 in order--that is, k'O = 
T/· The possible non-uniqueness of k caused by the equality of some of the 
coordinates of 0 will not be an issue. 

In terms of the parameterization kri given in (3.9), the problem is to 
estimate k (or equivalently, k') on the basis of the data x. Because of 
the symmetry in the density fin (3.8), it is intuitively clear that the 
answer to this estimation problem should be given by k(x) E Pn where 

x - k(x)z; z E f, k(x) E Pn. (3.10) 

Namely, the estimated order of the coordinates of 0 is just the observed 
order of the coordinates of x. In fact a bit more is true as is shown in 
Proposition 3.5, but before turning to this, it is useful to isolate two 
properties off in (3.8). 



48 

Proposition 3.4: The densfty off in (3.8) satisfies: 
(i) f(xle) - f(gxlg9) for x,9 e Rn and g e P 

n 
(ii) For integers j and k, 1 s j ~ k s n, if x and 9 satisfy xj ~ 

- ~and ej ~ ek' then 

(3.11) 

where x(j,k) is the vector x with its jth and kth coordinates interchanged. 

Proof: That (i) holds is clear from the expression (3.8) for f. For 
assertion (ii), a bit of algebra shows that 

so (3.11) holds. O 

Proposition 3.5: For each x E Rn and q e F, 

f(xlkq) s f(xlk(x)q), k E P 
n (3.12) 

where k(x) is defined by (3.10). Thus, for each~ e F, the maximum 
likelihood estimator of kin the parameterization 9 - kq is k(x). 

Proof: -1 Since k (x)x - z e F,' (i) of Proposition (3.4) shows that (3.12) 
is equivalent to 

-l I -l I I f(k x q) s f(k (x)x q) - f(z q) (3.13) 

-1 for each k E Pn. Setting y - k x, we see that y is a permutation of x so 
the ordered coordinates of y are just z1 ~ z2 ~ ... ~ zn which are the 
coordinates of z. Thus, it must be shown that 

f(yiq) s f(zlq). (3.14) 

Let y1 , ... , yn be the coordinates of y. If y - z, obviously (3.14) holds 
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so assume y F z. Let r(y,z) be .the number of non-zero coordinates of y-z. 

Since y F z, 1 ~ r(y,z) s n. 

There are two cases. 

Case 1: y1 < z1 . In this case, let j be the largest index such that y. = 

z1 soy.> y1 . Let y(l) be the vector with coordinates yil) - yj' yjl)J_ 

y1 , / 11 - y. for i F 1, i F j. Applying (ii) of Proposition 3.4 with "x 
(1) ]. ]. 

y , ri - 8, j = 1 and k - j", we see that 

and 
f(yjri) s f(y< 1>1,,) 

r(y(l) ,z) s n - 1 } 
Case 2: y1 - z1 . In this case, set y(l) = y so again (3.15) holds. 

(3.15) 

Now, construct a vector y( 2) by applying the Case 1 and Case 2 analysis 

to the second coordinates of y(l) and z. This yields 

and 
f(y< 1>1,,) s f(y< 2>1,,) 

r(y( 2) ,z) s n - 2 } 
Applying this procedure n-1 times yields y(l) , ... , y(n-l) such that 

f( I ) f <1) I < <n-1) I y ,, s (y ,, ) - . . . s f (y ,, ) . 

(n-1) (n 1) But y = z since r(y - ,z) - 0 and the proof is complete. o 

The key to the above proof is the construction of the sequence 

(3.16) 

y(l) ,y< 2) , ... , y(n-l). In fact, the proof shows that the conclusion of 

Proposition 3.5 remains valid for any function satisfying (i) and (ii) of 

Proposition 3.4. It is these two conditions which define a DR function. 

This is discussed carefully in the next section. 

Section 3.3: Decreasing Reflection Functions: Basics 

In order to give a proper definition and justify the term Decreasing 

Reflection (DR) function, a little notation is needed. In Rn, for any 

vector u F 0, let 



so 

R 
u I 

n - 2 
uu' 
u'u (3.17) 

where I is the nxn identity. The symmetry of Ru is clear, and the n 2 
identity Ru - In is easily verified. Thus, Ru is a symmetric orthogonal 
matrix. Since 

(3.18) 

for any v ~ u (i.e., vis perpendicular to u), Ru has the" geometric 
interpretation as the reflection across the hyperplane perpendicular to u-­
that is, across 

H - {vju•v - OJ. u 

In other words, Ru is the identity on Hu and is "minus the identity" on the 
one dimensional subspace span {u}. The term reflection is used for 
matrices of the form (3.17). Note that Rcu - Ru for any real number c F 0. 
Also 

for any nxn orthogonal matrix r. 
The group Pn contains some reflections of particular interest. Let A1 

be the set of all vectors u e Rn which have (n-2) coordinates zero, one 
coordinate equal to one, and one coordinate equal to minus one. Notice 
that for each u e A1 , either u e A or -u e A where A is defined just after 
(2.8). Also, each Rij in (2.8) is a Ru for some u e A and conversely. The 
notation t 12 is reserved for the particular vector in A given by 
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Now, let X and Y be symmetric subsets of Rn--that is, gX - X for all g 

E P and the same for Y. 
n 

Definition 3.1: A real valued function f defined on XxY is a Decreasing 

Reflection function (a DR function) if 

(i) f(x,y) - f(gx,gy) for x e X, ye Y, g e Pn 

(ii) for each u E ~. u'xu'y ~ 0 implies that 

(3.20) 

Before giving examples, the following result shows that (ii) need only be 

checked for u - t 12 . 

Proposition 3.6: Let f be a real valued function of XxY which satisfies 

(i) of Definition 3.1. The following are equivalent: 

(i) f is a DR function 

(ii) the condition ti2xti2y ~ 0 implies that 

f(x,y) ~ f(x,Rt y). 
12 

(3.21) 

Proof: Clearly (i) implies (ii) since t 12 E ~. Conversely assume (ii) 

holds and let u e ~- Hence there exists age Pn such that gu - t 12 . For 
x EX and y E Y such that u'xu'y ~ 0, it must be verified that (3.20) 

holds. For such an x and y, 

u'xu'u - u'g'gxu'g'gy - (gu)'gx(gu)'gy 

- ti2(gx)ti2<gy) ~ o. 

Applying (3.21) with x replaced by gx and y replaced by gy, we have 

f(gx,gy) ~ f(gx,Rt gy). 
12 

Using the assumed invariance of f, this yields 

(3.22) 
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f(x,y) - f(gx,gy) ~·f(gx,Rt gy) - f(x,g'Rt gy). 
12 12 

But, from (3.19) with g - r•, it follows that 

g'Rt g - R 't 
12 g 12 

so (3.20) holds. D 

- R u 

The verification that a given function f defined on XXY is a DR 

function is ordinarily most easily accomplished by checking that f is 

invariant (i.e., (i) of Definition (3.1) holds) and then verifying (ii) of 

Proposition 3.6. If x and y have coordinates x1 , ... , xn and y1 , ... , Yn• 

the condition ti2xti2y ~ 0 simply means 

In other words, if x1 > x2 then y1 > y2 and if x1 < x2 then y1 < y2 . When 

(3.23) holds, then (3.21) has to be verified. In the two classes of 

examples below (from Eaton (1967)), the verification is easy and is left to 

the reader. 

Example 3,2: For symmetric subsets X and Y of Rn, consider f of the form 

n 
f(x,y) - ~l(x)~2(y) rr g(xi,yi) 

i-1 
(3.24) 

where each ~i is Pn-invariant and non-negative on Rn, i - 1,2 and g is a 

non-negative function of two real variables. The invariance of f is clear . . 
If g has a MLR, then (ii) of Proposition 3.6 is easily checked. Conversely 

when ~1 • ~2 and g are strictly positive, then (ii) of Proposition 3.6 holds 

iff g has a MLR. Thus Definition 3.1 can be thought of as one possible 

attempt at generalizing MLR. Examples of probability densities which can 

be written in the form (3.24) with x being the variable of the density and 

y being a vector of parameters include the multinomial density, the density 

of n independent Poisson random variables with different parameters, the 
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density of n independent Gamma random variable with either different shape 

parameters (but the same scale parameter) or different scale parameters 

with the same shape parameter. D 

Example 3.3: In this example, take X - Y - Rn and consider an f of the 

form 

f(x,y) - w((x-y)'A(x-y)) 

where w is a non-increasing function defined on R1 and the nxn matrix A has 

the so-called intraclass correlation form: 

where e is the vector of ones in Rn and the scalars a and p satisfy a~ 0, 

a+np ~ 0. Because of the structure of A, f is invariant. Also, a 

calculation similar to that used in the proof of Proposition 3.4 ~hows that 

(3.21) holds. D 

The analog of Proposition 3.5 for DR functions is 

Proposition 3.7: Suppose f is a DR function defined on XxY. Fix y E XnF. 

Fork e Pn and x e X, 

sup f(kx,y) m f(kox,y) 
keP 

n 

where k0 is any element of Pn such that k0x e F. 

Proof: The proof is the same as the proof of Proposition 3.5. D 

The connection between the DR functions and the decreasing functions 

(in the sense of Definition 2.2) follows. This result is due to Hollander 

et al. (1977). 

Proposition 3.8: Suppose X ~Rn is a symmetric subset of Rn such that x,y 
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EX, implies that x - y E i~ Let f 0 be a real valued function defined on 
X. The following are equivalent: 

(i) f 0 is decreasing 

(ii) The function f defined on XXX by f(x,y) - f 0(x-y) is a DR 
function. 

Proof: First suppose f 0 is decreasing. Thus f 0 is Pn invariant so for 
each g E Pn, 

f(gx,gy) - f 0 (gx-gy) - f 0(g(x-y)) - f 0 (x-y) - f(x,y). 

Hence f is invariant. To show f is a DR function, (3.21) needs to be 
verified. For notational convenience, let t - t 12 and consider x,y E X 
with t'xt'y ~ 0. Then,·write x - u +at with u Lt and y - v +pt with v L 
t. Thus 

But, the condition t'xt'y - ap ~ 0 implies that la-PI s la+PI so the vector 
x - y - u - v + (a-p)t is in the line segment connecting u - v - (a+p)t -
Rt(u - v + (a+p)t) and u - v + (a+P)t. Since f 0 is decreasing, this 
implies that 

f 0 (x-y) - f 0 (u - v + (a-p)t) 

~ f 0(u - v + (a+P)t) - f 0(x-Rty) 

so (3.21) holds. 

Conversely, assume f is a DR function. Since f is invariant, f 0 is 
invariant. To show f 0 is decreasing we use (ii) of Proposition 2.17. 
Thus, for 0 s p1 s p2 , and v L t, it must be shown that 

(3.25) 

1 1 Set x - v + z<P1+p2)t and y - z<P2-p1)t. Then t'xt'y ~ O so (3.21) holds. 
Hence 
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so (3.25) holds. D 

Of course there is a version of Proposition 3.8 which relates 

increasing functions to DR functions--namely, assume X is closed under 

addition. Then f 0 is increasing iff f 0 (x+y) is a DR function on XXX. The 

proof of this assertion is essentially the same as that for Proposition 

3.8. 

We close this section with a few remarks about DR functions. 

Exploitation of (i) and (ii) of Definition 3.1 occurred in the work of 

Savage (1957), although the isolation of (i) and (ii) into a definition 

appeared in Eaton (1967) in work on ranking problems. In that paper, DR 

functions were said to have "Property M." Later Hollander et al. (1977) in 

their study of majorization and probability inequalities used "decreasing 

in transposition" for these functions and other functions defined on Pn. 

Such functions are called "arrangement increasing" in Marshall and Olkin 

(1979) (see 6.F). 

The plethora of terminology concerning functions satisfying Definition 

3.1 seems to be due to various authors' interpretations of the condition 

and applications of the results concerning such functions. There is a 

likelihood interpretation which I find rather appealing. First, write the 

function in question as f(x,O) with x EX~ Rn and 8 e e ~Rn. Think of x 

as the variable· in the density f and 0 as the value of the parameter in 9. 

For a given u e ~. the hyperplane 

H - {zlu'z - 0) u 

divides Rn into two parts: 

and 

H+ - (zlu'z ~ 0) 
u 
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the intersection. The reflection R maps H+ onto H and H u u u u 
condition u'xu'8 ~ 0 simply means x and 8 are either both in 

with H being 

onto H'.f.. The 
+ u 

H or both in H---that is, they are both on the same side of H. Hence, u u u 
when u'xu'8 ~ 0, then u'xu'(Ru8) s 0 so x and Ru8 are on opposite sides of 
Hu. Now, the condition 

f(x,8) ~ f(x,Ru8) 

means that D's on the same side of Hu as x are always more likely than the 
reflected 8. In other words, reflection decreases the likelihood when x 
and 8 are on the same side of Hu. Hence the term decreasing reflection 
function. 

Decreasing reflection functions are defined for other groups than Pn in 
Chapter 6, but are only discussed rather briefly since the main 
applications currently known are for the group Pn. However, the same 
interpretation given above, which depends only on the geometry of 

reflections, continues to hold. 

Section 3.4: The Composition Theorem and First Applications 

In this section, we first establish a result due to Hollander et al. 
(1977) concerning the composition of two DR functions. The applications 
here include an alternative proof of the Convolution Theorem and a decision 
theoretic treatment of the ranking problem discussed in Section 3.2. 

Here is the Composition Theorem. 

Theorem 3.9 (Hollander et al. (1977)). Let X, Y, and Z be symmetric 
subsets of Rn. Suppose f 1 is a DR function on XxY and f 2 is a DR function 
on YXZ. Let µ be a Pn·invariant u-finite measure defined on Y such that 

f 3(x,z) - J f 1 (x,y)f2(y,z)µ(dy) 
y 

is well defined for each x E X and z E Z. Then f 3 is a DR function. 

(3.26) 
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Proof: To show f 3 is Pn-invariant, we use the invariance of f 1 ,f2 and the 

assumed invariance ofµ to compute as follows. For g E Pn' 

f 3(gx,gz) - Jyf1(gx,y)f2(y,gz)µ(dy) - Jyf1(x,g- 1y)f2(g- 1y,z)µ(dy) 

- Jyf1 (x,y)f2(y,z)µ(dy) - f 3 (x,z), 

so f 3 is invariant. 

To complete the proof, condition (ii) of Proposition 3.6 needs to be 

verified. To this end, let u - t 12 and consider x E X and z E Z satisfying 

u'xu'z ~ 0. Thus, it must be shown that 

Let 

y+ - (yjy E Y, u'y > 0) 

Y- - (yjy E Y, u'y < 0) 

and 

0 Y - (yjy E Y, u'y - 0), 

so Y - y+ u Y u Yo. Using the relation Ruu - -u and the invariance of f 1 
and f 2 , an easy calculation shows that 

This equality is a consequence of the relation R Y- - Y+ and the fact that 
u 

the above integral over the set YO is zero. Now, because u'xu'z ~ 0 and y 

E Y+, the integrand in the above expression for 5 is non-negative. Hence 5 

~ 0 and the proof is complete. D 
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The Composition Theorem together with Proposition 3.8 provides an easy alternative proof of the Convolution Theorem (Theorem 2.20). To see this, 
n consider h1 and h2 which are decreasing on R so that the convolution 

is well defined. To show h3 is decreasing, it must be verified that 

is a DR function on R~n. But 

h3(x-z) - JRn h1(x-z-y)h2(y)dy 

- JRn h1 (x-y)h2(y-z)dy 

(3.27) 

(3.27) 

where the second equality follows from the simple change of variable y ~ 
y+z and the translation invariance of Lebesgue measure. But both f 1 (x,y) -h1 (x-y) and f 2(y,z) - h2(y-z) are DR functions by Proposition 3.8. Thus, 
by the Composition Theorem with X - Y - Z - Rn, f 3 is a DR function so h3 is decreasing. O 

It is very natural to ask to what extent the Convolution Theorem is 
valid for spaces which are subsets of Rn. Since the natural setting for 
the Convolution Theorem is an additive group, we assume X ~ Rn is a group 
under addition and assume that µ(dx) is a translation invariant measure on 
X. Both X andµ are assumed to be Pn·invariant. Suppose h1 and h2 are 
decreasing on X such that the convolution 

is defined. As long as Proposition 3.8 is valid for the space X, the 
argument in the previous paragraph holds without change. Thus, h3 is again 
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decreasing subject to the above proviso. For example, if X is the set of 
vectors in Rn whose coordinates are integers and µ is counting measure on 
X, the above argument holds. (See Section 2.4 for a discussion of 
majorization on other spaces than Rn). 

The final example of this section concerns a decision theoretic 
extension of the "ranking problem" discussed in Section 3.2. The reader 
who is completely unfamiliar with the language of statistical decision 
theory may skip this example since it is not used in the sequel. However, 
for those with even a modest familiarity with decision theory, the 
arguments below are quite complete and the example is a nice application of 
the Composition Theorem. In essence, the following example provides a 
proof of a main result in Eaton (1967). 

Example 3.4: Let X and e be symmetric subsets of Rn and suppose f(x,8) is 
a density of X with respect to a Pn-invariant measure µ. It is assumed 
that f is a DR function. The statistical problem is to "rank the 
coordinates of 0" on the basis of an observation vector X with density 
f(x,8). Now, a ranking of the coordinates of 8 simply consists of some 
permutation of the vector a0 : whose coordinates are n,n-1, ... , 1. For 
example, if n = 4, then 

Let us agree that a given permutation of a0 E R4 is our ranking; for 
example, the vector 

[i] 
would assert that 84 is the largest (it receives the largest rank), 81 is 
the second largest, 83 is the third largest and 8 2 is the smallest. With 
this convention, an action space for the decision problem consists of the 
permutations of ao. 
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Thus, for the general case, the action space for the decision problem 
is A - (ga0 lg E Pn) where a0 is the fixed vector with coordinates n,n-
1, ... , 1. Thus, each element a EA is just some permutation of n,n-1, ... , 
1--say a1 , ... , an; the interpretation is the action a gives the asserted 
ranks of the coordinates of 8. Thus, ai is the asserted rank of 8i, 
i - 1, ... , n where large rank corresponds to large values. 

Now, consider a loss function L defined on Axe to R1 . It is assumed 
that -L (minus L) is a DR function. This means two things. First that L 
is invariant (i.e. L(a,8) - L(ga,g8), g E Pn) which seems very reasonable 
because of the symmetry of the problem. Second, using characterization 
(ii) of Proposition 3.6, this assumption means that if a1 > a 2 and 81 > o2 
(these are the first two coordinates of a and 8), then 

-L(a,O) ~ -L(a,Rt 8) 
12 

or equivalently, the loss for action 

[ 
is no larger than 

al 

a2 

a n 

the 

a 
n 

at 

loss for 

at 

01 

02 

0 n 

action 

8 n 

In other words, with a 3 , ... , an and o3 , ... 8n fixed, when 81 > 82 , saying 
that the rank of 81 is a1 and the rank of o2 is a 2 (when a1 > a 2) gets no 
more loss than saying the rank of o2 is a1 and the rank of o1 is a2 . This 
assumption seems to be a minimal requirement given our problem and the 
interpretation of a e A. 

Now, for simplicity we assume that each x e X has distinct coordinates. 
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This assumption is made so that-some annoying technical details will not 

obfuscate the essence of the argument below. With this assumption, each x 

E X can be written uniquely as 

x - k(x)z 

where z E F and k(x) E Pn (recall that F is the convex cone of vectors 

whose coordinates are ordered largest to smallest). Recall that a decision 

rule, say S, is a measurable function defined on X and taking values in A. 
Properties of a decision rule S are measured in terms of the risk function 

R(S,9) - J L(S(x),9)f(x,9)µ(dx) (3.28) 

which is just the expected loss from using 6 at the parameter value 9. 

Also, given any distribution H on 9, the average risk of S is 

~(S) - J9R(S,9)H(d9). 

A decision rule SH is a Bayes rule for H if 

for all S. 

Now, we turn to the main result for the above ranking problem. 

Consider the decision rule s0 defined as follows. For x EX, write x = 

k(x)z with z E F and k(x) E Pn. s0 is defined by 

s0 (x) - k(x)a0 . (3.29) 

Proposition 3.10: For any distribution H one with is Pn-invariant, s0 is 

a Bayes rule for H. 

Proof: For any decision rule S, it must be verified that 

(3.30) 
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To this end, let 

Q(a,x) - J L(a,8)f(x,8)H(d8). 

Since -L and f are DR functions and H is Pn-invariant, the Composition 
Theorem implies that -Q is a DR function on AxX. Write a - ga0 for g E Pn 
and x - k(x)z, and note that both z and a0 are in F. Since -Q is 
invariant, an application of Proposition 3.7 yields 

-Q(ga0 ,k(x)z) s -Q(k(x)a0 ,k(x)z) 

for all x EX and g E Pn. Hence 

Q(a,x) ~ Q(k(x)a0 ,x) (3.31) 

for a EA and x EX. Since 60 (x) - k(x)a0 , (3.31) implies that for any 
decision rule 6, 

Q(6(x),x) ~ Q(60 (x),x). (3.32) 

Integrating both sides of (3.32) with respect to µ(dx) yields 

JJ L(6(x),8)f(x,8)H(d8)µ(dx) ~ JJ L(60 (x),8)f(x,9)H(d9)µ(dx) 

which is just (3.30). Thus 60 is Bayes for any Pn-invariant H. o 

The above result was proved in Eaton (1967) by showing essentially that 
Q is a DR function and then applying the argument given in Proposition 3.5. 
Of course, due to the work in Hollander et al. (1977), it is now clear the 
Composition Theorem together with the argument in Proposition 3.5 is what 
underlies this result. Proposition 3.10 provides a relatively easy proof 
of the fact that the decision rule 60 is both minimax and admissible. 

Proposition 3.11: The decision rule 60 is minimax and admissible for any 



loss function L such that -L is a DR function. 

Proof: To show s0 is minimax, it must be verified (by the definition of 

minimax) that 
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sup R(S0 ,0) - inf sup R(S,0). (3.33) 
0 s 0 

-1 For any 0 e 9, let H0 be the distribution with mass (n!) at each gO, g e 
Pn. Since the sup of an average is no greater than an average of sup's, we 

have 

(3.34) 

Since for each 8, H0 is a Pn·invariant distribution on 9, Proposition 

(3.10) implies that 

where the last inequality is a consequence of the easily established 

identity 

for all e e 9 and g e Pn. Hence the right hand side of (3.33) is 

bounded below by sup R(S 0 ,e). But, trivially, the right hand side of 
e 

(3.34) 

(3.33) is bounded above by this expression. Hence (3.33) holds so 50 is 

minimax. 

To show s0 is admissible, we argue by contradiction. Thus, assume 50 
is not admissible so there exists a decision rule 51 such that 

for all e e e 

e. } 
(3.35) 

for some eo e 
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Using the notation above, let He be the Pn·invariant distribution 
-1 0 which puts mass (n!) at each ge 0 , g E Pn. Because of (3.35) and 

the fact that e0 gets positive mass from He , integration of (3.35) yields 
0 

which contradicts the fact that 60 is Bayes for He . D 
0 

Further refinements of these results as well as a number of examples 
and extensions can be found in Eaton (1967). Other applications to ranking 
problems can also be found in Hollander et al. (1977). 

Section 3.5: Further Examples and Applications 
In this section further examples and techniques are presented related 

to the problem of finding conditions under which the function in (3.1) is 
decreasing. Here is an example in which the technique is to verify the 
differential conditions of Proposition 2.18. 

Example 3.5: Suppose x1 , ... , Xn are independent Bernoulli random 
variables--that is, 

for i - 1, ... , n. 

~- { lo 
with probability pi 

with probability 1-pi 

n Fix Llpi - nA. Gleser (1975) has shown that if x 
satisfies 0 ~ x ~ nA-2, then (Gleser (1975)) 

~(p) - P{L~i ~ x} (3.36) 

is a decreasing function of the vector p whose coordinates p1 , ... , pn 
satisfy Lpi - nA. As mentioned above, the technique is to verify the 
conditions of Proposition 2.17 via differentiation (i.e. as in Proposition 
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2.18). It is useful to interpret the above result. The mean of ~~i is nA 

which is fixed. Since x ~ nA-2, (3.36) is a left tail probability. 

Intuitively, tail areas should decrease as variance decreases. But the 

variance of ~~i is ~pi(l-pi) which is decreasing in the majorization 

ordering with ~pi - nA fixed. Hence the above confirms our intuition. 

However, it is shown by Gleser (1975) that this result is false for x's 

satisfying nA-2 < x ~ nA. Thus, the result is somewhat delicate. For the 

details of the proof and other results, see Gleser (1975). D 

The next example contai~s a result due to Y. Rinott (1973). 

k Example 3.6: Suppose NE R has a multinomial distribution M(k,p,n)--that 

is, N has integer coordinates N1 , ... , N~which satisfy 0 ~Ni and ~~i = n 
where n is a positive integer, and p e R is a vector of probabilities, 

k p1 , ... , pk' which satisfy ~lpi - 1. For future reference, we will write 

the probability function of N rather carefully. First, let X be the set of 
k all vectors in R which have integer coordinates, and letµ be counting 

measure on X. Let A be the set of vectors in X, say x, whose coordinates 
k satisfy 0 ~ xi and ~lxi - n. Then the density of N, with respect to µ, 

given the parameter vector p, is 

n! k xi 
f(x!p) - II p I (x) 

x1 1 ... ~! l i A 
(3.37) 

where IA is the indicator function of A. Of course, f(•!p) vanishes off 

the set A. Rinott proved that if h defined on A to R1 is decreasing in the 

majorization sense, then 

w(p) - E h(N) - I h(x)f(x,p)µ(dx) 
p x (3.38) 

is also decreasing. Thus, w is maximized when each pi is l/k and w is 

minimized at the corners of the probability simplex. Rinott (1973) proved 

this result by verifying the differential condition in Proposition 2.18 and 

then he noted that a similar result follows for the Poisson distribution by 

averaging over n. An alternative method of proof was given by Nevius et 
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al. (1977) which first establishes the Poisson result and then arrives at 
the multinomial via a conditioning argument. We will take this second 
route in proving Rinott's (1973) Theorem below. o 

To introduce the methods developed in Proschan and Sethuraman (1977), 
Nevius et al. (1977) and Hollander et al. (1977), we first treat the case 
of Poisson variables and then take a careful look at the argument to see 
what makes it work. Let x1 , ... , ~be independent Poisson random variables 
with parameters o1 , ... , Ok. Thus Xi has a density on the integers given by 

p(u!O.) 
]. 

u - 0,±1,±2, ... (3.39) 

with respect to counting measure. As usual, I[O,~) is the indicator 
function of [O,~). The sample space for the random vector X with 
coordinates x1 , ... , ~is, as usual, the set X ~ Rk which consists of all 
vectors which have integer coordinates. Let µ denote counting measure on X 
so the density of X is 

k 
f(xl9) - II 

i-1 
(3.40) 

k where x e X has coordinates x1, ... , x, and 0 e (O,~) - 9 has coordinates n . 
01 , ... , Ok. Now let h: X ~ R be an increasing function (these are a bit 
more convenient than the decreasing functions in this example, but 
multiplication by a minus one changes from increasing to decreasing and 
vice versa) and consider 

~(O) - E9h(X) - J h(x)f(xl9)µ(dx). (3.41) 

We now proceed to show that ~ is increasing. To the end, recall that ~ is 
increasing iff ~(O+q) is a DR function (see the remark after Proposition 
3.8). Hence we consider 
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'11(11+'1) - thCx)f(xl ll+'l)µ(dx). (3.42) 

But, the Poisson distribution is a convolution family--that is, the density 
f has the property that for ll,fl E 9, 

f(xlll+fl) = J f(x-yill)f(Yi'l)µ(dy) 
x 

(3. 43) 

which is most easily verified with characteristic functions. Substituting 
(3.43) into (3.42) and interchanging orders of integration yields 

'11(11+'1) - J[ J h(x)f(x-yill)µ(dx) ]f<Yi'l)µ(dy) 

- J[ J h(y+x)f(xill)µ(dx) ]f(yj,,)µ(dy). 

(3.44) 

The second equality follows from a change of variable and the translation 
inv.ariance of the measure µ on X. But, because p in (3.39) has a MLR, f in 
(3.40) is a DR function. Since h is increasing, h(y+x) is a DR function. 
Hence the Composition Theorem implies that 

H(y,11) - Jxh(y+x)f(xjll)µ(dx) 

is a DR function. Thus 

'11(11+'1) - f H(y, ll)f(Yi'l)µ(dy) 

and a second application of the Composition Theorem shows that ~ is a DR 
function. Thus >It is increasing which yields 

Proposition 3.12: If X has the density (3.40) on X and h: X' R1 is 
increasing (decreasing), then >It given by (3.41) is increasing (decreasing). 

Now, the essentials in the above are that 
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(i) X is a group under addition and the dominating 
measure for the density is translation invariant 
and permutation invariant 

(ii) e is closed under addition 
(iii) the density f(xl8) is a DR function and satisfies 

the convolution property (3.43). 

(3.45) 

Here is another example where the same argument as above is valid. 

Example 3.7. 

where 

(Nevius et al. (1977)). 

k 
f(xl8) - IT p(xil8i) 

i-1 

k k Take X - R , e - (0,~) and set 

(3.46) 

Here A> 0 is a fixed constant, r(•) denotes the gamma function, ~ E (O,~), 
and u e R1 . The dominating measureµ on X is Lebesgue measure so fin 
(3.46) is the density of k independent gamma random variables with shape 
parameters 81 , ... , Bk and a common scale parameter. That (i), (ii), and 
(iii) in (3.45) hold is easily verified so the argument given in the 
Poisson case is valid. Thus, if his increasing (decreasing) on X to R1 , 
then 

is increasing (decreasing) on 9. D 

Example 3.8: In this example, a proof of Rinott's (1973) result concerning 
the multinomial distribution (see Example 3.6) is given. Throughout this 
example, the notation established in Example 3.6 is used. Thus N has a 
M(k,p,n) distribution and N takes values in the set A ~ X. The density of 
Non X is given by (3.37). If his a decreasing function defined on A, the 
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~(p) - E h(N) 
p 
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(3.47) 

is decreasing. Since A is a finite set, h is bounded below on A by some 

constant--say M. Define h* on X by 

{ 
h(x) 

h*(x) - M 
if x E A 

if x ~ A. 

It is easy to verify that h* is decreasing on X. Let X have coordinates 
x1 , ... ,~which are independent, and Xi is Poisson with parameter pi--the 
ith coordinate of p. Proposition 3.12 shows that 

~*(p) - E h*(X) p (3.48) 

is decreasing. But, the conditional distribution of X given ~~i = r is 
M(k,p,r), and the marginal distribution of ~~i is Poisson with parameter 
1. Thus 

00 

~*(p) - EPEP(h*(X)l~~Xi) - I E(h*(X>II~i - r)qr 
r-0 

where qr - P(~~i - r). From the definition of h*, we have 

Since qn > 0, it follows the ~ is decreasing. D 

For further examples and applications of the type above, the reader 
should consult Gleser (1975), Rinott (1973), Proschan and Sethuraman 
(1977), Hollander et al. (1977), Nevius et al. (1977), and Marshall and 
Olkin (1979, Chapters 3,11,12). Some nice applications to matching 
problems are discussed in Marshall and Olkin (1979, p. 304-305). 

The final example in this section concerns the accuracy of confidence 



70 

intervals for a mean based on the t-statistic when the observations are not 
normal, but only satisfy a weak symmetry condition. The relevant 
references for this example are Efron (1969) and Eaton (1970, 1974). 

Example 3.9: Consider random variables x1 , ... , Xn and assume a "linear 
model" type structure: 

Xi - µ + Ei' i - 1,. . ., n 

whereµ is an unknown parameter and E1 , ... , En are random variables. To 
describe the assumption on the joint distribution of E1 , ... , En' let Dn 
denote the group of all nxn diagonal matrices whose diagonal elements are 
either 1 or -1. Thus, D has 2n elements. It is assumed that the random n 
vector E, with coordinates e1 , ... , En satisfies 

L(E) - L(DE) for D e D • n (3.49) 

In other words, the distr~bution of e is Dn·invariant--such distributions 
were said to have orthant symmetry by Efron (1969). If E has a mean vector 
and satisfies (3.49), then the mean vector of E must be zero. 

Given the model above, one possible way to construct a confidence 
interval forµ is to use the t-statistic (as if x1 , ... , X were i.i.d. 2 n N(~,u )). In other words, let cn-l be the (1-a)/2 upper percentage point 
of a tn-l distribution and use the interval 

(3.50) 

Of course, to evaluate the statistical properties of this procedure, we 
must try to calculate the probability that this random interval covers the 
parameter µ. This probability is 

li - P{ IX-µI (3.51) 
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Because of our model assumption, this can be written 

which, after some manipulation, is 

(3.52) 

where 

2 -1/2 
[ cn-1 - l] 

dn - 1 + n cn-1' (3.53) 

Now, from an inferential point of view, it would be useful to have lower 

bounds on (3.52) so that the constructed interval would have a guaranteed 

coverage probability. Equivalently, we will try to develop some upper 

bounds on 

(3.54) 

The assumption (3.49) on the distribution of e implies that e has the same 

distribution as the random vector 

z -

where u1 , ... , Un are i.i.d. random variables taking the values ±1 each with 

probability 1/2. The distribution of the Oi's is specified by 
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and the vector of U's is independent of the vector of 8's. A bit of 
reflection should convince the reader that these assertions are plausible-­
for a proof, see Efron (1969). Since e and Z have the same distribution, 
(3.55) can be substituted into (3.54) yielding 

(3.56) 

(3.57) 

n 2 where ei ~ 0, E1ei - 1. Thus, to obtain upper bounds on p, it is 
sufficient to obtain upper bounds on ~<e> which are valid for all e with n 2 
Elei - 1, and Ei ~ 0. 

Now, Efron (1969) argues as follows. Regard E1····· en as fixed 
n 2 constants satisfying ei ~ O and E1Ei - 1. Look at the even moments (the 

odd moments are zero) 

(3.58) 

2r for r - 1,2, ..•• Efron (1969) proves that µr(E) is bounded above by EV 
where Vis N(O,l). This suggests that IVI is stochastically larger (at 
least approximately) than IE~EiUil which in turn suggests that (3.57) is 
bounded above (at least approximately) by P!IVI ~ d }. But P!IVI ~ d} is n n close to a because 

(i) the tn-l distribution is close to the N(O,l) for moderate and 
large n 

(ii) 

Now it, 
-1/2 n.. 

n E1ui. 

dn is close to cn-l for moderate and large n, and for values 
of cn-l which occur in practice. 

in fact, is not true that IVI is stochastically larger than 
However, Efron's result shows that 

E(EnE U )2r ~ EV2r 1 i i (3.59) 



for r - l, 2, . . . and all € i ~ 0 satisfying ~~ei = 1. One way to try to 

sharpen this result is to extend the inequality (3.59) to functions other 

than x ~ x2r That is, for what functions f is it true that 
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(3.60) 

for all n and e1 , ... , €n satisfying €i ~ 0, ~~ei = l? Using majorization, 

this equation was partially answered in Eaton (1970,1974). The details 

follow. 

Proposition 3.13: Let f be defined on R1 to R1 . Suppose that f is 

symmetric and has a first derivative f'. Suppose further that 

(i) for each c ~ 0 and for t > 0, the function 

t ~ t" 1 [f'(c+t) - f'(c-t)] 

is non decreasing on (O,oo), 

For SE Rn with coordinates s1 , ... , Sn which satisfy Si~ 0, ~~Si= 1, let 

(3.61) 

Then g is decreasing. 

Proof: The proof is quite standard--the conditions of Proposition 2.18 

will be verified. That g is Pn·invariant is clear since u1 , ... , Un are 

i.i.d. To verify (ii) of Proposition 2.18, set W - ~n3~u .. By 
l. l. 

assumption, f is symmetric. Since W has a symmetric distribution and is 

independent of (U1 ,u2), for fixed (S 3 , ... , on)' g(S) in (3.61) can be 

written as an average (over c) of functions 

(3.62) 

for c ~ 0. Since an average of decreasing functions is decreasing it 

suffices to show that gc in (3.62) satisfies (ii) of Proposition 2.18 for 
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each c ~ 0. Since f is symmetric f'(-x) - -f'(x). Using this if we set t 1 
- 6i/2 + 6~12 and t 2 - 6i/2 - 6~12 , a computation yields 

age age 
/::,. - a61 - a62 

- ~ Ef'(!f;_u1 + .rr;_u2 + c)(6~ 112u1 
1 f'(c+t2)-f'(c-t2) 

~~~~~{~~~~t~~~~-

Sj6l62 tl t2 2 

Since 0 < t 2 s t 1 , assumption (i) shows that tJ. s 0. Thus (ii) of 
Proposition 2.18 holds so g is decreasing. o 

Condition (i) of f in Proposition 3.13 is not so easy to check. A 
sufficient condition for (i) to hold is that f have three derivations and 
f''' be non-decreasing on (O,~) (for a proof, see Eaton (1974)). In 

2r particular, the functions x ~ x , r - 1,2, ... all satisfy (i). 
Here are some immediate consequences of Proposition 3.13. 

Proposition 3.14. Let f satisfy the assumptions of Proposition 3.13. 
-1/2 n.. (i) Ef(n ~lui) is non-decreasing inn. 

I -1/2 Il.. ll+E (ii) If there exists an E > 0 such that E f(n ~lui) is 
bounded inn, then for L(Z) - N(O,l), 

(3.63) 

n for all n and all 61 , ... , 6n satisfying 6i ~ 0 and ~l6i - 1. 

Proof: (i) follows from Proposition 3.13 by noting that the vector in Rn 
with coordinates (n-l)·l/2 , ... , (n-l)·l/2 ,o majorizes the vector with 

-1/2 -1/2 coordinates n , ... , n . 
n -1/2 For (ii), the Central Limit Theorem shows ~1n Ui converges in 

distribution to Z. Since f is continuous, f(~~n- 112ui) converges in 
distribution to f(Z). The uniform boundedness of the (l+E) absolute moment 
implies that 
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lim Ef(~~n·l/ZUi) - Ef(Z). 
n-+co 

Since the sequence of expectations is non-decreasing inn (by part (i)), we 
have 

The conclusion (3.63) follows since g(o) in (3.61) is maximized for o E Rn 
with all coordinates equal to n-l/Z. o 

2r The assumptions in (ii) are easily shown to hold for f(x) = x r = 

1,2, ... so (3.63) give Efron's (1969) result in this case. The validity of 
(3.63) for other random variables than u1 , ... , Un is discussed in Eaton 
(1974). One application to probability inequalities for (3.57) (and 
hence for (3.51)) follows. Let d > 0 be a fixed number. Let f be a non­
negative non-decreasing function on R1 which satisfies f(d) - 1, and 
satisfies the assumptions of Proposition 3.14. A pointwise argument 
together with (3.63) gives 

(3.64) 

for el'''.' en satisfying ~~ei - 1. The problem is now to choose fin a 
clever way to make Ef(Z) as small as possible. This problem has not been 
solved completely, but there is some evidence to suggest that f's of the 
form 

fu(x) - { 

0 

3 Clxl·u) 
3 (d-u) 

if lxl ~ u 

if lxl ~ u 

for 0 ~ u < d yield reasonably tight bounds for (3.64) (See Eaton (1974) 
for the argument which suggests such f's). Since f~'' is non-decreasing 
and since fu(d) - l, (3.64) yields 
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inf Ef (Z). 
O:Su<d u 

(3.65) 

This infimum has not been computed explicitly, but some upper bounds are 
known which produce relatively good upper bounds when d ~ 2. See Eaton 
(1970,1974) for further details. 



Chapter 4: Log Concavity and Related Topics 

A main result of this chapter, due to Prekopa (1973), asserts that if 
f(x,y) defined on RmxRn is log concave, then the "marginal function" 

h(x) - J f(x,y)dy 
Rn 

(4.1) 

is log concave on Rm. This fact has a number of important consequences and 
applications. For example, results in Anderson (1955), Sherman (1955), 
Mudholkar (1966), and Davidovic et al. (1969) all follow easily from the 
above assertion. These results along with some applications are discussed 
below. 

Section 1: Log concave functions 

Let f be a non-negative real valued function defined on Rn. 

Definition 4.1: The function f is log concave if for all x,y E Rn and a E 

(0' 1)' 

f(ax + (1-a)y) ~ f 0 (x)fl-a(y). 

In some situations, a non-negative function h defined on a convex 
subset D ~Rn satisfies (4.2). In this case, observe that 

{ 
h(x) 

f(x) - 0 

if x E D 

if x e D 

(4.2) 

is defined on all of Rn and also satisfies (4.2). For this reason, the 
domain of definition of log concave functions is always taken to be Rn. 

Here are some elementary facts which are useful. 

Proposition 4.1: If f is log concave on Rn, then for each c ~ 0, the sets 
txlf(x) ~ c) and txlf(x) > c) are convex. 

Proof: Elementary. D 
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Proposition 4.2: Suppose B "is a subset of Rn. Then IB' the indicator 

function of B, is log concave iff B is a convex set. 

Proof: Elementary. o 

Proposition 4.3: Let f be non-negative and defined on Rn. Then f is log 

concave iff for each x,y e Rn, the function 

w(t) - f(x + ty) (4.3) 

is log concave on R1 . 

Proof: 
1 

If f is log concave, then for t 1 ,t2 , e R and a E (0,1), 

w(ati + (l-a)t2) - f(x + (atl + (l-a)t2)y) 
a 1-a 

- f(a(x+tty) + (l-a)(x+t2y)) ~ f (x+t1y)f (x+t2y) 

- wa(tl)w -a<t2>· 

Conversely, if w is log concave, 

f(ax + (1-a)y) - f(y + a(x-y)) - w(a) 

~ Wa(l)Wl-a(O) - ~(x)fl-a(y). D 

Proposition 4.4: Suppose f is log concave on Rn and A is an nxm matrix. 

Then the function h defined on Rm by h(u) - f(Au) is log concave. 

Proof: Elementary. D 

Proposition 4.5: Suppose f is defined on RmxRn and is log concavep Fix u 

in Rm and define h on Rn by h(v) - f(u,v). Then his log concave. 

Proof: Elementary. D 

Proposition 4.6: Suppose f defined on Rm is log concave and define h on 

RmxRn by h(u,v) - f(u). Then his log concave. Also, if f 1 and f 2 are log 
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m concave on R , then the product f 1f 2 is also log concave. 

Proof: Elementary. O 

Section 2: Prekopa's Theorem 

Here is a special case of Prekopa's Theorem (1973) which in fact 

implies the general result alluded to in the introduction to this chapter. 

Theorem 4.7. 2 Suppose f defined on R is log concave and let h be defined 
by 

h(x) - ~ f(x,y)dy. 
-co 

(4.4) 

If h(x) <+co for all x E R1 , then his log concave. 

Because .of its independent interest, the proof of Theorem 4.7 is given 
in the final section of this chapter. The proof is not that of Prekopa, 
but is modelled after an argument due to Brascamp and Lieb (1974). The 
main result of this section, which is an easy consequence of Theorem 4.7, 
follows. 

Theorem 4.8 Prekopa (1973)). Let f be defined on RmxRn and suppose that f 
is log concave. Then, the function h defined on Rm by 

h(u) - I f(u,v)dv, 
Rn 

~ssumed to be finite for u E Rm, is log concave. 

(4.5) 

Proof: Because Lebesgue measure, dv on Rn, is a product measure, an easy 
induction argument shows that it suffices to establish the claim for n - 1. 

m 2 For n - 1 and fixed u1 ,u2 ER , define won R by 

(4.6) 
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2 That w is log concave on R is an easy consequence of the log concavity of 
f. However, 

Theorem 4.7 applied tow shows that for u1 and u2 fixed, t ~ h(u1+tu2) is 
log concave on R1 . By Proposition 4.3, his log concave on Rm. D 

Proposition 4.9 (Davidovic et al. (1969)). Suppose f 1 and f 2 are log 
concave functions on Rn. Then the convolution 

is log concave, if h(y) < +:o for y E Rn. 

Proof: The log concavity of f 1 and f 2 implies that 

2n is log concave on R . By Theorem 4.8, 

h(y) - J f(x,y)dx 
Rn 

is log concave on Rn. D 

An immediate corollary to the above Proposition is a useful observation 
due to Sherman (1955). 

n Proposition 4.10 (Sherman (1955)). Let c1 and c2 be convex sets in R and 
let µ denote Lebesgue measure on Rn. If 
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is finite for x E Rn, then g is log concave, so 

txlg(x) ~ c) 

is a convex set for each c e R1 . 

Proof: Let f 1 be the indicator function of c1 and let f 2 be the indicator 
function of the convex set -c2 . Then 

is the convolution of two log concave functions. Hence g is log concave so 
by Proposition 4.1, 

txlg(x) ~ c) 

is a convex set. o 

We close this section with a brief discussion about random vectors 
which have log concave densities. Consider random vectors U e Rm and V e 
Rn and assume (U,V) e Rm+n has a joint density f(u,v) which is log concave. 
It follows immediately from Theorem 4.8 that the marginal density of U, say 

h(u) - J f(u,v)dv (4.7) 

is log concave. Hence the set 

D - tulh(u) > OJ 

is a convex set by Proposition 4.1. 
For fixed u e Rm, define f 2(vlu) on Rn by 
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· { f(u,v) 
h(u) ' 

f 2 (vlu) -

g(v), 

u ED 

u f£ D 

where g is some fixed log concave density on Rn (for example, take g to be 
the density of a N(O,In) distribution). It is well known that f 2 (•1u) 
serves as a version of the conditional density of V given U - u. Moreover, 
for each fixed u, f 2(•1u) is clearly log concave on Rn. This shows that 
when the joint density is log concave, then one can select a version of the 
conditional density which is also log concave. 

Section 3: Multivariate Unimodality and Anderson's Theorem 
On the real line, it is rather obvious how a symmetric unimodal (about 

0) function should be defined--namely, the definition given in Chapter 2. 
However, the choice of a definition of unimodality in higher dimensions is 
not so clear--even if attention is restricted to the symmetric case. In 
spite of its restrictiveness, the following rather strong definition used 
by Anderson (1955) has proved to be useful. (For a discussion of other 
notions of unimodality in Rn, ~ee Dharmadhikari and Jogdeo (1976) and Das 
Gupta (1980).) 

Definition 4.2: Let f be a real valued function defined on Rn. If f is 
symmetric (f(x) - f(-x) for x E Rn) and if for each real number r, the set 

is convex, f is called A-unimodal. 

In most applications, A-unimodal functions are non-negative, but this 
is not required in the definition. If f is non-negative, symmetric and log 
concave, then by Proposition 4.1 f is A-unimodal. In particular, indicator 
functions of convex symmetric sets are A-unimodal. However, sums of A­
unimodal functions need not be A-unimodal. This can be seen by taking fi 
to be the indicator of a convex symmetric set for i - 1,2 and picking the 
sets so f 1 + f 2 is not A-unimodal. 
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One property that A-unimodal functions do possess is that they are 

decreasing on rays emanating from 0 E Rn. Before proving this, we state a 

formal definition. 

Definition 4.3: A real valued function f defined on Rn is ray-decreasing 

if for each x E Rn, the function 

h(p) - f(px), (4.7) 

is non-increasing on [0,oo), 

Observe that the family of all ray-decreasing functions is a convex 

cone--that is, if f 1 ,f2 are ray-decreasing and c1 ,c2 are non-negative 

constants, then c1f 1 + c 2f 2 is also ray-decreasing. 

Proposition 4.11: If f is A-unimodal, then for x E Rn fixed, h(p) - f(px), 

PE R1 is a symmetric unimodal function on R1 . Hence, f is ray-decreasing. 

Proof: That h is symmetric is obvious since f is symmetric. For 0 s p1 s 
p2 , it must be shown that 

(4.8) 

Let r - f(p2x). Since f is A-unimodal, the set 

C - [yjf(y) ~ r) 

is convex and symmetric. But p2x E C by construction so -p2x E C. Since 

0 s p1 s p2 , the point p1x is in the line segment connecting p2x and -p2x 

so p1x EC. Hence h(p1 ) - f(p1x) ~ r - h(p2). Thus, f is ray-decreasing 

by definition. D 

Theorem 4.12 (Anderson (1955)). Suppose f 1 and f 2 are non-negative A­

unimodal functions. Then the convolution 
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(4.9) 

is symmetric and ray-decreasing. In particular, f(O) ~ f(y) for all y. 

Proof: Since f 1 and f 2 are non-negative, f is well defined even though 
f(y) may be infinite for some y's in Rn. Let I be the indicator function m 
of (xlx E Rn, llxll :S ml. It is easy to show that 

fi (x) - fi(x)I (x), ,m m i - 1,2 

are both A-unimodal, and vanish off the compact set (xlx E Rn, llxll :S m). 
The monotone convergence theorem shows that 

f (y) - J f 1 (y-x)f2 (x)dx m Rn ,m ,m 

converges pointwise to f(y) given in (4.9). Since the pointwise limit of 
symmetric and ray-decreasing functions is again symmetric and ray­
decreasing, it suffices to prove the theorem for functions f 1 and f 2 which 
vanish off a compact set. 

We now proceed with the proof under the assumption that f 1 and f 2 
vanish off a compact set. 
the symmetry of f 1 and f 2 . 

That f is symmetric is easily established using 
For i = 1,2, define K. on Rnx(O,oo) by 

1. 

otherwise. 

Obviously, for each a E (O,oo), Ki(•,a) is zero off a compact set. Also, 
for a fixed, Ki(•,a) is the indicator function of a bounded convex 
symmetric set since fi is A-unimodal. Hence Ki(•,a) is log concave and 
symmetric, i = 1,2. Therefore, for fixed a1 and a 2 in (0,oo), 



is finite, is log concave (Proposition 4.9) and is obviously symmetric. 

Hence H( 0 ,a1 ,a2) is symmetric and ray-decreasing. Because the ray­

decreasing functions form a convex cone, 
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(4.10) 

is also ray decreasing. But, the definition of Ki yields the relation 

i - 1,2. (4.11) 

Using (4.11) in (4.10), Fubini's Theorem for non-negative functions implies 

q(y) - ~~fRn K1 (y~x,a1 )K2 (x,a2 )dxda1da2 

- fRn~~ K1 (y-x,a1)K2(x,a2)da1da2dx 

Hence, f is ray-decreasing. O 

Example 4.1: Consider an "elliptical" distribution on Rn--that is, a 

distribution with a density f of the form 

I 1-1/2 -1 f(x) - ~ k(x'~ x) (4.12) 

where ~: nxn is positive definitive. Assume that k is a non-increasing 

function defined on [O,~). Since k is non-increasing, f is A-unimodal. 

The translation family generated by f has a density 

p(xiO) - f(x-8), 

Let C be a convex symmetric subset of Rn and suppose the random vector X 
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has density p(•IO). Then, Theorem 4.12 tells us that the probability that 

X is in C, as a function of the translation parameter 8, decreases on rays. 

To see this, the quantity of interest is 

g(O) - P8{x EC} - Jc f(x-8)dx. - J Ic(x)f(x-8)dx., 

where IC is the indicator function of C. The symmetry of f implies that 

f(x-8) = f(8-x). Since IC and fare A-unimodal, Theorem 4.12 shows that g 

is ray-decreasing. O 

There are a couple of ways to extend Theorem 4.12 in fairly obvious but 

rather useful directions. 

Proposition 4.13: Suppose f 1 ~ 0 is A-unimodal and ff1 (x)dx <+co. Also 

suppose f 2 is a bounded function and is A-unimodal. Then 

is symmetric and ray decreasing. 

Proof: Because of our assumption f is well defined and finite for all y E 

Rn. Let M be a bound for f 2 so lf2(x)I s M for all x E Rn. Hence f 2(x) + 

M ~ 0 for all x, and f 2 + M is A-unimodal. 

By Proposition 4.12, 

k(y) - J f 1 (y-x)(f2 (x)+M)dx. 

- J f 1 (y-x)f2(x)dx + M(J f 1 (x)dx) - f(y) + c 

is ray-decreasing and symmetric. Here, c is just a constant. Thus f is 

ray-decreasing and symmetric. D 

The extension of Proposition 4.13 to unbounded f 2•s can sometimes be 

accomplished with truncation and limiting arguments--provided of course 



that enough conditions are assumed to justify taking limits. These 

extensions are left to the reader. 
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The next extension comes from Sherman (1955). It is based on the 

observation that the symmetric ray-decreasing functions form a convex cone. 

In particular, suppose f 1 , f 2 and f 3 are non-negative A-unimodal functions. 

Then 

i - 1,2 

are symmetric and ray-decreasing. Hence 

is also symmetric and ray-decreasing even though f 1 + f 2 need not be A­

unimodal. In order to describe this situation more formally, let C be the 

convex cone of all non-negative symmetric Borel measurable functions, h, on 

Rn which have the form 

where ai ~ 0, fi is a non-negative A-unimodal function, and r is some 

positive integer. 

Proposition 4.14: If h1 and h 2 are in C, then 

is symmetric and ray decreasing. 

(4.13) 

Proof: Since h1 and h2 have the form (4.13), k is a linear combination, 

with non-negative coefficients, of symmetric ray decreasing functions. 

Hence k is a symmetric ray decreasing function. D 

Proposition 4.15: Suppose h 1 and h 2 can be expressed as 
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lim h. (x), 
m-+<O l. 'm 

i - 1,2 

where hi e C for i - 1,2 and m - 1,2, ... and h. (x) ~hi 1 (x) for all m ,m 1,m ,m+ 
x E R , i - 1, 2 and m - l, 2, . . . . Then 

is symmetric and ray decreasing. 

Proof: Define km by 

k (y) - J h1 (y-x)h2 (x)dx. m ,m ,m 

Then for each m, km is symmetric and ray decreasing. Because of our 
assumptions, for each y, h1 (y-x)h2 (x) increases as m ~~to the limit ,m ,m 
h1 (y-x)h2(x). Since all the functions involved are non-negative, the 
Monotone Convergence Theorem shows that k(y) is the pointwise limit of 
km(y). It follows immediately that k is symmetric and ray decreasing. D 

The point of the above discussion is that the convolution of functions 
in the convex cone C yields symmetric ray decreasing functions. Also, 
certain limiting arguments can be used to extend the validity of this 
convolution result--as long as enough assumptions are made to justify the 
limiting operations. Further, C is a convex cone so that positive linear 
combinations of elements of C also are functions whose convolutions are 
symmetric and ray-decreasing. Sherman (1955) uses a combination of uniform 
convergence and convergence in mean to study the convolutions in question. 

Section 4: Mudholkar's Theorem: 

The main result of this section, due to Mudholkar (1966), is perhaps 
best motivated by reinterpreting Theorem 4.12. Let G0 be the two element 
group {In,-In} thought of as a group acting on vectors in Rn. That is, g E 

G0 maps x into gx. First notice that a function f defined on Rn is 
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symmetric iff f(x) - f(gx) for g E G0 . In other words, f is symmetric iff 
f is G0-invariant. To reinterpret what ray-decreasing means for G­
invariant functions, the argument used in the proof of Proposition 4.11 is 
relevant. To say that a symmetric function f is ray-decreasing is to say 
that for each y ER and each fi E [-1,1], the inequality f(fiy) ~ f(y) holds. 
However, as fi varies over [-1,l], the vectors fiy vary over the line segment 
connecting -y and y. That is, fiy varies over the convex set generated by 
{-y,y}. Of course the set {-y,y} is the orbit of y under the action of the 
group G0 ; by definition, the G0-orbit of y is {gylg E G0 J. Thus, a 
symmetric function f is ray-decreasing if~ f(x) ~ f(y) for all x in the 
convex set generated by the orbit of y. The parallel considerations in 
Chapter 2 on majorization are now fairly clear--namely, the convex set 
generated by the orbit of a point was used to define the majorization 
ordering (when the group is Pn) and the functions with the property that 
f(x) ~ f(y) (for all x in the convex hull of the orbit of y) were called 
decreasing. These observations suggest that there may be a version of 
Theorem 4.12 for more general groups than G0 - {±In}. That this is the 
case was discovered by Mudholkar (1966). We now proceed with the formal 
development. 

Consider a group G which is a subgroup of the group of nXn orthogonal 
matrices. Thus each element of G defines a linear transformation on Rn. 
Given y E Rn, let C(y) denote the convex set generated by {gylg E G}. We 
write x s y to mean x E C(y), just as in the majorization case discussed at 
length in Chapter 2. It is easy to show x s y and y s z implies that x s 
z, and x s y iff C(x) ~ C(y). As usual, f defined on Rn is decreasing if x 
s y implies that f(x) ~ f(y). A function f defined on Rn is G-invariant if 
f(x) - f(gx) for all x E Rn and g E G. Any f which is decreasing is G­
invariant because x s gx s x, x E Rn and g E G. 

Proposition 4.16: Suppose f is G-invariant and log concave. The f is 
decreasing. 

Proof: For x E C(y), it must be shown that f(x) ~ f(y). Set~= f(y) and 
consider 
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B - {ujf(u) ~ 7). 

It suffices to show C(y) ~B. However, B is convex since f is log concave. 

Also u e B implies gu e B for all g since f is G-invariant. But y e B by 

definition so (gylg e G) ~ B. The convexity of B implies C(y) ~ B. D 

Definition 4.4: A function f: Rn ~ R1 is convex-unimodal if for each 1 e 
1 R , (xlf(x) ~ 7) is a convex set. 

We now proceed to the statement and proof of the G-analogue of Theorem 

4.12. An important observation in the previous case was that the class of 

symmetric ray-decreasing functions (the decreasing functions when G - (In.­

In)) forms a convex cone. That same observation is important here--namely, 

the class of decreasing functions forms a convex cone. The dependence of 

the word "decreasing" on the group G is suppressed since G is fixed 

throughout the discussion. 

Theorem 4.17:· If f 1 and f 2 are non-negative, G-invariant, and convex­

unimodal, then the convolution 

is decreasing. 

Proof: The proof is very similar to the proof of Theorem 4.12. The G­

invariance of h follows from the invariance of f 1 and f 2 and the following 

calculation: 

h(gy) - JRn f 1 (gy-x)f2(x)dx - J f 1 (g(y-g- 1x))f2(x)dx 

- J f 1(y-x)f2(gx)dx - J f 1 (y-x)f2(x)dx. 

The third equality follows from a change of variable and the fact that each 

g preserves Lebesgue measure. As in the proof of Theorem 4.12, it suffices 

to prove the Theorem for f 1 and f 2 which vanish off some compact set. This 
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is assumed is what follows. 
n . 

For a~ 0 and i - 1,2, define Ki on R x[O,~) 
by 

otherwise. 

As in the proof of Theorem 4.12, 

But, for a fixed, Ki(•,a) is the indicator function of a bounded convex G­
invariant set. Thus, Ki(•,a) is a log concave G-invariant function. 
Hence, 

is a log concave function (Proposition 4.9) and the G-invariance of 
K(•,a1 ,a2) is proved the same way the invariance of his proved. Thus, for 
each a1 ,a2 , K(•;a1 ,a2) is decreasing by Proposition 4.16. Since 

it follows immediately that h is decreasing. D 

Now, all of the discussion concerning the extension of Theorem 4.12 (in 
Propositions 4.13, 4.14, 4.15) is valid for Theorem 4.17 because the class 
of decreasing functions is a convex cone. One simply replaces "symmetric . 
and ray-decreasing" by "decreasing" and "A-unimodal" gets replaced by "G-
invariant and convex-unimodal." The details of this are left to the 
reader. 

The orginal proofs of Theorems 4.12 and 4.17 used the Brunn-Minkowski 
inequality. For a discussion of this and other aspects of unimodality, see 
Das Gupta (1980). 
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Section 5: Applications to MANOVA Problems: 
Two applications to problems in multivariate analysis of variance 

(MANOVA) are given in this section. The first concerns a concentration 
property of Gauss-Markov estimators in certain linear models which include 
the multivariate linear model as a special case. In the second 
application, monotonicity properties of the power functions of some 
classical tests in MANOVA problems are discussed. The first application is 
an extension of results in Berk and Hwang (1984) while the material in the 
second example comes from Das Gupta et al. (1964) and Eaton and Perlman 
(1974). 

The notion of concentration was studied on the real line by Birnbaum 
(1948) and was later extended to Rn by Sherman (1955). Because our 
applications involve random matrices, it is more convenient to formulate 
Sherman's definition for a finite dimensional inner product space 
(V • ( • ")). 

Definition 4.5: Let P1 and P2 be two probability measures defined on the 
Borel sets of (V,(•,•)). The probability P1 is more concentrated about 0 
than P2 if P1 (c) ~ P2 (c) for all convex symmetric sets C ~ V. The 
notation P1 >0 P2 is used to mean P1 is more concentrated about 0 than P2 . 

The following example of a concentration inequality is due to Anderson 
(1955). 

Proposition 4.18: n On R , suppose Pi is the probability measure 
corresponding to a multivariate normal distribution with mean 0 and 
covariance ~i' i 

P2. 

1,2. If ~2 - ~l is positive semi-definite, then P1 >0 

Proof: Let Xi be a random vector which has a Nn(O,~i) distribution. Since 
8 - ~2 - ~l is positive semi-definite, there is a random vector Y, 
independent of x1 and x2 , which is N(0,8) and x1 + Y has the same 
distribution as x2 . For any convex symmetric set C, 

P2(C) - Pr(X2 E C) - Pr(Xl + y E C) 



EPr(Xl +YE CjY = y) = EPr(Xl E C-yjY = y}. 

Since x1 and Y are independent and since the distribution of x1 is log 

concave, Anderson's Theorem implies that 

Pr(Xl E C-yjY = y) ~ Pr(Xl E CJ 

because Pr(X1 E C-y) is a symmetric ray-decreasing function of y. Thus 

for all convex symmetric sets so P1 >0 P2 . D 
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The proof of Proposition 4.18 is quite special because it uses the fact 
that the sum of two independent normal random vectors is again normal. 
Extensions of Proposition 4.18 to the so-called spherical distributions can 
be found in Das Gupta et al. (1971). This paper contains a useful result 

on the behavior of certain probabilities when the covariance matrix changes 
in special ways. In addition, there are a number of interesting examples 
included in this paper. 

Here is the promised linear model example. 

Example 4.2: It is assumed that the reader is somewhat familiar with the 
inner-product space version of the Gauss-Markov Theorem for linear models. 
However, for the sake of completeness, the theory is briefly outlined here 
following the treatment in Eaton (1983). Consider a random vector Y taking 
values in a finite dimensional inner product space (V,(•,•)). The mean 
vector of Y, say µ, is assumed to lie in a known linear subspace M of V. 
The covariance of Y, say~= Cov(Y), is assumed to be positive definite and 
to lie in some known set ~ of positive definite covariances. Thus, the 

pair (M,~) specifies the first and second moment structure of the "linear 

model." 

To state the Gauss-Markov Theorem, some notation and assumptions are 

needed. First assume, without essential loss of generality, that I E ~ 
where I denotes the identity linear transformation on V. The linear model 
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specified by (M,1) is regular if ~(M) ~ M for all ~ E l· Linear unbiased 
estimators for µ E M are estimators of the form AY where A is a linear 
transformation from V to V which satisfies 

(i) A(V) ~ M 

(ii) Ax - x for all x e M. 

Let A be all those linear transformations satisfying (i) and (ii). Further 
let A0 denote the orthogonal projection onto M so A0 E A. One version of 
the Gauss-Markov Theorem is 

Theorem 4.19: If the linear model is regular, then 

(4.14) 

for all A EA and ~ E l· The inequality sign in (4.14) means that ~· -
A0-zA0 is positive semi-definite. 

Examples of linear models which are regular include the so-called 
univariate linear model discussed in Scheffe (1959) and the classical 
multivariate linear model treated in Anderson (1958). A proof of The~rem 
4.19 in the notation above can be found in Eaton (1983). Of course,µ -
A0Y is called the Gauss-Markov estimator ofµ for regular linear models. 

Under the conditions in Theorem 4.19, inequality (4.14) suggests that 
A0Y-µ is closer to zero than AY-µ because covariance measures dispersion 
about the mean and AY is an unbiased estimator ofµ for all A EA. Thus, 
it is natural to ask whether or not the distribution of A0Y-µ is more 
concentrated about 0 E V than is the distribution of AY-µ. It is this 
question to which we now turn. 

For each A E A, notice that AY-µ - A(Y-µ) because A satisfies condition 
(ii). Thus, questions concerning AY-µ only involve AZ where Z - Y-µ has 
mean 0 and Cov(Z) - ~ E l when Cov(Y) - ~. Since AZ E M for A E A, 
concentration of the distribution of AZ concerns the inner product space 
(M,(•,•)) rather than V. Formally, our question is this: 



Under what conditions on ~ and the distribution 
of Z is it true that 

P{A0z E C} ~ P{AZ E CJ 

for all ~ E ~. A EA, and all convex 
symmetric subsets C ~ M? 
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(4.15) 

Proposition 4.20: If the linear model is regular and if for eachµ EM and 
~ E ~. Y has a normal distribution with mean µ and covariance ~. then 

P{A0z E CJ ~ P(AZ E CJ 

for each~ E ~. A EA and each convex symmetric subset of M. 

Proof: Fix~ E ~and A EA. Since Y is N(µ,~). Z - Y-µ is N(O,~). 
Theorem 4.19 implies that 

Cov(A0Z) ~ Cov(AZ) 

(4.16) 

(4.17) 

since the linear model is regular. Thus, on replacing Rn by M in 
Proposition 4.18, we see (4.16) holds for every convex symmetric subset of 
M. D 

Now, the problem is how to weaken the distributional assumptions in 
Proposition 4.20 but still retain the inequality (4.16). To motivate a 
possible argument, consider AZ and notice that 

(4.18) 

L where Q0 = I - A0 is the orthogonal projection onto M --the orthogonal 
complement of M. The relation AA0 - A0 follows from Ax - x for all x E M. 
Thus, if C is a convex symmetric subset of M, we have 

P(AZ E CJ = P(A0Z + AQ0z E CJ 

- EP{AOZ + AQOZ E cjQOZ = wJ 
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(4.19) 

Thus, if the conditional distribution of A0z given Q0z - w satisfies 

(4.20) 

for each u e M, it would follow that 

P(AZ E CJ~ P(A0z E CJ. (4.21) 

In particular, if the conditional distribution of A0z given Q0z - w has a 
density in M which is A-unimodal, then (4.20) follows by Theorem 4.12 with 

(i) f 2 equal to the conditional density of A0z given Q0z - w 
(ii) y - u and f 1 equal to the indicator function of C. 

The conditions in the next result are sufficient to make Theorem 4.12 
applicable. 

Proposition 4.21: Assume (M,7) determines a regular linear model for Y. 
Suppose that for each ~ e 7, the distribution of Z - Y - µ has a density f 
on V (with respect to Lebesgue measure) which satisfies 

(i) f is log concave 

(ii) f(A0x + Q0x) - f(-A0x + Q0x) 

for x e V where Q0 - I - A0 and A0 is the orthogonal projection onto M. 
Then, for each convex symmetric subset C ~ M, 

P{A0Y-µ e CJ ~ P{AY-µ e CJ 

for all A e A. 

~ Proof: For each x e V, write x - u + v where u EM and v EM . Let 

(4.22) 



h(v) - JMf(u+v)du 

where "du" denotes Lebesgue measure on M. For v fixed and for u E M, 
define f(ulv) by 

f(ulv) = { 
f(u+v) 
h(v) 

g(u) 

if h(v) > 0 

if h(v) - 0 
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where g is the density of a normal distribution with mean 0 and covariance 
the identity on M. It was argued at the end of Section 4.2 that f(•lv) is 
log concave for each v. Because of assumption (ii), it follows that 

f(-ujv) - f(ujv), u EM. 

Thus, the conditional density f(•jv) of A0z given Q0z - vis A-unimodal. 
Hence inequality (4.20) holds and thus (4.22) holds. D 

Here is another case where (4.22) holds. 

Proposition 4.22: Assume (M,~) determines a regular linear model for Y. 
Suppose that for each ~ E ~. the distribution of Z = Y - µ has a density f 
on V of the form 

I 1-1/2 -1 f(x) - ~ h[(x.~ x)] (4.23) 

where his a non-increasing function defined on [O,oo). Then for each 
convex symmetric subset C ~ M, (4.22) holds for all A E A. 

Proof: Define Kon Vx(O,oo) by 

{ lo K(x,a) -
if f(x) ~ a 

if f(x) < a. 

Fix a> 0 and consider K(•,a). Because of the form off in (4.23) and the 
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assumption that his non-increasing, K(•,a) has one of the following two 
forms for some constant b ~ O: 

- { lo (i) K(x,a) 
if (x.~-lx) :S b 

otherwise. 

or 

- { 01 (ii) K(x,a) -
if (x.~" 1x) < b 

otherwise. 

Since the argument is the same for both cases, we assume case (i) obtains. 
Hence K(•,a) is the indicator function of a bounded convex set so K(•,a) is 
log concave. We next verify that K(•,a) satisfies assumption (ii) of 
Proposition 4.21. Since the linear model is regular, ~(M) ~ M for each~ E -1 -1 -1 .L .L ~. so ~ (M) ~ M. The self adjointness of ~ then implies ~ (M ) ~ M . 

-1 -1 -1 -1 These relations yield ~ A0 - A0~ and ~ Q0 - Q0~ , so 

(4.24) 

Therefore, 

Because K(•,a) has the form (i), we see K(•,a) satisfies assumption (ii) of 
Proposition 4.21. 

Now, let c be the Lebesgue measure of 

. 1 
<xl (x.~- x) :Sb) 

-1 so c K(•,a) is a density which satisfies the assumption of Proposition 
4.21. Thus, given a convex symmetric subset C ~ M, with 
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and 

B1 - {xlAx e CJ, 

Proposition 4.21 yields 

J IB (x)K(x,a)dx ~ J IB (x)K(x,a)dx. 
v 0 v 1 

Integrating this inequality from 0 to ~. and using the definition of K, we 
have 

J IB (x)f(x)dx - J [ IB (x)K(x,a)dxda 
v 0 v 0 0 

~ J [ IB (x)K(x,a)dxda - J IB (x)f(x)dx. 
v 0 1 v 1 

But the left side of this inequality is P{A0z e C) and the right side is 
P{AZ e CJ. Thus (4.22) holds for A e A. o 

This ends the discussion of Example 4.2. o 

Example 4.3: The final example of this chapter deals with the behavior of 
the power function of some tests in the classical MANOVA testing problem. 
The problem is considered in canonical form and it is assumed that the 
reader is somewhat familiar with the problem. A more complete description 
of the MANOVA problem and its reduction to canonical form can be found in 
Eaton (1983). 

The data for the MANOVA problem in canonical form consists of a random 
matrix X: rxp and a symmetric positive definite random matrix S: pxp. It 
is assumed that X and S are independent and X has a normal distribution 
with mean matrixµ: rxp and a covariance Ir ® ~- Thus, the rows of X are 
independent and each row has the covariance matrix~: pxp. The random 
matrix S is assumed to have a W(~.p.n) distribution--that is, S has a 
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Wishart distribution with n degrees of freedom and expectation n1: where n ~ 
p. The problem is to test the null hypothesis H0 : µ-0 versus the 
alternative H1 : µ~O. For simplicity, it is assumed that r S p. The case 
of r > p is similar. 

This testing problem in invariant under the group of linear 
transformations OrxGlp where Or is the group of rxr orthogonal matrices 
and Glp is the group of pxp non-singular matrices. A group element (r,A) 
acts on a sample point by 

(X,S) -+ (I'XA' ,AT.A') 

and on a parameter point by 

(µ,~) -+ (fµA' ,AT.A'). 

In this discussion, attention is restricted to non-randomized invariant 
-1 tests. Such tests are functions of the eigenvalues of XS X'--say Al~ ... ~ 

Ar. The acceptance region of such a test is a subset of L XS where L r,p p r,p is the vector space of all rxp real matrices and S is the vector space of p 
all real pxp symmetric matrices. If C is the acceptance region of an 
invariant test, then C ~ L XS satisfies r,p P 

(x,s) E C implies (fxA' ,AsA') EC 

for all (r,A) E OrxGlp. The power function of an invariant test with 
-1 acceptance region C is a function of the eigenvalues of µ~ µ'. Hence the 

power function of such a test can be written as 

~(9,C) - 1 - P ~((X,S) EC) µ, 

where 9 E Rr has coordinates e1 ~ ... ~ 9 > 0 and ei, ... , e2 are the _1 r r 
eigenvalues ofµ~ µ'. The reason for using e1 , ... , er rather than 
e2 as the argument of the power function will be clear in a moment. r 

Given a vector~ E Rr, defineµ(~) to be 

(4.25) 



,,2 

0 

0 
rxp 

-1 When~ - I andµ - µ(ri) in (4.25), the eigenvalues ofµ~ µ' are some 
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p 2 2 
permutation of ,,1 , ... , 'lr· Therefore the power function ~(8,C) in (4.25) 
is determined by the function 

p(FJ,C) - Pµ(ri){(X,S) EC} (4.26) 

where the 

precisely, 

~(8,C), we 

probability in (4.26) is computed when µ - µ(ri) and ~ - I . More 
'f 82 > > 82 > 0 th · 1 f ~- 1µ•, to Pt l. 1 -·. ·- r - are e ei.genva ues o µ.u compu e 
just evaluate (4.26) for 'Ii - 8i' i - 1, ... , r which yields 

~(8,C) - 1 - p(8,C). (4.27) 

Now, we proceed with the analysis of p(•,C) defined in (4.26). 

Proposition 4.23: (Das Gupta et al. (1964)). Let C be an invariant 
acceptance region of a test. Assume that C is convex in the ith row of x E 

L when s e S and the remaining rows of x are fixed, i - 1, ... , r. Then p,r P 
p(ri,C) is a symmetric unimodal function in each coordinate of 'I· 

Proof: For notational simplicity, the proof is given for i - 1. Fix s, 
x2 , ... , xr and let 

By assumption, c1 is a convex subset of RP. Let re Or be diagonal with 
(1,1) element equal to minus one and all other diagonals equal to plus one. 
Since C is invariant 
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implies that 

so 

Hence c1 - -c1 . Now, whenµ - µ(q) and~ - Ip' the first row of X has a 
N(e,IP) distribution where 

(4.28) 

Let g denote the density of a N (0,I ) distribution, Then, if x_ is the p p -.. first row of X, 

(4.29) 

which is a symmetric ray-decreasing function of e since g is A-unimodal and • c1 is a symmetric convex set. Because of the special structure of e in 
(4.28), we conclude that (4.29) is a symmetric unimodal function of q1 . 
But, since the rows of X, say x1 , •.• , Xr and Sare mutually independent, 
p(q,C) in (4.26) can be computed by averaging (over x2 , ... , Xr' and S) 
functions of the form (4.29)--each of which is a symmetric unimodal 
function of q1 . Hence p(q,C) is a symmetric unimodal function of q1 • D 
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When the assumption_ of Proposition 4.23 holds, we conclude that p(q,C) 
is decreasing in each qi when qi~ 0, i - 1, ... , r. Hence the power 
function ~(O,C) is increasing in each coordinate of 0. Das Gupta et al. 
(1964) show that the acceptance region of the likelihood ratio test 
satisfies the assumption of Proposition 4.23. The likelihood ratio test 
accepts iff 

where k is a fixed constant and A1 , ... , Ar are the eigenvalues of xs- 1x•. 
Stronger conclusions concerning p(q,C) can be reached when it is 

assumed that C ~ Lp,rxsp is a convex set. To describe these conclusions, 
some notation is needed. Let Pr denote the group of rxr permutation 
matrices and let Dr denote the group of rxr diagonal matrices with plus or 
minus ones on the diag?nal. It is easy to show that 

µ(gq) - gµ(q); 

and 

g ED 
r 

g E p 
r 

} (4.30) 

Here, I is the (p-r)x(p-r) identity matrix. Let Pr·Dr - (g1g2 Jg1 E Pr' g2 
E Dr). Then Pr·Dr is a group because g1g2gi E Dr whenever g1 E Pr and g2 E 

Dr. 

Proposition 4.24 (Eaton and Perlman (1974)). IfC~L xS p,r P 
set which is the acceptance region of an invariant test, then 

(:it) p(hq,C) - p(q,C) for q E RP h E P •D 
' r r 

(ii) p(•,C) is log concave. 

is a convex 

Proof: Consider ~ - I and a mean matrix µ E L for X. The p p,r 
distributional assumptions made imply that the density of X E L is p,r 
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where c1 is a constant and the density of S on Sp is 

1 exp[- 2 tr(s)JI1 (s) 

where r1 is the indicator function of the convex set of positive definite 
pxp symmetric matrices, and c2 is a constant. Note that p1 (x)p2 (s) is a 
log concave function defined on the rp + ~p(p+l) dimensional vector space 
L XS . Also, the indicator function of C is log concave on this space p,r P 
since C is convex by assumption. Therefore, 

(4.31) 

is the convolution of two log concave functions evaluated ~t the point 
(µ,0) EL xS . Hence ~(·) is log concave on L so p,r p p,r 

p(q,C) - ~(µ(q)) (4.32) 

is log concave on Rr. 

For r 1 E Or and r 2 E Op, the invariance of C, pl and p2 imply that ~ 
given in (4.31) satisfies 

µEL p,r 

This together with (4.30) yields conclusion (i) of the proposition. o 

Now, the group Pr·Dr induces a partial ordering on Rr as described in 
Section 4. Thus u s v iff u is in the convex hull of the P •D orbit of v. r r 
Under the assumptions of Proposition 4.24, Proposition 4.16 shows that 
p(•,C) is decreasing in this ordering on Rr. Therefore ~(0,C) - 1 - p(O,C) 
is increasing in this ordering. For two vectors 0 and e which satisfy o1 
~ ... ~Or~ 0 and e1 ~ ... ~er~ 0, the discussion in Example 6.2 (Chapter 6) 
shows that e s 0 in this ordering iff 
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j-1, ... ,r. 

For any e s 0, we have 

~co,c) ~ ~ce.c> 

when C is convex and is the acceptance region of an invariant test. 
An example of a test whose acceptance region is convex is provided by 

the Lawley-Hotelling trace test which accepts if 

-1 where k is a fixed constant and A1 , ... , Ar are the eigenvalues of XS X'. 
This and other examples are provided in Eaton and Perlman (1974). D 

Reliability theory is another area where log concavity has played a 
role. For example, see Savits (1985) for a definition of multivariate 
increasing failure rate and its relation to log concavity. 

Section 6: Proof of Theorem 4.7 

In the statement of Theorem 4.7, the non-negative function f defined on 
2 R is assumed to be log concave. Then h, defined by 

h(x) - ~ f(x,y)dy (4.33) 
-~ 

is assumed to be finite for each x E R1 . The claim is that his log 
concave on R1 . 

We first argue that it suffices to take f bounded with compact support. 
21 2 2 Let In be the indicator function of the set {(x,y) ER x +y s n). Thus 

In(x,y)f(x,y) is log concave and has compact support. Now define fn by 
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. { n if In(x,y)f(x,y) ~ n 

- In(x,y)f(x,y) otherwise. 

Then fn is log concave, is bounded and has compact support. Also, fn(x,y) 
increases monotonically to f(x,y) as n ~ ~. By the Monotone Convergence 
Theorem 

converges pointwise to h(x). Thus, if hn is log concave, his log concave. 
Thus, we want to show h given in (4.33) is log concave when f is log 

concave, bounded and has compact support. The first step is the following. 

Proposition 4.25: Let C ~ R2 be a non-empty bounded convex set and define 
1 g on R by 

g(x) - J Ic(x,y)dy (4.34) 

where IC is the indfoator function of C. On the set D - {xlg(x) > 0), g is 

concave function. 

Proof: If D is empty, there is nothing to prove so assume D is not empty. 
For x1 and x2 in D and a e (0,1), it must be shown that 

1 For each x e R , let 

C !YI (x,y) e Cl. x 

1 Since C is convex, each C is a convex subset of R (possibly empty). x 

(4.35) 
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However, G , i - 1,2 has positlve Lebesgue measure because g(x.) - l(G ) 
~ 1 ~ 

> 0, i - 1,2 where 1 denotes Lebesgue measure. Thus, G has a non-empty 
xi 

interior which is an open interval--say (ai,bi) with ai <bi, i = 1,2. 

Thus g(xi) - bi-ai' i - 1,2. 
Now, we claim that 

(4.36) 

where the right hand side denotes the set of all points of the form ay1 + 

(l-a)y2 with y1 E G and y2 E G 
xl x2 

To verify the containment (4.36), 

observe that if ay1 + (l-a)y2 E aG + (1-a)Gx with yi E G , i - 1,2, then 
xl xi 

by the convexity of G. Hence ay1 + (l-a)y2 is an element of G +(l ) ax1 -a x2 
by definition. Further, it is easy to show that the interior of aG + (1-

xl 
Thus, 

Hence (4.35) holds. O 

To complete the proof of Theorem 4.7, it must be shown that for x1 ,x2 E 

R1 and a E (0,1), that 

(4.37) 

where h is given by (4.33) and f is log concave, bounded and has compact 
support. Obviously, we can assume h(xi) > 0, i = 1,2 since otherwise 
(4.37) is trivial. Now, without loss of generality, assume that 
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sup f(x1 ,y) - sup f(x2 ,y) - c. (4.38) 
y y 

Remark. If the two suprema in (4.38) are not the same, replace f(x,y) in - ~ -(4.33) by f(x,y) - e f(x,y) where b is a constant. Then f is log concave, 
bounded and has compact support. Further h(x) becomes eb~(x) so (4.37) 
remains the same. Clearly b can be chosen so (4.38) holds, since the two 
suprema are not 0 as h(xi) > 0, i - 1,2. D 

Note that 0 < c <+co. For each a> 0, let 

D(a) - ((x,y)if(x,y) ~a} 

and note that 

f(x,y) - ~ ID(a)(x,y)da 

where ID(a) is the indicator function of the convex set D(a). Thus, 

h(x) - [[ ID(a)(x,y)dyda. (4.39) 
0 -m 

From the definition of c, it follows that 

for i - 1,2. Now fix a e (O,c) and let 

Since a< c, the log concavity off implies that Cyif(xi,y) ~a} is a 
convex set with a non-empty interior, i - 1,2. Hence 

(4.40) 

(4.41) 



g (x) - l{yjf(x,y) ~ a) 
a 
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satisfies ga(xi) > 0, i - 1,2. Thus, Proposition 4.25 implies that for 

each a E (0,c), ga is concave on the interval [x1 ,x2J. Using this, we have 

The last inequality follows from the arithmetic mean-geometric mean 

inequality. Thus, (4.37) holds and the proof is complete. D 





Chapter 5: The FKG Inequality and Association 

The underlying problem with which both the FKG inequality and the 
notion of association deal concerns the question of trying to capture what 
one means by the vague statement that the coordinates of a random vector 
are "positively related." The word "positively" is to be interpreted here 
in the sense that we use positive in the expression "positive correlation" 
(as opposed to negative correlation). For example, consider a random 
vector X in R2 with coordinates x1 and x2 . In words, the idea that x1 and 
x2 are "positively related" should mean that if we are told x1 is large, 
then the chance that x2 is also large should be increased by this knowledge 
about x1 . Naturally, the same should hold with x1 and x2 interchanged so 
"positively related" is a reflexive notion. In terms of a conditional 
probability statement, the above intuitive idea is simply expressed as 

(5.1) 

1 which is to hold for all x1 ,x2 ER . The condition 

(5.2) 

is equivalent to (5.1) and is symmetric in x1 and x2 . This condition is 
discussed in Lehmann (1966) in his study of different notions of bivariate 
dependence. 

A condition stronger than (5.1) is also suggested by an intuitive 
argument. Consider sets 

B1 - (ulu E R2 , ui ~ xi' i - 1,2) 

B2 - (ulu E R2 , ui ~ yi' i - 1,2). 

If x1 and x2 are "positively related," then how does the information "X E 

B2 11 affect the probability of B1? Since "positively related" ought to mean 
that x1 and x2 tend to be relatively large together (and relatively small 
together), conditioning on the event "X E B211 should increase the 
probability of B1 . Again, in terms of conditional probability, this 
condition is just 
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which is equivalent to 

and this is equivalent to 

EIB (X)IB (X) ~ EIB (X)EIB (X). 
1 2 1 2 

(5.3) 

Here IB denotes the indicator function of the set Bi' so (5.3) simply says 
i 

that the covariance between IB 
1 

B2 of the form indicated above. 

and IB is non-negative for all sets B1 and 
2 

But, for any set B of the form 

IB is non-decreasing in each coordinate variable (with the other one held 
fixed). This suggests an even stronger condition than (5.3) as a candidate 
for the definition of "positively related." The coordinates xl and x2 are 
associated (Esary, Proschan and Walkup (1967)) if 

(5.4) 

for all functions fi which are non-decreasing in each coordinate variable 
(with the other coordinate held fixed). This definition has an obvious 
extension to higher dimensions and is discussed in detail in this chapter. 
Sarkar (1969) and Fortuin, Ginibre and Kasteleyn (1971) gave sufficient 
conditions for (5.4) hold. The inequality (5.4) is often called the FKG 
inequality because of the work of Fortuin, Ginibre and Kasteleyn. 

A second problem which is easy to motivate, but whose connection with 
the intuitive notion of "positively related" is not so clear, concerns the 
extension of stochastic ordering (on R1) to higher dimensions. Recall from 
Proposition 1.1, that for two real valued random variables z1 and z2 , z1 is 
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stochastically smaller than z2 iff 

(5.5) 

for all non-decreasing functions f defined on R1 for which the expectations 
are defined. To extend things to Rn, introduce a partial ordering on Rn 

defined as follows: 

x ::$ y iff xi :S yi, i - 1, ... , n. (5.6) 

A real valued function f defined on Rn is non-decreasing if x :S y implies 

f(x) :S f(y). Clearly, f is non-decreasing iff f is non-decreasing in each 
coordinate variable (with the remaining variables held fixed). If X and Y 
are random vectors in Rn, then X is stochastically smaller than Y if 

Ef(X) :s Ef(Y) (5.7) 

for all non-decreasing functions f defined on Rn for which the expectations 
exist. The problem is to give some useful sufficient conditions so that 
(5.7) holds. The conditions yielding (5.7) which are discussed in Preston 
(1974), Holley (1974), Kemperman (1977) and Edwards (1978) turn out to be 
very closely connected with conditions which yield inequality (5.4) on Rn. 
These conditions which are the principal topic in this chapter are also 

related to multivariate extensions of monotone likelihood ratio and are 
discussed at length below. 

Section 1: Association 

In this section, the basic properties of associated random variables 
are given following the original development in Esary, Proschan and Walkup 
(1967). 

Definition 5.1: A real valued function f defined on Rn is coordinatewise 
non-decreasing if f is non-decreasing in each coordinate when the remaining 
coordinates are held fixed. 
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In terms of the partial .ordering defined in (5.6), f is non-decreasing 
iff f is non-decreasing relative to the partial ordering. In what follows, 
we will use both of the terms non-decreasing and coordinatewise non­
decreasing. Now, let X be a random vector in Rn with coordinates 
x1,X2··· ., xn. 

Definition 5.2: The random variables x1 , ... , Xn are associated if 

for all bounded coordinatewise non-decreasing functions f 1 and f 2 . When 
x1 , ... , Xn are associated, then we say that X is associated. 

Remark 5.1: This definition is equivalent to the more usual definition of 
association which stipulates ·that (5.8) hold for all coordinatewise non­
decreasing f 1 and f 2 for which the expectations exists. To see this, 
consider any coordinatewise non-decreasing f and set 

if f(x) ~ M 

if -M < f(x) < M 

if f(x) s -M, 

for M > 0. Clearly lfM(x)I s lf(x)! and 

lim.fM(x) - f(x), 
M->«> 

Also, it is easily verified that fM is coordinatewise non-decreasing. 
Hence if lf(X)j has a finite expectation, then the dominated convergence 
theorem yields 

lim EfM(X) - Ef(X). 
M->«> 

Hence if (5.8) holds for all bounded coordinatewise non-decreasing f 1 and 
f 2 , the dominated convergence theorem shows (5.8) holds for all 
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coordinatewise non-decreasing f 1 and f 2 for which all the expectations are 
well defined. The boundedness condition in Definition 5.2 removes some 
annoying technical issues. o 

One important consequence of association is the inequality 

which is valid fork - 1, ... , n-1, when x1 , ... , Xn are associated. This 
follows from (5.8) by taking f 1 to be the indicator function of 

and f 2 to be the indicator function of 

For associated random variables, (5.9) and an induction argument establish 

n 
P{Xi ~ ai' i - l, ... , n) ~ rr P{Xi ~ail. 

i-1 
(5.10) 

Here are some basic observations which allow the construction of 
associated random variables. First observe that for n - 1, X is always 
associated. In fact, this is a consequence of the following inequality due 
to Tchebyshev. 

Proposition 5.1: Consider two functions h1 and h 2 defined on R1 which 
satisfy 

for u,v E R1 (such functions are often called similarly ordered). For any 
random variable Z E R1 for which the expectations are defined, 
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(5.12) 

Proof: Let W be an independent copy of Z. From (5.11) 

which yields 

Hence (5.12) holds. D 

1 Since (5.11) holds for h1 and h2 non-decreasing, Z E R is associated. 

Proposition 5.2: Suppose X E Rm is associated and YE Rn is associated, 
If X and Y are independent, then the random vector (X,YJ e Rm+n is 
associated. 

associated. 

n • Further, if U ER has independent coordinates, then U is 

~: Let f 1 and f 2 be bounded non-decreasing functions on Rm+n and set 

for i - 1,2. Then hi is bounded and is non-decreasing on Rn. Using the 
independence of X and Y and the assumption that X is associated, we have 

cov(fl(X,Y),f2(X,Y)J - EyEXfl(X,Y)f2(X,Y) - Eyhl(Y)Eyh2(Y) 
~ Ey[(EXfl(X,Y))(EXf2(X,Y))] - EYhl(Y)Eyh2(Y) -
- Eyhl(Y)h2(Y) - Eyhl(Y)Eyh2(Y). 

However, the final term in the above expression is non-negative because Y 
is associated. Thus, the first assertion holds. The second assertion 
follows from the first via an easy induction argument. D 

Proposition 5.3: If x1 , ... , Xn are associated, then any subset of x1 , ... , 



X is also associated. 
n 

Proof: This is clear. O 
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m Proposition 5.4: Suppose X e R is associated and h1 , ... , hn are all non-

decreasing functions defined on Rm. With Yi - hi(X), i - l, ... , n, the 

random vector Ye Rn with coordinates Y1 , ... , Yn is associated. 

Proof: This follows from the following observation. If f defined on Rn is 

non-decreasing, then f defined on Rm by 

is non-decreasing. n Thus, for bounded non-decreasing f 1 and f 2 on R , 

is bounded and non-decreasing. Since X is associated, we have 

so Y is associated. O 

In general, it is not an easy matter to decide whether or not a random 

vector X e Rn is associated. If the covariance matrix~ - (aij) of X 

exists, then certainly each aij must be non-negative since aij -

cov(X.,X.). In the case that X has a multivariate normal distribution, it 
l. J 

was only proved in the past few years (Pitt (1982)) that X is associated 

when aij ~ 0. Pitt's proof is given later. in this chapter. 

Section 2: Extensions of MLR: Motivation 

In this section we give a rather "soft argument" which yields a portion 

of a sufficient condition so that (5.7) holds. To describe this condition, 

first consider the usual lattice operations on Rn which are defined as 

follows. For vector x and yin Rn with coordinates x1 , ... , xn and y1 , ... , 
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yn, xAy e Rn has coordinates min(xi,yi}, i - 1, ... , n and xvy e Rn has 
coordinates max(xi,yi}' i - 1, ... , n. 

Suppose X e Rn has a density p1 and Ye Rn has a density p2 , both 
densities with respect to Lebesgue measure. The problem is to find 
reasonable conditions under which 

Ef(X) - J f(x)p1(x)dx s J f(x)p2 (x)dx - Ef(Y) (5.13) 

for all bounded non-decreasing functions f. The intuitive content of 
(5.13) is the random vector Y tends to be larger than X in the partial 
ordering on Rn given by (5.6). 

Consider the following statistical problem. A data matrix A:nx2, 
having columns u and v, is given. The matrix A arose by taking one 
observation on X and one observation on Y. However, for each coordinate, 
the labels indicating which observation is on X and which is on Y, were 
lost. That is, in the ith row of A are observation ui and vi but we do not 
know which of these came from the X population and which from the Y 
population. The statistical problem is to unscramble the data. In other 
words, .for each i say which coordinate of the ith row of A came from X and 
which came from Y. 

Example 5.1: For two heart patients, suppose we have three measurements 

systolic blood pressure 
resting pulse rate 

cholesteral count 

[ 
131 142 l 

83 74 

317 282 

-A 

However, for a given variable, we do not know which measurement came from 
which patient. The pr~blem is to assign measurements to patients. 0 

If we believe that Y tends to be bigger than X, then a plausible 
assignment is: In each row assign the larger observation to Y and the 
smaller observation to X. Assuming the two observations were independent, 
a likelihood justification of this method of assignment would run as 
follows. Let 6 - (6 1 , ... 6n) consist of n 2x2 matrices ei where each 6i: 
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2x2 is either 

Let O(A) have ith row (ui,vi)Oi where (ui,vi) is the ith row of A. 
If x is an observation on X, y is an observation on Y, and B:nx2 has 

first column x and second column y, then the likelihood of B is 

Thus, if e represents the true assignment of the data to the proper 
population, then 

h(O(A)) - L(O) 

is the likelihood function. Now, consider the condition 

(5.14) 

(5.15) 

(5.16) 

When (5.16) holds, then the likelihood function in (5.15) is maximized by 
any e which results in O(A) having first column u/lv and second column uvv. 
Conversely, if Lis maximized at such a e, then (5.16) holds. Thus 
condition (5.16) is precisely the assumption that yields a maximum 
likelihood estimator of e which corresponds to asserting that min{ui,vi) 
came from the ith coordinate of the X population, i - 1, ... , n. 

This argument shows that (5.16) is a plausible candidate for trying to 
capture what one means (in Rn) by saying that "X tends to be smaller than 
Y." In the next section it is shown that (5.16) together with an 
assumption concerning the dominating measure for p1 and p2 (which is 
satisfied by Lebesgue measure) yields (5.13). 

When p1 = p2 in (5.16), the condition becomes 

p(u)p(v) ~ p(uAv)p(uyv). (5.17) 
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In this case, the interpretation given above is no longer valid, but an 
alternative interpretation is possible. With A and 8 as above, (5.17) 
means that the likelihood is maximized by a 8 such that 8(A) has first 
column uAv and second column uvv. Thus, the likelihood is maximized by 
rearranging A in such a way all the smaller coordinates are together and 
all the larger coordinates are together. In other words, the coordinates 
of a random vector drawn from p tend to be "positively related" in the 
rather vague sense described in the introduction to this chapter. As is 
shown in the next section, (5.17) together with an assumption on a 
dominating measure implies (5.4). 

Finally, we relate (5.17) to monotone likelihood ratio as discussed in 
Remark 1.2. Here is the classical definition of a TP2 (totally positive of 
order 2) function. 

Definition 5.3: Let r be a non-negative valued function defined on XXY 
1 where X and Y are non-empty subsets of R . If for all x1 s x2 in X and y1 

s y 2 in Y 

(5.18) 

then r is TP2 . 

Of course, this is just the definition of MLR given in Chapter l, but 
the interpretation of the second argument of r as a parameter has been 
removed. 

Proposition 5.5: The function r is TP2 iff r satisfies (5.17) for all u 
and v in XxY. 

Proof: To show (5.17) implies (5.18), take u - (x1 ,y2) and v - (x2 ,y1), 
with x1 s x2 and y1 s y2 . Then UAV - (x1 ,y1) and uvv - (x2 ,y2) so (5.17) 
yields (5.18). For the converse, consider u - (a1 ,p1) e XxY and v -
(a2 ,p2) e XxY. Without loss of generality, assume a 1 s a 2 (otherwise 
interchange u and v). There are two cases. 



Case (i): p1 ~ p2 . In this case uAv - u and uvv - v so (5.17) holds 
trivially. 

121 

Case (ii): p2 < p1 . In this case uAv - (a1 ,p2) and uvv - (a2 ,p1). With 
x1 - a 1 , x2 - a 2 , y1 - p2 and y2 - p1 , (5.18) yields (5.17). D 

Thus, when n - 2, condition (5.17) is nothing but MLR or equivalently 
TP2 . For n > 2, functions which satisfy (5.17) are said to be multivariate 
totally positive of order 2 (MTP2). These are discussed further below. 

Section 3: The Basic Inequality 

In this section we establish an inequality due to Ahlswede and Daykin 
(1979) which yields a sufficient condition for both (5.4) and (5.13). To 
formulate the inequality, let x<n) be a product space 

where each Xi is a Borel subset of.R1 . Also, letµ~ µ1xµ 2x ... xµn be a 
product measure on X(n) where µi is a a-finite measure on Xi, i - 1, ... , n. 

Theorem 5.6 (Ahlswede and Daykin (1979)). Suppose pi, i - 1, ... , 4 are 
non-negative functions defined on X(n) which satisfy 

(5.19) 

for x,y E X(n). Then the inequality 

(5.20) 

holds. 

The induction proof of Theorem 5.6 which follows is due to Karlin and 
Rinott (1980). The next two lemmas constitute the essentials of the 
induction argument. 

Lemma 5.7: In Theorem 5.6, assume that n - 1 and (5.19) holds. Then 
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(5.20) holds. 

Proof: Suppressing "dµ" under the integrals, the left hand side of (5.20) 
can be written 

JJ pl(x)p2(y) 
(x<yJ 

+ JJ P1(x)p2(y) + JJ P1(x)p2(y) 
(x>y) (x-y) 

- JJ [pl(x)p2(y) + pl(y)p2(x)] + JJ P1(x)p2(x) 
(~y) (~) 

with a similar expression for the right hand side of (5.20). On the set 
(x-yJ, (5.19) obviously yields p1 (x)p2(x) s p3(x)p4 (x) so 

JJ p1(x)p2(x) 
(x-yJ 

Thus, it suffices to show that 

s JJ P3(x)p4(x) 
(x-y) 

II (pl(x)p2(y)+pl(y)p2(x)] s II [P3(x)p4(y)+p3(Y)P4(x)] 
(~) (~) 

(5.21) 

which is accomplished with the following pointwise argument. Set a -
p1 (x)p2(y), b - p1(y)p2(x), c - p3(x)p4 (y) and d - p3(y)p4(x). Since x < y 
in (5.21), (5.19) yields as c and b s c. But, (5.19) also gives abs ed. 
However, 

c+d - (a+b) - (l/c)[(c-a)(c-b) + (cd-ab)] 

which is non-negative. Hence (5.21) holds by a pointwise comparison of the 
two integrands. o 

The crucial step in the induction is given in the next result. 

(n) Lemma 5.8: Suppose pi, i - 1, ... , 4 defined on X satisfy (5.19). For x 
e X(n), write x - (u,s) with u e x<n-l) and s e Xn. Define gi on x<n-l) by 



gi(u) - Ixpi(u,s)µn(ds) 

n 

for i - 1, ... , 4. Then 

(n-1) for u,v EX . 
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(5.22) 

(5.23) 

Proof: For notational convenience, the range of integration (namely Xn) is 
suppressed in the integrals below and we write ds for µn(ds). With this 
notation, for u v E X(n-l) ' . 
g1 (u)g2(v) - II p1(u,s)p2(v,t)dsdt - II p1 (u,s)p2(v,t)dsdt 

(s<t) 

+II p1(u,s)p2(v,t)dsdt +II p1(u,s)p2(v,t)dsdt (5.24) 
( s>t) { s-t) 

- II [p1 (u,s)p2(v,t)+p1 (u,t)p2(v,s)]dsdt +II p1 (u,s)p2(v,t)dsdt 
(s<t) (s-t) 

with a similar expression holding for g3 (u/\v)g4 (uvv). With x - (u,s) and y 
- (v,s), (5.19) implies that 

(5.25) 

Integration of (5.25) with respect to s yields 

II p1(u,s)p2(v,t)dsdt s II p3(UJ\v,s)p4(uvv,t)dsdt. 

{ s-t) { s-t) 

Thus, to establish (5.23) is suffices to show that 
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JJ (p1{u,s)p2(v,t) + p1 (u,t)p2(v,s)]dsdt 
(s<t) 

S JJ [p3(uAv,s)p4 (uvv,t) + p3(UAv,t)p4 (uvv,s)]dsdt. 
(s<tJ 

(5.26) 

This inequality is established using a pointwise argument as in the proof 
of Lemma 5.7. First, let a - p1(u,s)p2(v,t), b - p1 (u,t)p2 (v,s), c -
p3(uAv,s)p4 (uvv,t) and d - p3{UAv,t)p4{uvv,s). Since s <ton the range of 
integration, condition (5.19) yields 

a S c and b s c 

by first taking x - (u,s), y - (v,t) and then taking x - (u,t), y - (v,s). 
However, the inequality 

ab S cd 

also follows easily from (5.19). -1 Hence c+d - (a+b) - c [(c-a)(c-b) + (cd-
ab)] which is non-negative. Thus (5.26) holds by a pointwise argument. D 

Proof of Theorem 5.6: By Lemma 5.7, the Theorem holds for n - 1. Assume 
the result holds fork - 1, ... , n-1 and consider the assertion fork - n. 
Since the measureµ is a product measure, inequality (5.20) can be written 

where the integrals are over x<n-l), 

-µ - µl x ... x µn-1' 

and gi is defined in (5.22). But (5.27) holds by Lemma 5.8 and the 
induction hypothesis, since the gi' i - 1, ... , 4 satisfy (5.23). D 

(5.27) 

Theorem 5.9: (Preston (1974), Holley (1974), Kemperman (1977), Edwards 
(1978)). Suppose P1 and P2 are probability measures on X(n). Further, 
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asswne there exists a product measure µ on X(n) such that Pi has a density 

~i with respect to µ and 

for all x,y E X(n). Then 

for all coordinatewise non-decreasing functions f for which the two 
integrals exist. 

(5.28) 

(5.29) 

Proof: First asswne f is non-negative and set p1 - f~1 • P2 - ~2 • P3 = ~l 

and p4 - ~2f. Then condition (5.19) is easily verified since f is non­
negative and non-decreasing. Inequality (5.20) yields (5.29) since ~l and 
~2 are densities. 

When f is bounded below by c, then f(x) + c is non-negative and non-
' decreasing. The first case yields 

J (f(x)+c)~1 (x)µ(dx) s J (f(x)+c)~2 (x)µ(dx) 
which in turn gives (5.29) since ~l and ~2 are densities. The general case 
is treated by a standard truncation and limiting argwnent. D 

Theorem 5.10: (Sarkar (1969), Fortuin, Ginibre and Kasteleyn (1971)). 
Asswne the random vector X E X(n) has a density p with respect to a product 

measure µ. If p satisfies 

p(x)p(y) s p(XAy)p(xvy) (5.30) 

for all x,y EX, then X is associated. That is, cov(f1 (X),f2 (X)) ~ 0 for 
all f 1 and f 2 which are bounded and non-decreasing. 

Proof: Because cov{•,•) is invariant under translations of its argwnents, 
we can asswne that f 1 and f 2 are strictly positive without loss of 
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generality. Hence 

-1 With p2 - c f 1p, p1 - p and f - f 2 , Theorem (5.9) yields 

which is just the assertion that cov(f1(X),f2 (X)) ~ 0. D 

Section 4: Multivariate Total Positivity 

In general it can be rather difficult and tedious to check (5.30) for a 
density p. This section contains·some useful criteria and examples which 
can facilitate the verification of (5.30) or (5.28). 

Again consider a product space X(n) - x1 x ... x Xn where each Xi is a 
Borel subset of R1 . 

Definition 5.4: A non-negative real valued function f defined on X(n) is 
multivariate totally positive of order 2 (MTP2) if 

f(x)f(y) ~ f(Xl\y)f(xvy) 

for all x,y e x<n). 

Definition 5.5: A non-negative real valued function f defined on X(n) is 
totally positive of order 2 in pairs (TP2 in pairs) if for each pair of 
variables (with the remaining n-2 variables held fixed), f is TP2 
(according to Definition 5.3). 

If f defined on X(n) can be written in the form 

(5.31) 

where each gi is a non-negative function defined on Xi' i - 1, ... , n, then 
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clearly f is MTP2 . Hence, a density (with respect to a product measure) of 
independent random variables is MTP2 . 

The argument used in Proposition 5.5 shows that if f is MTP2 , then f is 
TP2 is pairs. That the converse is true under certain conditions is 
essentially due to Lorentz (1953). 

Proposition 5.11: Suppose that f is TP2 in pairs. Also assume that if 
f(x)f(y) > 0, then for each vector z e X(n) satisfying 'Xll.y s z s xvy, 
f(z) > 0. Then f is MTP2 . 

Proof: The argument used here is from Kemperman (1977). For x,y e X(n), 
it must be shown that 

f(x)f(y) s f(XAy)f(xvy). (5.32) 

If f(x)f(y) - 0 then (5.32) holds so assume f(x)f(y) > 0. Let ui -
min(xi,yi) and vi - max(xi,yi), i - 1, ... , n where x1 , ... , xn and y1 , ... , 
yn are the coordinates of x and y. Writing x and y as row vectors, we can 
assume without loss of generality that 

x - (vl, ... ,vr, ur+1•···• un) 

Y - (ul, ... ,ur' vr+1•···' vn) 

where 1 Sr s n-1. With s - n-r and for 0 s is r, 0 s j s s, let 

e x<n). Ob h so xi,j serve t at x010 - XAy, xr,O - x, xO,s - y, xr,s - xvy, 
and xtt.y s x. j s xvy. 

i, 

Now xi+l,j and xi,j+l differ in at most two coordinates. Since f is 
TP2 in pairs, this yields 

(5.33) 

as a direct computation verifies. However the identity 
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f( )f( ) r-1 s-1 f(x.+l .)f(x. j+l) 
x y - II II 1 ,J 1 '- (5.34) 

f(xAy)f(xvy) i-O j-O f(xi,j)f(xi+l,j+l) 

is easily established. But, (5.33) shows each term in the product is 

bounded above by 1 so (5.34) is bounded above by 1. Thus (5.32) holds. D 

In general, TP2 in pairs does not imply MTP2 . A counter example is 

given in Kemperman (1977) .. A rather complete discussion of this issue can 

be found in Perlman and Olkin (1980). 

Here are some further observations which can be of help in verifying 

(5.30). 

Proposition 5.12: If f 1 , ... , fk are MTP2 on X(n), then f - IIfi is MTP2 on 
x<n). 

Proof: Elementary. D 

Proposition 5.13: For 1 < r < n, suppose f defined on X(r) is MTP2 . 

Extend the definition of f to X(n) by 

f(y,z) - f(y) (5.35) 

where y E X(r) and z E Xr+l x ... XXn. Then f is MTP2 on X(n). 

Proof: Elementary. D 

Proposition 5.14: If f is MTP2 on X(n) andµ - µ1 x ... x µn is a product 

measure on Xn, for 1 < r < n, define g on X(r) by 

Then g is MTP on X(r) 
2 

Proof: An easy induction argument together with Lemma 5.8 yields the 
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assertion. D 

The following composition result should be compared to Theorem 3.9. In 

the TP2 case, this proposition is sometimes called Karlin's Lemma (Karlin 

(1956)). For some applications of this in multivariate analysis, see Eaton 
(1983). 

Proposition 5.15: On three product spaces X(p), Y(q), and Z(r), suppose 
f(x,y) is MTP2 on x<P>xy(q) and suppose g(y,z) is MTP2 on X(q)xz(r). If v 

is a a-finite product measure on Y(q), then 

h(x,z) - J f(x,y)g(y,z)v(dy) (5.36) 

is MTP on x<P>xz(r) 
2 

Proof: Extend the definition of f and g to x<P>xy(q)XZ(r) by 

f(x,y,z) - f(x,y) 

g(x,y,z) - g(y,z). 
(5.37) 

Then f and g are MTP2 on x<P>xy(q)XZ(r) by Proposition 5.13. Thus fg is 

MTP2 by Proposition 5.12. Integrating fg over Y(q) with respect to v 

yields a MTP2 function on X(P)xz(r) by Proposition 5.14. This function is 

just h in (5.36). D 

In the case of TP2 , there are a couple of useful criteria which 

together with Proposition 5.11 can be used to check for MTP2 . 

Proposition 5.16: Suppose X( 2) - x1xx where Xi 

- 1,2. If f is strictly positive on x~ 2 ) and if 

derivative, then f is TP2 iff 

1 is an open subset of R 

f has a mixed partial 

i 

(5.38) 
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Proof: This well known criterion is given in Problem 6 in Lehmann (1959), 
p. 111. D 

Proposition 5.17: Suppose a non-negative function h is defined on the 
difference set x1-x2 . Then f defined on x1xx2 by 

is TP2 iff h is log concave. 

Proof: The proof is left to the reader (see Lorentz (1953)). D 

1 Example 5.1: Let hi be a log concave function defined on R, i - 1, ... , n. 
Define f on RnxRn by 

n 
f(x,y) - rr hi(xi-yi). 

i-1 
(5.39) 

n n To see that f is MTP2 on R xR , first use Proposition 5.17 to conclude that 
hi(xi-yi) is TP2 on R1xR1 and hence its extension via (5.35) is MTP2 on 
RnxRn. By Proposition 5.12, f is MTP2 as claimed. Note that f is actually 
a function of x-y. D 

Example 5.2: For x E R1 , define 

h(x) - { : 
if x > 0 

ifx:SO. 

Since h is the indicator function of a convex set, h is log concave so h(x-
2 y) is TP2 on R . Using the argument given in Example 5.1, it follows that 

n-1 
f(u) - rr h(ui - ui+l)' 

1 
(5.40) 

which is the indicator function of {ulu E Rn, u1 > u2 > ... > un)' is MTP2 . 



131 

If x1 , ... , Xn are i.i.d. random variables with a density q on R1 (with 
respect to Lebesgue measure), then the order statistic of x1 , ... , Xn' say 
u1 ~ u2 ~ ... ~Un has a density on Rn (with respect to Lebesgue measure) 

n 
g(u) - Il q(ui)f(u) 

1 

It follows from Proposition 5.12 that g is MTP2 since f given in (5.40) is 
MTP2 • D 

Example 5.3: This example is from Dykstra and Hewitt (1978). 
define h by 

h(x) - {: 
if x > 0 

if x :S 0. 

1 On R , 

2 It is easily verified that h is log concave. Thus h(x-y) is TP2 on R . 
Therefore, for u e Rn and for indices i and j, i ~ j, the function 

is MTP 2 by Proposition 5.13. Therefore, by Proposition 5.12, 

J(u) - rr Il h(u. - uj) (5.41) 
i<j ]. 

n is MTP2 on R • 

Now, let S have a W(I ,p,n) distribution with n ~ p. It is known (see p 
Anderson (1958)) that the density function of the eigenvalues Al~ ... ~ Ap > 
0 of S is 

(5.42) 

1 where a - 2(n-p-l), c is a constant, J is given by (5.41) and I(•) is the 
indicator function of {AIA e RP, Ai> 0, i - 1, ... , p). The function fin 



132 

(5.42) is a density with respect to Lebesgue measure on RP. That f is MTP2 

follows from the fact that J is MTP2 and easy applications of Proposition 

5.13 and 5.12. D 

Example 5.4: (Sarkar (1969)). Suppose X ERP is N (0,~) where~ is non­
p 

singular. Thus, the density of X is 

r::r= -pi 1-1/2 1 -1 f(x) - (.JL7r) ~ exp[- 2x·~ x]. (5.43) 

Since f is strictly positive, f is MTP2 iff f is TP2 in pairs. But, an 

application of Proposition 5.12 shows that f is TP2 iff for each i ~ j, 

82 
--- log f(x) - aij 2::: 0 
axiaxj 

1 -1 
where aij is the (i,j) element of -2~ Thus, f is MTP2 iff the off 

-1 
diagonal elements of ~ are non-positive. In particular, when~ - I , f 

p 
is MTP2 . Thus, it is natural to ask if there are other densiti~s of the 

form 

(5.44) 

which are also MTP2 . For convenience, assume that h > 0 and h has two 

derivatives. Then p is MTP2 iff p is TP2 in pairs. Again, Proposition 

5.12 shows p is TP2 in pairs iff 

is non-negative for all x ERP. This is equivalent to the condition that 

(5.45) 

for all t > 0 and all x E RP with llxii 2 - t. But, if there is a t > 0 such 

that 
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h''(t)h(t) - (h'(t)) 2 - 0, (5.46) 

then there is an x with llxli 2 - t such that (5.45) is strictly negative. 
Hence p is MTP2 iff 

d2 --z log h(t) - 0 
dt 

c 2t 

(5.47) 

wh~ch implies that h(t) - c1e with c1 > O. Thus, the only smooth 
2 densities of the form (5.44) which are MTP2 correspond to some N(O,a Ip) 

distribution with a 2 > 0. See Sampson (1983) for some related results. D 

Section 5: Monotone Regression and Association 

In this section, relations between monotone regression for a random 
vector, introduced by Lehmann (1955, 1966) and the previously described 
notions of MTP2 and association are discussed. Basically, the results of 
this section show that MTP2 implies monotone regression which in turn 
implies association. For some additional information concerning these and 
related ideas, the reader can consult Tong (1980, Chapter 5) and Karlin and 
Rinott (1980). 

The following result in Esary et al. (1967) provides a sufficient 
condition for random variables x1 , ... , Xn to be associated. However, the 
condition is rather difficult to check in practice. 

Proposition 5.18: Suppose the random variables x1 , ... , Xn satisfy the 
following condition: 

For each i - 1,2, ... , n-1 and for each bounded 
1 non-decreasing function f defined on R, 

is non-decreasing in (x1 , ... , xi) E Ri. 

Then x1 , ... , Xn are associated. 

(5.48) 
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Proof: Since x1 is associated, it suffices to v~rify that if x1 , ... , Xi 
are associated and if (5.48) holds, then x1 , ... , Xi+l are associated: 
Thus, let f 1 and f 2 be bounded non-decreasing functions defined on Ri+l 
It must be shown that 

6 - Ef1<X1····· xi+l)f2<X1····. xi+l) 
~ Ef1<x1··· ., xi+l)Ef2<x1····· xi+1>· 

Conditioning on x1 - x1 , ... , Xi - xi and using the fact all one-dimensional 
random variables are associated, 

E(f1<x1•· · .,xi,Xi+l)f2(xl' ···• xi,Xi+1>lx1-x1, · .. ,xi-xi)} 

~ E(f1<x1•···· xi,Xi+1>lx1-x1·····xi-xi) 

• E(f2(x1 , ... ,xi,Xi+l>lx1-x1 , ... ,xi-xi). 

But, using (5.48) and the assumptions on fi' 

is non-decreasing and bounded on R2i. Thus 

(5.48a) 

is bounded and non-decreasing on Ri, j - 1,2. Since x1 , ... , Xi are 
associated, the expectation over x1 , ... , x1 of the right hand side of 
(5.48a) is bounded below by 

This completes the proof of the basic induction step so the result 
follows. D 

The next assertion shows that MTP2 implies a condition stronger than 
(5.48). Consider a random vector X E Rn with coordinates x1 , ... , Xn which 



has a density f with respect to a product measureµ - µ1 x ... x µnon Rn. 

Proposition 5.19 (Sarkar (1969)). If f is MTP2 , then for any bounded 
n-i function h defined on R , 1 s i s n-1, ·the conditional expectation 
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(5.49) 

is non-decreasing in x1 , ... , xi. 

Proof: First, the marginal density of x1 , ... , Xi is 

Thus, for x1 s y1 , ... , xi s yi' a version of the conditional density of 

xi+l' • • • > xn given x1 - x1 , •••I Xi - Xi is 

and 

is a version of the conditional density of Xi+l'' .. , Xn given x1 - y1 , ... , 
Xi - yi. The verification that (5.49) is non-decreasing entails showing 
that 

J h(xi+1•···• xn)fl(xi+l''''' xn)µi+l(dxi+l) ... µn(dxn) 

s J h(xi+l' ... , xn)f2(xi+l 1 ···' xn)µi+l(dxi+l) ... µn(dxn). 

However, that f 1 and f 2 satisfy (5.28) is easily verified using the 
assumption that f is MTP2 . Theorem 5.9 yields the desired inequality. D 
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The implications in Propositions 5.18 and 5.19 are both strict. 
Examples of this can be found in Chapter 5 of Tong (1980) for the case of n 

2. 

The argument used in the proof of Proposition 5.19 yields a method for 
proving certain expectation are non-decreasing functions of parameters. 
Suppose X E X(m) has a density which depends on a parameter 8 E 9(k). 
Assume the density f(xle) is a density with respect to a product measureµ 
- µ1 x ... x µm on X(m). Here, both X(m) ~Rm and e(k) ~ Rk are assumed to 
be product sets. 

Proposition 5.20: Assume f regarded as a function on X(m) x e(k) is MTP2 . 
If h is non-decreasing on X(m), then 

is non-decreasing on e(k). 

Proof: Consider 8 and~ in 9(k) with 8i S ~i' i - 1, ... , k. Let 

and 

Because f is MTP2 on X(m) x e(k), it is easy to verify that f 1 and f 2 
satisfy (5.28). Theorem 5.9 yields the inequality ~(8) S ~(~). D 

(5.50) 

Example 5.5: In this example we sketch a result due to Perlman and Olkin 
(1980) concerning the unbiasedness of some invariant multivariate tests in 
the MANOVA problem. It is assumed that the reader is familiar with Example 
4.3 as the notation and certain results given there are used here. Recall 
that the data for the canonical form of the MANOVA problem consists of X: 
rxp which is N(µ,Ir ® ~) and S: pxp which is independent of X and has a 
W(~,p,n) distribution. It is assumed that r s p as the case r > p is 
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similar. The problem is to test the null hypothesis H0 : µ - 0 versus the 

alternative H1 : µ ~ 0. As in Example 4.3, only invariant non-randomized 

tests are considered. Such tests are functions of the eigenvalues of 
-1 

XS X' - -say Al~ ... ~ A ~ O; and the power function of such an invariant 
r -1 

test is a function of the eigenvalues ofµ~ µ'--say el ~ ... ~er~ 0. 

To describe the result of Perlman and Olkin, let Y ~ RP be the set 

Y - lYIY E Rr, yi ~ 0, i - 1, ... , r} 

so Y is a product space of dimension r with each element of the product 

being [O,~). The random vector 

,_ U:J er 

-1 whose coordinates are the eigenvalues of XS X' has a distribution on Y 

which depends on the vector 

E-[t] EY 

-1 whose coordinates are the eigenvalues of µ~ µ'. The acceptance region of 

an invariant test of H0 versus.H1 is a subset of 

o I r Y = Y n (y y E R , yl ~ ... ~ 

An acceptance region A ~ YO is monotone if 

0 v E A, u E Y , u :S v 

implies that u E A. } 
The corresponding test function 

0 g(u) = l - IA(u), u E Y 

(5.51) 

(5.52) 
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is non-decreasing (in the coordinatewise ordering) on Yo, when A is 

monotone. 

Proposition 5.21 (Perlman and Olkin (1980)). If A is a monotone acceptance 

region, then the test determined by A, say g, is unbiased. That is, 

where Ee denotes expectation computed with respect to the distribution of A 

when the parameter value is e. More generally, if g: YO~ Rl is 

coordinatewise non-decreasing, then 

(5. 54) 

assuming the expectations exist. 

'Remark: Conditions for strict inequality are given in Perlman and Olkin 

(1980), but those are not given here. D 

Before describing the proof, we first outline the argument. In all 

that follows, it is assumed that S is W(I ,p,n) and X is N(D~,I ® I ) 
P ~ r P 

where 

0 

e1;2 
r 

r x p. 

Since the concern here is with invariant tests, there is no loss of 

generality with this assumption. Let p1 ~ ... ~Pr be the eigenvalues of 

XX'. The distribution of 

p - [ ~: l E y 
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depends on e. It is first argued that 

(5.55) 

0 for functions g1 which are non-decreasing on Y Next, it is shown that 
-1 the eigenvalues of XS X' have the same distribution as the eigenvalues of 

-1 
DPS DP - v 

where 

[:r 0 

0 l' D - r x p p 
pl/2 • 

r 

But, the vector a of eigenvalues of V is coordinatewise non-decreasing in 
the vector p. Thus, when g(a) is non-decreasing in a, 

is non-decreasing in p. This is then used to show that (5.55) implies 
(5.54) which proves Proposition 5.21. 

Now, we turn to some technical details. 0 First, let r: Y ~ Y denote 
the function which maps y into the vector of ordered coordinates of y. If 

0 1 0 g1 : Y ~ R is non-decreasing on Y , then its extension to Y defined by 

is also non-decreasing because T is coordinatewise non-decreasing. Since 
the random vector p is in Yo, (5.55) follows if we can show 

(5.56) 

This is established by appealing to Theorem 5.9 with ~l taken to be the 
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density of p when e - 0 and ~2 the density of p when the parameter is e. 
When e - o, the density of p is given by f 0 (p) of (5.42) on the product 

space Y (with n replaced by p and p replaced by r). For an arbitrary e, 
the density of p is given by 

where 

F(Ple> - J
0 

J0 exp[trrDp~De]v1 (dr)v2 (cit.). 
r p 

Here v1 and v2 are the unique invariant (Haar) probability measures on the 

compact groups 0 and 0 . This representation of f(Ple> is given in James r P 
(1961, 1964). For a general discussion of this type of representation, the 

reader can consult Eaton (1983, Chapter 7, Section 5) or Muirhead (1982, 

Chapter 3). Now, to apply Theorem 5.9 to establish (5.56), it must be 

verified that for u,v e Y, 

(5.57) 

Since f 0 is MTP2 (Example 5.3), (5.57) will follow if we can show that 

F(•le> is coordinatewise non-decreasing on Y. To see this, define Hon Rr 

by 

where 

H(x) - J0 J0 exp[trrcx~D'elv1 (dr)v2 (cit.), 
r P 



c 
x 

0 

0 

: 0 l : 
x • 

r 
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r x p. 

Because the exponential is convex, it follows easily that H is a convex 
function on Rr. Also, if g is any rxr orthogonal matrix with plus or minus 
ones on the diagonal, the relation C - gCx and the invariance of the gx 
measure v1 show that H(x) - H(gx). The convexity of Hand this invariance 
imply that H is coordinatewise non-decreasing on Y since H is a convex even 
function of each argument. But, for p e Y, 

F<PI~> - H(JP;: •... , ~) 

so F is coordinatewise non-decreasing. Thus Theorem 5.9 applies to yield 
inequality (5.56). 

Now the second part of the argument proceeds as follows. Write X in 
its singular value decomposition 

where ~l e Or, ~2 e Op and DP as defined above. 
eigenvalues of 

is the same as the vector of eigenvalues of 

The vector A e YO of 

Now, X and Sare independent and S is W(Ip,p,n). Thus ~2s~z has the 
distribution as S. Since (p,~2 ) is independent of S, A has the same 
distribution as the vector of eigenvalues, say~. of 

(5.58) 

same 

(5.59) 
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Therefore, for any coordinatewise non-decreasing function g, 

0 for any e e y . 

Now, fix S, and consider the vector 1 as a function of the vector P 
(via equation (5.59)). The claim is that each coordinate of 1(P) is 
coordinatewise non-decreasing in p. 
with p ~ 6. Then 

0 To see this, consider p and 6 e Y 

is non-negative definite. 

of non-zero roots of 

But, 1(P) for D s- 1n• is the same as the vector p p 

(5.60) 

which is no larger than (in the sense of positive definiteness) 

This implies that the vector of eigenvalues of the matrix (5.61) is 
coordinatewise no smaller than the vector of eigenvalues of (5.60). Since 
the non-zero eigenvalues of (5.61) are 1(6), it follows that 1(P) is 
coordinatewise no larger than ~(6). 

To complete the proof, (5.54) is now verified. The important 
-1 observation is that the vector of eigenvalues A of XS X' has the same 

-1 distribution as the vector of eigenvalues 1 of DPS DP and for S fixed, 
1(P) is coordinatewise non-decreasing in the vector P of eigenvalues of 

XX'. Thus, 

Eeg(A) - Eeg(1) - E[Ee(g(1<P>>ls)] 

~ E[Eo(g(1(P))IS)] - Eog(1). 
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The inequality above follows from (5.55) applied with S fixed (p and S are 
independent) and g1 (p) - g(1(P)). The proof is now complete. 

An interesting open question is whether or not 

is coordinatewise non-decreasing when g is non-decreasing. The argument of 
Perlman and Olkin (1980) seems not to be applicable to this question, but 
Perlman and Olkin have answered the question in the affirmative when ~ has 
only one non-zero coordinate. O 

Section 6: Association and the Normal Distribution 
Consider a random vector X e RP with a multivariate normal 

distribution, say N (µ,~). 
p If X is associated, then necessarily each 

element of~ - (uij) is non-negative because 

Recently, Pitt (1982) established the converse to this observation. This 
section is devoted to a discussion of Pitt's result and some related 
issues. 

To begin the technical discussion, first observe that without loss of 
generality µ can be taken to be zero in discussions of association. This 
follows because a function f defined on RP is non-decreasing in each 
coordinate iff f defined by f (x) - f(x-µ) is non-decreasing in each µ µ 
coordinate. Our first task to show that if X is N(O,~) and if each u .. ~ 

l.J 
0, then X is associated (Pitt (1982)). The details given below are 
slightly different than those in Pitt (1982), but the idea of the proof is 
from Pitt. 

For a N(O,~) random vector X in RP, let Y also be N(O,~) with Y 
independent of X. For 0 s A S l, consider the random vector 

(5.62) 

Given bounded continuous non-decreasing functions f 1 and f 2 on RP, set 
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(5.63) 

Then, 

and 

Thus, the inequality H(l) ~ H(O) is equivalent to 

(5.64) 

which is equivalent to the assertion that X is associated. 

Remark: That association is equivalent to the validity of (5.64) for all 
' bounded continuous functions is due to Esary et al. (1967). This 

characterization of association is often very useful and is used here. O 

Since f 1 and f 2 are bounded and continuous, H is continuous on [0,1]. 
The method of proof is to show that when uij ~ 0 for all i,j and when f 1 
and f 2 are suitably smooth, then H has a non-negative derivative on (0,1). 
This implies H(O) ~ H(l) for smooth f 1 and f 2 . The verification of (5.64) 
for bounded continuous functions involves an approximation argument. We 
now turn to the technical details. 

The following lemma provides a crucial step in the main result. 

Lemma 5.22: Let X be N (0,~) and let h: RP~ R1 be bounded with and p 
bounded and continuous partial derivatives. With Y and ZA as in (5.62) and 
for 1 ~ i ~ p, set 

(5.65) 



Then, for 0 < A < l, 

where 

a hj(x) - <a--h)(x). 
xj 
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(5.66) 

(5.67) 

In particular, if his non-decreasing and if uij ~ 0 for all i,j, then 
H'(A) ~ 0 and His non-decreasing on [0,1]. 

~: Because of the assumption on h, the Dominated Convergence Theorem 
shows that for H given in (5.65) 

With Vh denoting the gradient of h, the chain rule yields 

so 

With S = ZA - AX+ }1-A2Y and T - }1-A2X - AY, the normality and 
independence of X and Y imply that Sand Tare independent N (0,~). Also, 
X-As+}l-A2Tso p 

Using this in (5.68) yields 
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Since ET - 0, the independence of S and T imply 

so 

Since S - ZA, (5.66) holds. The second assertion follows immediately. D 

Proposition 5.23 (Pitt (1982)). Suppose X is N(O,~) with aij ~ 0 for all i 
and j. Then X is associated. 

Proof: The first step in the proof is to verify (5.64) for f 1 and f 2 which 
are bounded and have bounded continuous partial derivatives. For such 
functions, again consider 

As argued above, it suffices to show that,H'(A) ~ 0 for A E (0,1). Because 
of our assumptions on f 1 and f 2 , 

H'(A) - E d~f1 (ZA)f2 (X) 

- E(X - A Y)'[Vf1(ZA)Jf2(X). 

Jl-A2 
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As in the proof of Lemma 5.22, set S - ZA and T - }1-A2X - AY so X = AS + 
}1-A2T. Then S and T are independent N(O,~) and 

(5.70) 

Now fix S and for 1 ~ i ~ p, set 

where ET means expectation over the distribution of T. Since S and T are 
independent and since~ - (uij) satisfies uij ~ 0 for all i,j, Lemma 5.22 
implies that 

for i - 1, ... , p. (5.71) 

However, (5.70) can be written 

(5.72) 

where 

Since f 1 is non-dec+easing, fl,i(S) ~ 0 so (5.71) shows that (5.72) is non­
negative for A E (0,1). Hence (5.64) holds for f 1 and f 2 which are bounded 
and have bounded continuous partial derivatives. 

To complete the proof, consider h1 and h2 which are bounded and 
continuous. For E > 0, let ~<·I•) denote the density function of a 
N (O,c 2I ) distribution. It is a routine exercise to show that p p 

h. (x) = J h.(y)~(x-yi•)dy 
i,c RP i 
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is bounded with bounded continuous partial derivatives and is non­

decreasing in each argument. Further, 

i - 1,2 

for all x e Rn and 

i - 1,2 

is bounded. The first portion of the proof shows 

cov(h1 (X),h2 (X)} > 0 
, f , E 

and the above facts, together with the Dominated Convergence Theorem, show 

that 

lim cov(h1 (X),h2 (X)} - cov(h1(X),h2(X)} ~ O. 
E-+0 'E 'E 

Thus X is associated. o 

Let X be a random vector in RP. In applications, it is sometimes the 

case that one desires an inequality of the type 

(5.73) 

or of the type 

(5.74) 

Both of these inequalities are valid when X is associated, but association 

is strictly stronger than these inequalities. For a simple counter 

example, see Tong (1980, Chapter 5). When X is N(O,~) with each uij ~ 0, 
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then X is associated so (5.73) and (5.74) hold. An alternative proof of 
this is provided by Slepian's inequality (Slepian (1962)) which shows that 
certain probabilities increase as correlations increase (when X is N(O,~)). 
Slepian's result was generalized in Das Gupta et al. (1971) using a 
geometric argument due to Chartres (1963). Here is a formal statement of 
one version of this result. 

Proposition 5.24: Let X be a random vector in RP which has a density of 
the form 

I I 1-1/2 -1 p(x ~) - ~ r(x'~ x), 

where~ is pxp and positive definite. Given real numbers a1 , ... , ap' let 

~(~) - P(Xi s ai, i - 1, ... , p). (5.75) 

Then, for any (i,j) with i ~ j, ~(~)is non-decreasing in aij when the 
other elements of ~ are held fixed. 

Proof: See Section 5 in Das Gupta et al. (1971). D 

When X is N(O.~) with each aij ~ 0, Proposition 5.24 shows (5.75) is 
bounded below by setting each aij - 0 for all i ~ j and inequality (5.73) 
follows from the independence properties of the normal. 

In certain confidence set problems, lower bounds on probabilities of 
the form 

are often desired. When X is N(O,~). Sidak (1967) showed that 

p 
i - 1, ... , p) ~ rr P!IXil sail' 

i=l 

(5.76) 

(5.77) 

no matter what the covariance~ is. Sidak's argument was the following. 
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When X is N (0,E), partition E as 
p 

where E11 is (p-l)x(p-1) so E22 e (0,m), For 0 s As l, set 

(5.78) 

When Eis positive definite (which we assume here), EA is positive 

defLnite. When X is N(O,EA), Sidak (1967) showed that the probability in 

(5.76) is non-decreasing in A e [0,1]. Applying this result with A - 0 and 

A - 1 yields 

when X is N(O,E). An easy induction argument now yields (5.77). 

Sidak's proof used a conditioning argument along with Anderson's (1955) 

Theorem (Theorem 4.12 here) .. Das Gupta et al. (1971) extended Sidak's 

result to the so called elliptical distributions, again using Anderson's 

Theorem. 

Proposition 5.25. Consider a density of the form 

I I 1-1/2 -1 
p(x E) - E r(x'E x), 

where Eis pxp and positive definite. With EA as defined in (5.78), let X 

have p(•IEA) as its density. Also, let X denote the vector of the first p-

1 coordinates of X. For a symmetric convex subset C ~ Rp·l, set 

g(A) - PlX e c, Ix I s a J. p p 
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Then g is non-decreasing on [0,1]. 

Proof: See Das Gupta et al. (1971), Section 2. An alternative proof which 
shows that the assumption of a density is unnecessary is given in Eaton 
(1982b), Section 5. D 

An alternative method for attempting to establish (5.77) is to try to 
show the random variables Y. = Jx.J, i ~ 1, ... , pare associated. When X i i 
is N(O.~). Karlin and Rinott (1981) showed that the density of Y1 , ... , Yp 
is MTP 2 iff there is a pxp diagonal matrix D with plus or minus ones on the 
diagonal such that D~-lD has non-positive off diagonal elements. In this 
case Y is associated (since MTP2 implies association) so (5.77) holds. 
However, the Sidak result shows that MTP2 is very much stronger than (5.77) 
since (5.77) holds for all covariances when X is normal. But, this 
discussion raises an interesting question: what are some useful conditions 
on the joint distribution of x1··· ., xp which imply that y1····· yp are 
associated (and hence that (5.77) hold)? Some results related to this 
question can be found in Jogdeo (1977), in Karlin and Rinott (1981), and in 
B~lviken (1982). An interesting alternative proof of Pitt's result can be 
found in Joag-dev, Perlman and Pitt (1983). 





Chapter 6: Group Induced Orderings 

The questions to be addressed in this chapter are all related to the 
one basic question: To what extent can the majorization results given in 

Chapters 2 and 3 be generalized to orderings induced on vector spaces by 
compact groups? The interest in this question arises partly from some 
interesting examples occurring in statistical and probabilistic problems 
which are described below. It will be clear from the discussion below that 
there are, at this point in time, many more questions than answers. 

For subgroups of Pn' Rado (1952) considered some aspects of the above 
questions. As discussed in Chapter 4, Mudholkar (1966) considered group 
induced orderings on Rn and provided a generalization of Anderson's (1955) 
Theorem. For groups generated by reflections (see Section 3.3), Eaton and 
Perlman (1977) showed that analogues of many results valid for majorization 
continue to hold. Some of these results are discussed below, although the 
approach taken here is a bit different than in Eaton and Perlman (1977). 
In particular, the structure theory of reflection groups (see Benson and 
Grove (1971)) is not used. Other extensions of majorization results to the 
reflection group case can be found in Conlon et al. (1977). 

Because of the geometric treatment of majorization given in Chapter 2, 
it is hoped that the development here appears to be quite natural. In 
general, this development follows Eaton (1982, 1984), but some 
modifications and extensions of that material are given below. For some 
related material, see Alberti and Uhlmann (1981) and Giovagnoli and Wynn 
(1985). 

Section 1: The Ordering 

Let (V,(•,•)) be a finite dimensional inner product space and let G be 
any closedsubgroupsof O(V)--the orthogonal group of the inner product 
space (V,(•,•)). The topology on O(V) is the usual topology of the 

orthogonal group. The assumption that G is closed is mainly an assumption 
of convenience at this point and is satisfied in all the interesting 
examples that I know. Given x E V, C(x) denotes the convex hull of the G­
orbit of x--that is, C(x) is the convex hull of (gxjg E G). The dependence 
of C(x) on G is usually suppressed as G remains fixed throughout most of 
the discussion. That C(x) is compact follows easily from the assumption 
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that G is closed. 

Here is a natural extension of the majorization ordering. 

Definition 6.1: For x and yin V, write x s y to mean that x e C(y). The 

relation Sis called the G-induced ordering on (V,(•,•)). 

Of course, when V - Rn, (•,•) is the usual inner product on Rn and G -

Pn' then the G-induced ordering is just majorization. As with 

majorization, s is actually a "pre-ordering" (see Marshall and Olkin 

(1979), p. 13, for a discussion), but for simplicity, we will just calls 

an "ordering." In addition, the dependence of son G is suppressed 

notationally. 

The analogues of Proposition 2.1 and 2.2 are: 

Proposition 6.1: The following are equivalent: 

(i) x s y 

(ii) C(x) ~ C(y) 

Proof: The proof is essentially the same as the proof of Proposition 

2.1. 0 

Proposition 6.2: The relations is transitive--that is, x Sy and y s z 

implies x s z. If x s y and y s x, then x is in the orbit of y and 

conversely. 

Proof: The same as the proof of Proposition 2.2. D 

As in the permutation group case, we observe that x E C(y) iff 

(u,x) S sup(u,gy) 
gEG 

for all u e V, (6.1) 

where (•,•)denotes the inner product on V. This is a direct application 

of Proposition A.3 (with B - C(y) and A equal to the orbit of y). Thus the 

function 
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m[u,y] - sup(y,gy) 
geG 

(6.2) 

plays the same role in the general case 

proofs of the following two propositions 

(Propositions 2.3 and 2.4) in Chapter 2. 

as in the case of G - P . The n 
are the same as their counterparts 

Proposition 6.3: For all u,y e V, the function m in (6.2) satisfies 

(i) m[u,y] - m[y,u] 

(iii) m[u,•] is convex for each u. 

Proposition 6.4: The following are equivalent: 

(i) x s y 

(ii) m[u,x] s m[u,y] for all u e V. 

At this point, the general development diverges sharply from that in 
Chapter 2. In particular, there appears to be no natural choice for the 
convex cone F as in Chapter 2; and even in those cases where there is a 
natural choice for F, the important conclusion of Proposition 2.6 fails to 
hold in general. Specific examples to support these claims are given in 
the next section. 

In order to proceed with a development parallel to that in Chapter 2, 

we now make the following assumptions: 

(A.I) 

(i) There is a closed convex cone F c V such that for each 

x, there is age G with gx e F. 

(ii) For each u,x e F, the function m in (6.2) is given by 

m[u,x] - (u,x). 

Because of (A.I), the ordering Son VxV is completely determined by the 
ordering restricted to FxF. In other words, given x and y E V, to decide 
whether or not x s y, simply move x to g1x E F and move y to g2y E F. By 
Proposition 6.1, x s y iff g1x s g2y. However, for elements in F, we have 
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Proposition 6.5: Assume (A.I) holds and consider x,y e F. The following 

are equivalent: 

(i) x :S y 

(ii) (u,y-x) ~ 0 for all u e F. 

Proof: Because (A.I) holds, the proof is the same as the proof of 

Proposition 2.7. o 

Before turning to examples, there is one further technical issue with 

which we must deal. In order to apply Theorem A.6 to identify the 

decreasing functions, it is necessary that F have a non-empty interior. 

However, in some interesting examples, F does not have a non-empty interior 

as a subset of V. Let M - span{F} so M is a linear subspace of V. Then, F 

always has a nonempty interior 

(see the Rockafellar (1970)). 

as a subset of the vector space (M,(•,•)) 

* Also, let FM denote the dual cone of F when 

F is regarded as a convex cone in (M, ( •, •)). In other words, 

* FM - <wlw E M, (w,x) ~ 0 for all x e F}. 

A direct consequence of Proposition 6.5 is 

Proposition 6.6: Assume (A.I) holds, and consider x,y E F. The following 

are equivalent: 

(i) 

(ii) 

x :S y 

Proof: This is simply a restatement of Proposition 6.6. O 

Thus, when 

defined by the 

then x :S y iff 

(A.I) holds, the ordering restricted to F is a cone ordering 

* dual cone FM ~ M. Hence, if T is a frame for F and x,y e F, 

(t,x) :S (t,y) for all frame vectors t e T. This is exactly 

* * the argument used in Proposition 2.10. Of course, a frame T for FM will 

arise naturally in the discussion of the decreasing functions in Section 3. 
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Section 2. Examples 

This section consists basically of a series of examples intended to 
illustrate the usefulness and restrictiveness of the assumption (A.I) in 
the previous section, In the examples where (A.I) holds, the cone F and a 

* * * frame T for F are computed explicitly (as well as F and a frame T for F ) 
because these are needed to obtain an analytic description of the ordering. 
In addition F* and T* are needed to describe the decreasing functions in 
these examples. Naturally, the reader should keep the majorization case in 
mind for comparative purposes since in this case, the objects of interest 
have been co~puted explicitly in Chapter 2. 

Example 6.1: Let V be Rn and take G to be the group of coordinate sign 

changes, Dn, on Rn. Thus Dn consists of all nxn diagonal matrices with 
each diagonal element equal to 1 or -1. For this example, take 

F - (xlx E Rn, xi ~ 0, i - 1, ... , n) 

so a frame for Fis T - (E 1 , ... , E ) where E1 , ... ; E is the standard 
n *n n * orthonormal basis in R . Since F - F, T is also a frame for F . That 

(A.I)(i) holds is clear. To check (A.I)(ii), consider x,y e F and let g e 
Dn have diagonal elements d1 , ... , dn. Then, 

(x,gy) - ~~dixiyi S l~~dixiyil 
s ~~ldilxiyi - ~~xiyi (x,y) 

so (A.I)(ii) holds. Thus (A.I) holds and and easy application of 
Proposition 6.6 shows that x Sy iff 

Example 6.2: 

i - 1, ... , n. D 

Again take V to be Rn and let G be the group generated by P 
n 

and Dn. This group is denoted by Pn·Dn as every element in G can be 
written in the form PD with P e Pn and D e Dn. To see this, note that for 
each P e Pn and DE Dn' P01DP e Dn so that the set of elements of the form 
PD is a group. In this example, take 
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A frame for Fis given in Example A.3 and is T - {e1 , ... , en) where ei is 
the vector in Rn whose first i coordinates are one and the remaining 
coordinates are zero. Also in examples A.3, a frame T* - {t1 , ... , tn) for 
* F is given where ti has its ith coordinate equal to one, its (i+l)th 

coordinate equal to minus one, and all remaining coordinates zero; i -
1, ... , n-1. The vector tn has its nth coordinate equal to one and all 
remaining coordinates are equal to zero. That assumption (A.I)(i) holds is 
clear. To verify (A.I)(ii), consider x,y E F and g - PDE G. Then 

(x,gy) - x'PDy - (P'x)'Dy s (P'x)'y - x'Py s x'y. 

The first inequality follows from Example 6.1 and the second inequality 
follows from Proposition 2.6. Thus, (A.I)(ii) holds. 

To express what the order means in this case, define a function r on Rn 
to Fas follows: r(x) is the vector whose coordinates are denoted by 

lxl(l) ~ ... ~ lxln ~ 0 obtained by ordering the numbers lx1 1, ... , lxnl where 
x has coordinates x1 , ... , xn. Obviously, T is the identity on F and given 
any x E Rn, there is a g E P •D such that gx - r(x). Hence x s y iff r(x) n n 
s r(y). Since r(x) and r(y) are in F, we know r(x) s r(y) iff 

k - 1, ... , n 

iff 

k - l, ... , n. 

Thus, it is easy to check whether x s y. 

The ordering in this example should ~ be confused with the 
submajorization ordering discussed in Marshall and Olkin (1979, p. 10). D 

Example 6.3: This example is somewhat more complicated that the first two. 
The vector space is L --the space of a real nxp matrices. For p,n 
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convenience, it is assumed that n ~ p. 

to be 

The inner product on L is taken p,n 

(x,y) - tr xy' 

where tr denotes trace and y' is the 

this example is 0 XO whose elements 
n p 

transpose of y e L . The group in p,n 
are written as pairs (g,h) with 

g e 0 and h e O . As usual, O (0 ) 
n p n p 

orthogonal matrices. The pair (g,h) 

is the usual group of nxn (pxp) 

defines an orthogonal transformation 

on L by p,n 

(g,h)(x) - gxh' 

where the right hand side means matrix multiplication. That this is an 

orthogonal transformation on (L ,(•,•)) is a consequence of p,n 

((g,h)x,(g,h)y) - (gxh' ,gyh') - tr gxh'(gyh')' 

- tr gxh'hy'g' - tr gxy'g' - tr g'gxy' - tr xy' - (x,y). 

Now, the choice of F for this example is motivated by the Singular 

Value Decomposition Theorem which asserts that for any x e L , there p,n 
exists (g,h) e 0 xo such that 

n P 

gxh' 

where Al~ ... ~ A ~ 0. 
P2 

~of x and A1 , ... , 

Define F to be all the 

(6.3) 

The numbers Al~ ... ~ A are called the singular 
2 p 

A are easily shown to be the eigenvalues of x'x. 
p 

matrices in L which have the form (6.3). Thus, p,n 
an x e F with elements xij' i - l, ... ,n, j - 1, ... , n satisfies 

{ xij - 0 

x11 ~ ... ~ xpp ~ 0 

for i P j 
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and conversely, any such x with these properties is in F. The Singular 

Value Decomposition Theorem shows that (A.I)(i) holds with this choice for 

F. 

The verification of (A.I)(ii) is much more delicate and depends on the 

following result (von Neumann (1937), Fan (1951)). 

Theorem 6.7: Let x and y be elements in L with singular values p,n 
Al~ ... ~ Ap ~ 0 and µ1 ~ ... ~ µp ~ 0 respectively. Then 

(6.4) 

Proof: First, we treat the case n - p so x and y are square matrices. 

Using the Singular Value Decomposition Theorem, write 

. 
glxhi - DA, g2yh2 - Dµ (6.5) 

' where DA and Dµ are nxn diagonal matrices with diagonal elements A1 , ... , An 

and µ1 , ... , µn. Thus, when n - p, the left hand side of (6.4) is 

sup trggiDAh1h'h2D g2 - sup tr g2ggiDAh1h'h2Dµ 
gEOn,hEOn µ gEOn,hEOn 

sup tr gDAh'Dµ. 
geon,heon 

Thus, it must be shown that for g e On and he On' 

since equality in (6.6) is achieved by setting g - h' - In. Now, for u,v e 

Ln,n' consider the function 

(6.7) 

Obviously, ~(·,v) is a linear function for each v and ~(u,•) is a linear 
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function for each fixed u--that is, ~ is a bilinear function. Routine 

calculations show that ~(u,v) - ~(v,u) (so ~ is symmetric) and ~(u,u) ~ 0 

(so~ is non-negative definite). Hence, the Cauchy-Schwarz inequality 

applied to ~ yields 

(6.8) 

Applying (6.8) to the left side of (6.6) gives the inequality 

(6.9) 

Thus, to establish (6.6), it suffices to establish the inequality 

(6.10) 

for g E On. Using the fact that DA and Dµ are diagonal, writing out the 

left side of (6.10) yields 

2 
where sij - gij and gij is the (i,j) element of the matrix g e On. Since g 

e on, 

so the nxn matrix S with elements sij is doubly stochastic. Thus, the 

right side of (6.11) can be written 

A'Sµ (6.12) 

where A(µ) has coordinates A1 , ... , An (µ 1 , ... , µn). Since Sis doubly 

stochastic, Birkhoff's Theorem (see the Appendix) implies that S is a 

convex combination of permutation matrices--say 
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s-Iak 
k k 

where the sum runs over Pn' k e Pn' and the real numbers °'k satisfy 0 s °'k 

and :&rk - 1. Thus (6.12) is equal to 

I ak>.'kµ. <6.13) 
k 

However, by Proposition 2.6, >.'kµ s >.'µ for each k e Pn. Since the °'k sum 
to 1, (6.13) is bounded above by 

n Thus (6.11) is bounded above by ~l>.iµi so (6.10) ·holds. Hence, the proof 

is complete for the case p - n. 

Now, consider the case p < n. Given x and y e Lp,n' construct x and y 
in L as follows: n,n 

i - (xO); Y - (yO) 

where "0" denotes a block of nx(n-p) zeroes. If >.1 ~ ... ~ >.p ~ 0 and 

µ1 ~ ... ~ µp ~ 0 are the singular values of x and y respectively, then the 

singular values of x and y are just >.1 , ... ,>.p,0, ... ,0 and µ1 , . .. ,µP,O, ... 0 

where there are (n-p) zeroes following >. and µ . This follows by noting p p 
that the n eigenvalues of 

i'i - [ 
x

0
•x o

0 
] 

are just >.i··· .,>.;,o,~ . . ,0 with n-p zeroes following>.!; and a similar 
statement concerning y. From the result for p - n we have 

sup tr gxh'y' 
gEOn,heOn 

since the last n-p singular values of x and y are zero. Now, write 

(6.15) 
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where h11 is an arbitrary element of Op. Since, for such an h, 

it follows from (6.14) that 

(6.16) 

However, the Singular Value Decomposition Theorem implies that there is 
equality in (6.16) with the appropriate choice of g E On and h11 E OP. D 

To continue with our discussion of the example at hand, we now proceed 
to verify (A.I)(ii). The function m is 

m[u,y] -

where A1 , ... , Ap (µ 1 , ... , µp) are the singular values of u (y, 
respectively). However, when u and y are in F, then u has the form 

0 

u -

0 

u pp l 

(6.17) 

where u11 ~ ... ~ upp ~ 0. For such au, it is clear that the ordered 
singular values of u are just u11 , ... , upp' Similar statements apply toy 
E F. This, together with (6.17), shows that when u and y are in F, then 

m[u,y] - tr uy' - (u,y) 
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so (A.I)(ii) holds. 

For this example, observe that span(F) is just the subspace M of L p,n 
consisting of all nxp matrices of the form 

x - 0 

0 

where x11 , ... , xpp are arbitrary real numbers. Obviously, M has dimension 

p. A frame for F is easily constructed from Example 6.2 since the frame 

here is the "same" as the frame in Example 6.2. Let T - {e1 , ... , en) where 

e. in L has its first i-diagonal elements equal to 1 and all other 
i p,n 

elements equal to zero. Obviously, T is a frame for F. The dual cone of F 
* r* in M, say FM has a frame - {t1 , ... , tp) where, for i - 1, ... , p-1, ti in 

L has its (i,i) element equal to one, its (i+l,i+l) element equal to p,n 
minus one and all other elements zero. The matrix t has its (p,p) element 

p * equal to one and all other elements are zero. Just as in Example 6.2, T 

* is easily shown to be a frame for FM. From the point of view of partial 

orderings, this example has appeared in Alberti and Uhlmann (1981) and 

Eaton (1982, 1984). 

In order to interpret the ordering x s y, let Al~ ... ~ Ap and µ1 ~ ... ~ 

µp be the singular values of x and y, respectively. Then representatives 

of x and y in F are 

x -A 

Since x s y iff xA s yµ, it follows immediately from the structure of the 

frame for F that x s y iff 

k - 1,. . ., p. 
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Therefore, the ordering on L can be described by saying that x S y iff p,n 
the singular values of x are "less than" the singular values of y in the 
sense of Example 6.2. 0 

Example 6.4: For this example, take V to the vector space S of all pxp p 
real symmetric matrices, and use the inner product 

(x,y) - tr xy' (6.18) 

which equals tr xy since y - y' in S • The group is 0 and each g E 0 p p p 
defines an orthogonal transformation on (S ,(•,•)) given by p 

x-+ gxg'; 

The Spectral Theorem for symmetric matrices asserts that for each x E Sp' 
there is a g E 0 such that p 

(6.19) 

where >.1 ~-. -~ >. are the eigenvalues of x. This suggests a frame for this p 
example. Let F be all diagonal matrices x E s of the form (6.19) with p 
diagonal elements x11 , ... , x which satisfy xll ~- .. ~ x Obviously F is pp pp 
a convex cone and (A.I)(i) holds for this choice of F. As in the last 
example, the verification of (A.I)(ii) requires a bit more work. 

Proposition 6.8: For x and yin F, 

sup tr gxg'y' - tr xy - (x,y) 
gEOn 

(6.20) 

and (A.I)(ii) holds. 

Proof: With g - I (the pxp identity matrix), tr gxg'y' - (x,y) so the p 
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left hand side of (6.20) is at least as large as the right hand side. 

Hence, to verify (6.20), it must be shown that for each g e On and x,y e F 

tr gxg'y :S tr xy. (6.21) 

Consider x and y in F. 

in F (and conversely). 

yields 

Then for a real number c, x+cI and y+cI are both p p 
Replacing x and y by x+cI and y+cI in (6.21) p p 

2 tr gxg'y + ctr y + ctr x + pc 
2 :S tr xy + ctr y + ctr x +pc (6.22) 

which is obviously equivalent to (6.21) for all real c. Now, pick c large 

enough so that x x+cI and y - y+cI have positive diagonal elements. That 

(6.21) holds for X and Y follows immediately from Theorem 6.7 since the 

diagonal elements of x (and y) are the singular values of x (and y). Thus 

(6.21) holds for x and y and the proof is complete. O 

* Now, we proceed with a description of a frame for F and F . Since F is 

essentially the same convex cone as was used in Chapter 2 for majorization, 

the material there carries over to this case with essentially no change. 

Let t 1 , ... , tn-l be elements of Sp where ti has its (i,i) diagonal element 
equal to one, its (i+l,i+l) diagonal equal to minus one and the remaining 

elements of ti are zero, i - 1, ... , n-1. 

diagonal matrices in S so M - span(F). 

Let M be the linear subspace of 

* 
!? 

As in Chapter 2, T - (t1 , ... , 

tn-ll is a frame for FM--the dual cone of Fin M. Let e1 , ... , en in M 

where ei has its first i diagonal elements equal to one and all other 

elements equal to zero. Then T - (e1 , ... ,en'-en] is a frame for F. 

To describe the ordering on S , consider x and y in S with x :Sy. p p 
DA (and Dµ) denote the diagonal matrices whose ith diagonal element is 

Let 

the 

ith largest eigenvalue of x (and y), i - 1, ... , p. Then x :Sy iff DA :S 

D But since DA and D are in F, DA :S D iff µ µ µ 

tr eiDA :S tr eiDµ' i 1, ... , n-1 

tr e D - tr e D (6.23) n A n µ 
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But (6.23) holds iff 

k - 1, ...• p 

(6.24) 

However, (6.24) is exactly the condition that the vector of eigenvalues of 
y majorize the vector of eigenvalues of x. Thus, the ordering on S 

p 
induced by 0 has a direct relation to the majorization ordering. This p 
relation was given in Karlin and Rinott (lg81) using an argument which is 
rather different than the one given here. The argument above is from Eaton 
(lg84). An alternative ordering on S is discussed in Alberti and Uhlmann p 
(lg81). D 

Now, we turn to two examples where (A.I)(ii) does not hold. 

Example 6.5: On the plane R2 , let G be the group consisting of four 
2 3 elements (I,g,g ,g ) where g is rotation by go 0 in the counter clockwise 

direction. Thus, the matrix of g (in the standard coordinate system for 
R2) is 

An obvious choice for F in this example is 

but any other go 0 -wedge would do as well. Clearly (A.I)(i) holds. However 
(A.I)(ii) is false. For example, take 

u-m and v-m 
which are both in F. Since gu - v, 

sup (hu,v) - (gu,v) - (v,v) - 1 
heF 
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while (u,v) - 0. 

* E F and let u be 

no more than 45°. 

Geometrically, m[u,v] can be described as follows. Fix v 
2 3 a vector in the set (u,gu,g u,g u} whose angle with v is 

* Then, it is easy to see m[u,v] - (u ,v). Of course, 
this example can easily be generalized to the group generated by the 
rotation through 2~/k where k is an integer which is at least 3. D 

Example 6.6: For this example, again consider Rn and let G be the group 

Thus, an element of G is either a permutation matrix or minus a permutation 
matrix. For this example, take F to be 

(A.I)(i) is easily shown to hold, but (A.I)(ii) fails. In fact, m[u,v] can 
be calculated explicitly for this example. For u,v E F, first observe that 

max (ku)'v - u'v 
kEP 

n 

which follows from Proposition 2.6. Since v E F, v1 O!: ••• O!: vn so -vn O!: ••• O!: 

Then 

Let v* be 

* v E F. 

* * max (-ku)'v - max (ku)'(-v) - max (ku)'v - u'v 
kEP kEP kEP n n n 

where again the last equality is a consequence of Proposition 2.6. Hence, 
for u,v E F 



* max (gu)'v - max(u'v,u'v } . 
geG 
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* When n ~ 3, it is not hard to show there are u,v e F such that u'v < u'v 
so (A.I)(ii) can not hold for this example. D 

Section 3: The Decreasing Functions 

We now turn to the problem of describing the decreasing functions in 
the present context when (A.I) holds. Thus, on the inner product space 
(V,(•,•)), G is a closed subgroup of O(V) and G induces and ordering as in 
Definition 6.1. A real valued function f defined on V is decreasing if x 5 

y implies f(x) ~ f(y). Such a decreasing function must satisfy 

f(x) - f(gx), x E V, g E G 

because x ~ gx s x for x e V and g e G. That is, decreasing functions must 
be G-invariant. 

Now, we assume (A.I) holds. Thus, there is a closed convex. cone F so 

* (A.I)(i) and (A.I)(ii) hold. With M span(F) and FM denoting the dual 
cone of F in M, our previous results show that for x,y e F, 

x s y * iff y-x E FM. 

Hence the ordering restricted to F is a cone ordering induced by the cone 
* FM. Since F has a non-empty interior in M, Theorem A.6 provides necessary 

and sufficient conditions for the characterization of the decreasing 
function. Here is the formal statement. 

Proposition 6.9: Let f be a G-invariant function real valued function 

* defined on V and let f 1 be the restriction of f to F. Let T be a frame 
* for FM' and assume f 1 is continuous at the boundary of F. The following 

are equivalent: 

(i) 

(ii) 

f is decreasing 

* for each t e T and x e F, the function h(A) - f 1 (x+At) is 
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decreasing in A~ 0 as long as x+At is in F. 

Proof: Since f is G-invariant, f is decreasing on V iff f 1 is decreasing 

on F. The equivalence of (i) and (ii) now follow directly from Theorem 

A.6. D 

Of course, when f in Proposition 6.9 has a differential, then (ii) of 

Proposition 6.9 is easily expressed as a condition in terms of the 

differential. The writing out of these conditions in Examples 6.1 through 

6.4 is a straightforward and tedious task which is left to the reader. 

When assumption (A.I) does not hold, then the ordering S restricted to 

F is, in general, not a cone ordering so Theorem A.6 is not available. In 

particular, characterizations of the decreasing functions are not known for 

Examples 6.5 and 6.6. However, a necessary condition for a function to be 

decreasing is given in Eaton (1975) (see Eaton and Perlman (1977), 

Proposition 2.2), but whether this condition is sufficient is not known. 

Section 4: The Convolution Theorem 

In this and the next section, we investigate conditions under which the 

Convolution Theorem (Theorem 2.20) and the material on DR kernels discussed 

in Chapter 3 can be extended to the general case. Basically, the results 

here show that the Convolution Theorem and the theory of DR kernels can be 

extended to the so called reflection groups. However, the development here 

is a bit different from the material in Eaton and Perlman (1977) and Conlon 

et al. (1977) because of the geometric approach taken in Chapters 2,3 and 

in this chapter, 

To begin the technical development, again let (V,(•,•)) be a finite 

dimension inner product space. In this situation, a reflection is defined 

as follows. For u E V, let u ® u denote the linear•transformation on V to 

V whose value at x is 

(u ® u)(x) - (u,x)u. 

Thus, for u ~ 0, u ® u is a rank one self-adjoint linear transformation 

whose range is span{u} and whose null space is the orthogonal complement of 
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span{u). For u ~ 0, let 

R - I - 2u ® u 
u (u,u) (6.25) 

Now, it is easy to show R u - -u, R v - 0 if v L u, u u 
reasons, Ru is called a reflection--more precisely, 
across the hyperplane {vlv Lu). 

and R2 - I. For these u 
R is the reflection u 

As in the previous sections, the compact group G ~ O(V) induces the 
ordering~ between elements of V. Throughout this section, assumption 
(A.I) is to hold. Thus the ordering~ when restricted to F is a cone 

* ordering induced by the dual cone FM where M - span(F). In all of the 
examples to which the results below apply, M - V but this need not be 
assumed in what follows. Let T* be a frame for F:. The key assumption in 
this secti.on (aside from (A. I)) is 

(A. II) * For each t E T , the reflection Rt is an element of G. 

The three basic examples where (A.I) and (A.II) hold are: 

(i) v - Rn, G - p n 
(ii) v Rn, G - D n 

(iii) v- Rn G - p •D . n n 

* The verification of this claim is easy because FM has been given for these 
three cases--the first in Chapter 2 and the other two in Examples 6.1 and 
6. 2. 

Here are the implications of (A.II) for the characterization of the 
decreasing functions. 

Proposition 6.10: Assume (A.I) and (A.II) hold and that f is a decreasing 
* function. Then for each t E T and for each v L t, the function h(p) -

f(v+pt) is a symmetric unimodal function. 

Proof: To verify the symmetry, we must show h(p) - h(-p). But since Rt E 

G and v L t, the G-invariance of f implies 
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f(v+pt) - f(Rt(v+pt)) - f(v-pt) 

so symmetry holds. To show his decreasing on [0,m), consider 0 s p1 s p2 • 

Thus, v+p1t is in the line segment connecting v+p2t and v-p2t - Rt(v+p2t). 

Thus, because Rt is an element of G, v+p1t s v+p2t so 

Proposition 6.11: Assume (A.I) and (A.II) hold and let f be a G-invariant 

real valued function defined on V. Let f 1 be the restriction off to F and 

* assume f 1 is continuous at the boundary of F. If for each t e T and each 

v ~ t, h(p) - f(v+pt) is decreasing on [0,m), then f is decreasing. 

~: Condition (ii) of Proposition 6.9 needs to be verified. Thus, 

* consider x e F and t e T . Write x - v+6t where v ~ t and 6 - (t,x)/(t,t). 

Because x e F and t e F=, 6 ~ O. 'Thus, for A ~ 0, x+At - v + (A+6)t so 

f(x+At) - f(v + (A+6)t), (6.26) 

But, the assumption that f(v+pt) is decreasing on [0,m) implies the 

function of A in (6.26) is decreasing on [O,m) since 6 ~ 0. By Proposition 

6.9, f is decreasing. O 

Remark 6.1: When G - Pn' we have seen that Proposition 6.11 is true 

without the assumption that f 1 is continuous at the boundary of F. In the 

case that the group G is a reflection group (that is, G is equal to the 

smallest closed group generated by some set of reflections of the form 

(6.25)), Proposition 6.11 is also true without the assumption that f 1 is 

continuous at the boundary of F. This is proved in Eaton and Perlman 

(1977) where extensive use is made of the theory of reflection groups (see 

Benson and Grove (1971)). Whether the continuity assumption can be 

dispensed with in the present generality is not known. The groups Dn and 

Pn·Dn are reflection groups so the results in Eaton and Perlman (1977) 

apply to these. O 



In the present context, here is the Convolution Theorem. 

Theorem 6.12: Assume (A.I) and (A.II) hold and let f 1 and f 2 be non­
negative decreasing functions. Then the convolution 

is decreasing. 
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(6.27) 

Proof: Leth be the indicator function of lxl(x,x) s n}, n - 1,2, ... so n 
hn is a decreasing function and has compact support. Define fi,n by 

if fi(x)hn(x) > n 

if f 1(x)hn(x) s n 

for i - 1,2 and n = 1,2, .... It is easy to check that f. 
i,n 

is a 
' decreasing function and fi,n converges monotonically to fi. Thus, by the 

Monotone Convergence Theorem, 

f (y) - J f 1 (y-x)f2 (x)dx n V ,n ,n (6.28) 

converges pointwise to f(y). Since the pointwise limit of decreasing 
functions is again a decreasing function, if suffices to show that fn is a 
decreasing function. 

Now, fn defined in (6.28) is the convolution of two bounded functions 
with compact support. Hence fn is continuous on V (see Kee (1982) for a 
proof of this well known result). Thus, it suffices to verify that fn is 

* G-invariant and for each t E T and v i t, 

is decreasing on (O,~). The G-invariance of f follows from the G­n 

(6.29) 
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invariance of f 1 , f 2 and.the fact that G ~ O(V) so each g e G preserves ,n ,n 
the Lebesgue measure dx on V. The relevant calculation is 

- J f 1 (gy-x)f2 (x)dx ~ J f 1 (y-g"1x)f2 (x)dx ,n ,n ,n ,n 

-J f 1 (y-x)f2 (gx)dx - J f 1 (y-x)f2 -(x)dx - f (y). ,n ,n ,n ,n n 

The verification that h(>.) in (6.29) is decreasing on [0,m) proceeds as 

in the proof of Theorem 2.20. For t e T, write Vas the direct sum N + 

span(t0 ) where N is the orthogonal complement of span(t0 ), and t 0 -

t/(t,t) 112 In (6.28), write x - w+yt0 where we N. Then 

fn(v+>.t) - tf }l,n(v+>.t-w-7t0)f2 ,n(w+yt0)°d7dw 

- JNfm f 1 ,n<v-w+<lltll>.-1)t0)f2 ,n(w+yt0)d7dw. (6.30) 

Since f 1 and"f2 are decreasing, Proposition 6.10 implies that ,n ,n 

is symmetric unimodal and 

is symmetric unimodal. Thus, the inside integral in (6.30) is the 

convolution of two symmetric unimodal functions of R1 evaluated at lltll>.. 

By Wintner' s Theorem, the inside integral is decreasing in lltll>. for lltll>. ~ 

O. Hence the inside integral is decreasing in >. ~ 0 since lltll > 0. Thus 

fn(v+>.t) is decreasing in >. ~ 0. o 

Remark 6.2: The validity of the convolution Theorem when (A.I) holds but 

(A.II) does not (as in Examples 6.3 and 6.4) is an important open question. 

The Convolution Theorem is false for Example 6.5 (see Eaton (1984) for a 

counter example). This shows that some type of assumptions are needed. 
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However, the group introduced in example 6.6 is important in applications, 
and it would be useful to know whether or not the Convolution Theorem is 
valid for this case. o 

Section 5: Reflections and DR Functions 
In this section we establish general analogues of Proposition 3.8 and 

Theorem 3.9 for so called DR functions. The emphasis here is on 
reflections rather than the groups generated by reflections, but a brief 
discussion of reflection groups is appropriate. 

In a finite dimensional vector space (V,(•,•), let A be an arbitrary 
subset of V such that 0 ~ A. Using the notation of the previous section, 
each t e A defines a reflection 

Obviously Rt R~ 

generated by A is 

t 0 t 
Rt - I - 2(t,t) 

R~1 for each reflection. The set of reflections 

(6.31) 

Remark 6.3: A group G ~ O(V) is called a reflection group if there is some 
set R of reflections which generate (algebraically) G. Examples of 
reflection groups include Dn of Example 6.1, the permutation group Pn' and 
the group Pn·Dn of Example 6.2. The reader can easily construct sets of 
reflections which generate these three groups. The structure of reflection 
groups is completely understood. All of the finite reflection groups are 
listed in Benson and Grove (1971). The infinite case is taken care of by 
the discussion in Eaton and Perlman (1977) and the result in Eaton and 
Perlman (1977) which asserts that every infinite irreducible reflection 
group is dense in O(V). These results are not used in what follows. D 

Given the set A and the set of reflections R generated by A, here is 
what appears to be the appropriate definition of DR functions defined on 
VxV. 
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Definition 6.2: If a real valued function f defined on VxV satisfies 

(i) f(Rtx'Rty) - f(x,y) for x,y e V and Rt e R 
(ii) for each t e A, (t,x)(t,y) ~ 0 implies that 

then, f is a decreasing reflection function (DR function). 

The analogue of Proposition 3.8 in the present context follows. 

(6.32) 

Proposition 6.13: Let f 0 be a real valued function defined on V and define 
f on VxV by f(x,y) - f 0(x-y). The following are equivalent: 

(i) f is a DR function 

(ii) for each t e A and each v i t, the function p ~ f 0(v+pt) is 
symmetric and unimodal for p e R1 . 

Proof: Assume f is a DR function. With x - v and y - -Pt, (i) of 
Definition 6.2 implies 

so symmetry in p holds. To establish unimodality, consider 0 s p1 s p2 , t 
e A and v it. Withy - ~(p2 -p1 )t and x - v~(p1+p2 )t, (t,x)(t,y) ~ O so 

Hence p ~ f(v+pt) is decreasing on [O,~) so (ii) holds. 

Now, assume (ii) holds. Given x,y e V and t e A, write x - v1+p1t and 
y - v2+p2t with vi i t for i - 1,2. Then 

f(x,y) - f 0 (x-y) - f 0(v1-v2+(p1-p2)t) - f 0 (v1-v2-<P1-p2)t) 

- f 0(v1-p1t-(v2-p2t)) - f 0(Rtx-Rty) - f(Rtx'Rty). 

Thus (i) of Definition 6.2 holds. For t e A and x - v1+p1t, y - v2+P2t, 
the condition (t,x)(t,y) ~ 0 is equivalent to the condition p1p2 ~ 0. This 
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implies that IP1-p2 1 ~ IP1+p2 1 so that the vector x-y - v1-v2+(p1-p2)t is a 

convex combination of the two vectors v1-v2-(p1+p2)t and v1-v2+<P1+p2)t. 

Therefore, the symmetric unimodality of f 0 implies 

f(x,y) - f 0 (x-y) - f 0 (v1-v2+<P1-p2)t) 

~ f 0 (v1-v2+(p1+p2)t) - f 0 (x-Rty) - f(x,Rty). 

Hence f is a DR function. O 

Here is the version of Theorem 3.9 appropriate for the present context. 

Proposition 6.14: Let f 1 and f 2 be non-negative DR functions defined on 

VxV. Supposeµ is au-finite measure on the Borel subsets of V such that µ 

is invariant under each of the transformations Rt,t EA. Assume that 

is finite for each x,z E V. Then f is also a DR function. 

Proof: The proof is essentially the same as that of Theorem 3.9 so just a 

sketch is given. That f(Rtx'Rtz) - f(x,z) is easily established using the 

invariance ofµ and the assumption that f 1 and f 2 are DR functions. To 

verify (ii) of Definition 6.2, consider t EA and x E V satisfying 

(t,x)(t,z) ~ 0. It must be shown that 

is non-negative. Write the region V as V - V+uv0uv_ where 

V+ - {yl(t,y) >OJ 

v0 - ty!(t,y) - OJ 

V - <yl(t,y) <OJ. 

(6.34) 

The integral in (6.34) over the region v0 is zero since f 2(y,z) - f 2 (y,Rtz) 
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on v0 . The integral in (6.34) over V_ can be transformed into an integral 
over V+ by making the change of variable y ~ Rty. Using the invariance 
assumptions on µ, f 1 and f 2 yields 

S - JV [f1 (x,y)-f1 (x,Rty)][f2(y,z)-f2(y,Rtz)]µ(dy). 

+ 

(6.35) 

Now, the condition (t,x)(t,z) ~ 0 together with the DR assumptions on f 1 
and f 2 imply that the integrand in (6.35) is non-negative on the region of 
integration V+. Hence S ~ 0. D 

Remark 6.4: Versions of definition 6.2 and Propositions 6.13 and 6.14 are 
available when the domain of definition of the function involved is not V, 
but some subset of V which is invariant under each Rt,t Ea. For example, 
suppose X and Y are invariant (under each Rt) subsets of V and let f be a 
real valued function defined on XxY. Then Definition 6.2 is the 
appropriate definition of a DR function for x EX and y E Y. Similar 
modifications (but the same proofs) are easily made in Propositions 6.13 
and 6. ll~. These are left to the reader. D 

A version of the Convolution Theorem can also be formulated in the 
present context. 

Proposition 6.15: Suppose f 1 and f 2 are non-negative functions defined on 
V which satisfy 

(i) fort Ea and v it, the function p ~ fi(v+pt) is symmetric 

and unimodal, i - 1,2. 

Then, _the convolution 

(6.36) 

also satisfies (i) above. Here, dx is Lebesgue measure on V. 

Remark 6.5: The notion of decreasing functions (when a group G ~ O(V) 
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induces an ordering) has been replaced by (i) in the present setting. We 
know (i) and "decreasing" are equivalent in the case that V - Rn and G = 
Pn--see Proposition 2.17. 

Proof: For t e A and v ..l t, 

Without loss of generality, assume that (t,t) - 1 and let M be the subspace 
perpendicular to t. Write x - w+7t where we Mand 7 e R1 . This 
"orthogonal change of variable" yields 

For v and w fixed, we recognize the inside integral as the convolution (on 
R1) of two symmetric unimodal functions. Thus, by Wintner's Theorem, for 
each w, 

p ~ ~ f(v-w+(p-7)t)f2 (w+7t)d7 
-a> 

is a symmetric unimodal function of p. Hence the same is true for 
f(v+pt). D 

We end this section with a few comments concerning the validity of 
Proposition 3.7 in the present reflection context. Again let A~ V be a 
subset of V such that 0 ~ A. Let G be the group generated (algebraically) 
by R - {Rtlt e A} so G is a reflection group. Suppose that f is a DR 
function according to Definition 6.2. Observe that 

f(x,y) - f(gx,gy) (6.37) 

because each g is just a product of reflections in Rand (6.37) holds for 
elements of R by definition. For fixed x and y, the problem is to describe 
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where the function 

1/l(g) - f(gx,y). g E G 

achieves its supremum (assuming it does achieve it supremum). In 

Proposition 3.7 when G - Pn' a solution to this problem is given in terms 

of the convex cone F. Thus, given G, one way to attack this problem is to 

try to construct a convex cone FG so that Proposition 3.7 is true with Pn 

replaced by G and F replaced by FG. When G is a finite reflection group, 

the existence of such FG is a non-trivial fact--a proof of which the reader 

can find in Benson and Grove. A further discussion of topics related to 

the validity of Proposition 3.7 for reflection groups can be found in Eaton 

and Perlman (1977) and Conlon et al. (1977). 



Appendix 

In this appendix, some basic results in convex set theory are reviewed. 
In addition a few non-standard results, which have direct applications to 
the main body of the lectures, are covered. It is assumed that the reader 
is familiar with much of the material in Rockafellar (1970) which is used 
as a reference for proofs of standard results. 

Because of the material in Chapter 6, the setting for the discussion 
here is in a finite dimensional inner product space, say (V,(•,•)) where 
(•,•)denotes an inner product on the real vector space V assumed finite 
dimensional. 

Definition A.l: A subset B ~ V is convex if for all x,y e B and a e [0,1], 
the vector ax + (1-a)y e B. 

Since {ax+(l-a)y;a e [0,1)) is just the closed line segment connecting 
x and y, convex sets are those which contain all the closed line segments 
connecting points in the set. For a vector e e V with llell = 1 and a real 
number c, the hyperplane 

H~ - <xl<e.x) - cl ., ,c 

is convex. Also, the two closed half-spaces 

lxl <e ,x) ~ cl 

lxl <e ,x) s c} } 
are convex whose interiors do not intersect each other. 

(A. l) 

(A. 2) 

For any finite collection of vectors x1 , ... , ~in V, a sum of the form 

with each ai non-negative and ~i - l, is called a convex combination of 
x1 , ... , ~· It is easy to show that a set Bis convex iff B contains all 
convex combinations of its elements. Given a subset A~ V, the convex hull 
of A, denoted by S(A), is the set of all convex combinations of elements of 
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A. Obviously S(A) is a convex set. 

Proposition A.l: For A~ V, S(A) is equal to the intersection of all the 

convex sets which contain A. 

Proof: Let B be the aforementioned intersection so B is convex. Since 

S(A) is convex and contains A, B ~ S(A). On the other hand, A~ Band Bis 

convex so B contains all convex combinations of elements of A--that is, 

S(A) ~ B. O 

Proposition A.2: For A~ V, let B be the intersection of all closed convex 

sets which contain A. Then Bis the closure of S(A). 

Proof: Since B is convex and contains A, S(A) ~ B. But B is closed so B 

contains the closure of S(A). On the other hand, the closure of S(A) is 

convex and contains A so B ~ S(A). o 

In general it is difficult to decide whether a given point is in a 

convex set. The following criterion is sometimes useful. Let A be a non­

empty subset of V and let B be the closure of S(A). 

Proposition A.3: The following are equivalent 

(i) x E B 

(ii) (u,x) s sup (u,z) for all u e V. 
ZEA 

Proof: If x E B, then x is the limit of points in S(A). 

then y - lliizi with 0 s ai s 1, llii - 1 and zi E A. Hence 

(u,y) - llii(u,zi) s max (u,zi) s sup (u,z): 
i zEA 

But if y E S(A), 

Since (ii) holds for ally E S(A), (ii) holds for points in the closure of 

S(A) by continuity of the inner product. Thus (i) implies (ii). 

For (ii) implies (i), we will show that not (i) implies not (ii). 

Thus, consider x ~ B. Since both B and {x) are convex and closed, and {x) 

is bounded, there is a hyperplane which strictly separates B and {x) 
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(Rockafellar (1970), Corollary 11.4.2). That is, there is a u E V with !lull 
1 and a real nwnber c such that u'x > c and 

u'y < c for all y E B. 

Since A~ B, this implies that (ii) cannot hold, so (ii) implies (i). D 

A fundamental representation theorem for compact convex sets asserts 
that every compact convex set is equal to the convex hull of its set of 
extreme points (Rockafellar (1970), Corollary (18.5.1). An example of this 
representation theorem of consequence here is Birkhoff's Theorem (Birkhoff 

2 (1946)). To describe this result, let V be then -dimensional vector space 
of nxn real matrices. An element Q E V is doubly stochastic if each 
element of Q is non-negative and, both row swns and colwnn swns are equal 
to one. Let Bn ~ V be the set of all doubly stochastic matrices. It is 
easy to see that Bn is compact. Thus, a knowledge of the extreme points of 
Bn would give representations of elements of Bn. 

Recall that an nxn matrix P is a permutation matrix if in each row and 
each colwnn of P, exactly one element is equal to one and the remaining 
elements are zero. If x is an n-dimensional coordinate vector and P is a 

permutation matrix, then Px is just some permutation of the coordinates of 
-1 x. Hence P is an orthogonal linear transformation so P P' which is 

also a permutation matrix. Let Pn denote the set of nxn permutation 
matrices. An easy combinatorial argwnent shows Pn has n! elements. Noting 
that Pn is closed under matrix multiplication, it follows immediately that 
Pn is a group--commonly called the group of permutation matrices. 
Obviously, Pn is contained in the set Bn of doubly stochastic matrices. 

Theorem (Birkhoff (1946)). The group Pn is exactly the set of extreme 
points of Bn. Hence every doubly stochastic matrix is a convex combination 
of permutation matrices. 

A proof of the above theorem is not given here. For a more thorough 
discussion of this result and references to a nwnber of proofs, see 
Marshall and Olkin (1979) (p. 34). 
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Convex cones are the next topic of discussion. A subset F ~ V is a 

convex cone if F is convex and if for each~~ 0 and x e F, ~x e F. This 

definition differs slightly from that in Rockafellar (1970) (p. 13), but is 

more suitable for our purposes. 

Given a convex cone F, the dual cone to F is defined by 

F* (xl (x,u) ~ 0 for all u e F}. 

* It is easily verified that F is a closed convex cone. When F is a non-

* * empty closed convex cone, then (F) - F (Rockafellar (1970), Theorem 

14.1). In certain cases, F* can be determined explicitly when Fis not too 

complicated. Some examples are given below. 

If F is a non-empty convex cone, a subset T ~ F is a positive spanning 

.§.§.!;;. for F if every element of F is a finite linear combination of elements 

of T with the coefficients of the linear combination non-negative. 

Obviously F is a positive spanning set for F, but we are interested in 

minimal spanning sets which are called'frames. In other words, T is a 

frame for F if T is a positive spanning set for F and no proper subset of T 

is. 

In many cases, convex cones are defined as the intersection of a finite 

number of closed homogeneous half-spaces. That is, a finite number of non­

zero vectors u1 , ... , ur are given and a closed convex cone Fis defined by 

i - l, ... , r}. 

Let F0 be the closed convex cone consisting of all vectors of the form 
r 

~laiui with ai ~ 0, i - 1, ... , r. 

* * Proposition A.4: In the above notation, F0 - F and consequently F - F0 . 

* Further (u1 , ... , ur} is a positive spanning set for F. *If u1 , ... , ur are 

linearly independent, then (u1 , ... , ur} is a frame for F. 

* Proof: To show F0 - F, first consider x e F so (x,ui) ~ 0 i - l, ... , r. 

* r 
Hence (x,y) ~ 0 for all y - ~laiui with ai ~ 0. 

* x e F0 , then (x,ui) ~ 0 i - l, .•. r, so 

Thus x e F0 . But if 

* * * x e F and F0 - F. Thus, F0 - (F0) 
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* * F . The second assertion follows by definition of F0 (- F ). The third 

* assertion follows by noting that each y E F has a representation y 

~~aiui and this representation is unique by the linear independence. Thus, 

* * no subset of {u1 , ... , ur} can positively span F since each ui E F, 

i - 1, ... , r. o 

Proposition A.5: Let v1 , ... , vn be a basis for the vector space (V,(•,•)) 
and let F be the convex cone generated by v1 , ... , vn--that is, y E F iffy 

- ~aivi with ai ~ 0, i - 1, ... , n. Also, let u1 , ... , un be the dual basis 

t~ v1 , ... , vn--that is, (ui,vj) = oij" Then {u1 , ... , un) is a frame for 
F . 

. * Proof: Since u1 , ... , un is a basis, each x E F can be written x - ~iui. 

But, 0 S (x,vj) - ~i(ui,vj) - bj so ea~h bj ~ 0. Conversely, any x = 

~iui with each bj ~ 0 is obviously in F Thus {u1 , ... , un} is a positive 
spanning set and hence a frame by linear independence. D 

Here are three standard examples of closed convex cones, dual cones and 
frames. 

Example A.l: With V - Rn, let E1 , ... , En be the standard orthonormal basis 
for Rn. Set 

F - lxlEix ~ 0, i - 1, ... , n) 

so F consists of those vectors whose coordinates are all non-negative. A 

* direct application of Propositions A.4 and t..,,2 shows that F - F and 

* (E1 , ... , En) is a frame for both F and F. 

Example A.2: Again take V - Rn and define vectors t 1 , ... , tn-l by: ti has 
its ith coordinate equal to one, its (i+l)th coordinate equal the minus 
one, and all other coordinates are zero. Consider the closed convex cone 

given by 

i - 1, ... , n-1). 
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Then, F consists of those vectors x whose coordinates a 1 , ... , an satisfy 

a 1 ~ ... ~a. Since t 1 , ... , t -l are linearly independent, it follows from 
n * n * Proposition A. 4 that T - { t 1 , ... , tn-l) ·is a frame for F . To construct a 

frame for F, consider vectors e1 , ... , en defined by: ei has its first i 

coordinates equal to one and the remaining coordinates equal to zero. The 

claim is that T - [e1 , ... en'-en) is a frame for F. That T positively spans 

F is easily checked. To see that T is a frame for F, first observe that 

e1 , ... , en is a basis for Rn so no ei, 1 s i S n-1 can be deleted from T. 

But since en and -en are both in F, neither of these can be deleted from T 

if T is to positively span F. O 

Example A.3: For this example, let t 1 , ... , tn-l be as in Example A.2 and 

let t be the vector whose nth coordinate is one and the rest of the n 
coordinates are zero. Then T* - {t1 , ... , tn) is a basis for Rn and by 

Proposition A.5 is a frame for the dual cone to 

P.- txlt'.x ~ 0, i - 1, ... , n). 
]. 

Obviously, F consists of those vectors x with coordinates a 1 , ... , an which 

satisfy a 1 ~ ... ~an~ 0. To construct a frame for F, observe that e1 , ... , 

* en in Example 2.! is the dual basis to t 1 , ... , tn. Since T tt1 , ... , tn} 

is a frame for F, Proposition A.5 shows that T - te1 , ... , e) is a frame 
* * n for (F ) - F. o 

The remainder of this appendix is devoted to discussion of a result due 

to Marshall, Walkup and Wets (1967). Throughout the following discussion, 

(V,(•,•)) is a finite dimensional inner product space, Bis a non-empty 

convex subset of V, and G0 ~ V is a non-empty convex cone. Using G0 , a 

relation on B is defined as follows: 

x s y iffy - x E G0 . (A.3) 

Because G0 is a convex cone, if x s y and y s z, then (y-x) + (z-y) Z-X E 

G0 so x s z. That is, s is a transitive. Henceforth, the relations is 



187 

called a partial cone ordering. However, it is possible that x s y and y s 
x, but x ~ y (this is possible if G0 contains a non-trivial subspace). 

Given the partial cone ordering S on B, a real valued function f:B ~ R1 

is decreasing if x s y implies f(x) ~ f(y). The problem with which the 
Marshall, Walkup and Wets result deals is the characterization of 
decreasing functions in terms of the geometry of G0 . To motivate things, 
first observe that if x e B and t e G0 , then the convexity of B implies 
that the set 

(A.4) 

is a subinterval of [0,oo) which contains 0. Also, if 0 s Al s A2 and A1 , 
A2 are both in A, then x+A1t s x+A 2t since x+A2t - (x+A1t) - (A2-A1)t is an 
element of G0 . Hence, if f is decreasing it is necessary that 

h(A) - f(x+At), A e A (A.5) 

be a decreasing function of A. In particular, if T ~ G0 is any positive 
spanning set, then for each t e T, h(A) given in (A.5) must be decreasing. 
More particularly, when T is a frame for G0 , the above must hold. Under 
some regularity conditions, the converse of this observation holds--namely, 
if for each x e B and t e T, the function of A in (A.5) is decreasing for A 
e A, then f is decreasing. The utility of this result is that the frame T 
may have very few vectors in it, so checking that h(A) is decreasing can 
actually be carried out. In our statement of the result, T is not assumed 
to be a frame, but only a positive spanning set. In practice, one always 
tries to take T to be a frame since applying the result is easier for 
minimal spanning sets. 

Here is the formal statement of the result. 

Theorem A.6 (Marshall. Walkup and Wets (1967)). Assume the convex set B ~ 
V has a non-empty interior and assume that f:B ~ R1 is continuous at (8B)nB 
where 8B is the boundary of B. Let T be a positive spanning set for the 
convex cone G0 . The following are equivalent 

(i) f is decreasing 



188 

(ii) for each t e T and x e B, the function h(A) - f(x+At) is 

decreasing in A ~ 0 as long as x+At e B. 

Proof: That (i) implies (ii) is clear from the argument preceding the 

statement of the theorem. To show (ii) implies (i), consider x s y, x,y e 

B. It must be verified that 

f(x) ~ f(y). (A. 6) 

First consider the case when x and y are in the interior of B (which is 

non-empty by assumption). Since x Sy, the vector y - x is in G0 and hence 

is some finite linear combination of elements of T, say 

where ai > 0 and tie T, i - l, ... , r. Because x and y are in the interior 
of B, the convexity of B implies that the line segment 

L - (vlv - ay + (1-a)x, 0 s a s 1) 

is contained in the interior of B. Thus for some e > 0, the tubular 

neighborhood 

N - (wl for some v e L, llw-vll < E) 

is contained in the interior of B. Now, select an integer k so large that 

Observe that the sequence of points 

x 
m 

_ x + mu 
k ' 

for s - 1, ... , r. (A.8) 

m - 0,1, ... , k 

are all on the line Land xm s xm+l since u e G0 . Thus, to verify (A.6), 
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it suffices to verify 

(A.9) 

But, the sequence of points z0 - xm, 

s - 1, ... , r 

are all in N by (A.8). Further, zj s zj+l' j - 0, ... , r-1 since ajtj/k is 
in G0 . Thus, it suffices to show that 

(A.10) 

However, the vector 

0 s 7 s 1 

satisfies 

{ z(O) - z. 
J 

z(l) - zj+l 

and z(7) EN since N is convex. Thus, Z(A) is in B for all A in [0,1] and 
by assumption (ii) with t - tj+l and A - (7aj+l)/k, (A.10) follows and 
hence (A.6) holds for x and y in the interior of B with x s y. 

Now suppose both x and y are in aBnB with x s y. Select z in the 
interior of B and for 0 s a s l, let 

xa - (1-a)x + az 

ya - (1-a)y + az. 

Then, for 0 < a s l, xa and ya are in the interior of B and xa s Ya· By 
the argument above f(xa) ~ f(ya) for all a E (0,1]. Letting a~ 0 and 
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using the continuity off at 8BnB, we see that f(x) ~ f(y). When exactly 
one of x or y is in 8BnB, a similar argument shows that f(x) ~ f(y). D 

Corollary A.7: Let f be as in Theorem A."6 and assume further that f has a 
differential, say df, for each x in the interior of B. Then f is 
decreasing iff (df(x),t) S 0 for each t ET. 

Proof: Since 

the result follows immediately. D 

In most of our applications of Theorem A.6, the convex set B will be a 
closed convex cone F with a non-empty interior and G0 will be the dual cone 
F* of F. The three examples discussed earlier are important in 

applications and are discussed in detail in the relevant chapters. 
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